/* * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003 * * bitmap_create - sets up the bitmap structure * bitmap_destroy - destroys the bitmap structure * * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.: * - added disk storage for bitmap * - changes to allow various bitmap chunk sizes */ /* * Still to do: * * flush after percent set rather than just time based. (maybe both). */ #include #include #include #include #include #include #include #include #include #include #include #include #include "md.h" #include "bitmap.h" static inline char *bmname(struct bitmap *bitmap) { return bitmap->mddev ? mdname(bitmap->mddev) : "mdX"; } /* * check a page and, if necessary, allocate it (or hijack it if the alloc fails) * * 1) check to see if this page is allocated, if it's not then try to alloc * 2) if the alloc fails, set the page's hijacked flag so we'll use the * page pointer directly as a counter * * if we find our page, we increment the page's refcount so that it stays * allocated while we're using it */ static int bitmap_checkpage(struct bitmap_counts *bitmap, unsigned long page, int create, int no_hijack) __releases(bitmap->lock) __acquires(bitmap->lock) { unsigned char *mappage; if (page >= bitmap->pages) { /* This can happen if bitmap_start_sync goes beyond * End-of-device while looking for a whole page. * It is harmless. */ return -EINVAL; } if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */ return 0; if (bitmap->bp[page].map) /* page is already allocated, just return */ return 0; if (!create) return -ENOENT; /* this page has not been allocated yet */ spin_unlock_irq(&bitmap->lock); /* It is possible that this is being called inside a * prepare_to_wait/finish_wait loop from raid5c:make_request(). * In general it is not permitted to sleep in that context as it * can cause the loop to spin freely. * That doesn't apply here as we can only reach this point * once with any loop. * When this function completes, either bp[page].map or * bp[page].hijacked. In either case, this function will * abort before getting to this point again. So there is * no risk of a free-spin, and so it is safe to assert * that sleeping here is allowed. */ sched_annotate_sleep(); mappage = kzalloc(PAGE_SIZE, GFP_NOIO); spin_lock_irq(&bitmap->lock); if (mappage == NULL) { pr_debug("md/bitmap: map page allocation failed, hijacking\n"); /* We don't support hijack for cluster raid */ if (no_hijack) return -ENOMEM; /* failed - set the hijacked flag so that we can use the * pointer as a counter */ if (!bitmap->bp[page].map) bitmap->bp[page].hijacked = 1; } else if (bitmap->bp[page].map || bitmap->bp[page].hijacked) { /* somebody beat us to getting the page */ kfree(mappage); } else { /* no page was in place and we have one, so install it */ bitmap->bp[page].map = mappage; bitmap->missing_pages--; } return 0; } /* if page is completely empty, put it back on the free list, or dealloc it */ /* if page was hijacked, unmark the flag so it might get alloced next time */ /* Note: lock should be held when calling this */ static void bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page) { char *ptr; if (bitmap->bp[page].count) /* page is still busy */ return; /* page is no longer in use, it can be released */ if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */ bitmap->bp[page].hijacked = 0; bitmap->bp[page].map = NULL; } else { /* normal case, free the page */ ptr = bitmap->bp[page].map; bitmap->bp[page].map = NULL; bitmap->missing_pages++; kfree(ptr); } } /* * bitmap file handling - read and write the bitmap file and its superblock */ /* * basic page I/O operations */ /* IO operations when bitmap is stored near all superblocks */ static int read_sb_page(struct mddev *mddev, loff_t offset, struct page *page, unsigned long index, int size) { /* choose a good rdev and read the page from there */ struct md_rdev *rdev; sector_t target; rdev_for_each(rdev, mddev) { if (! test_bit(In_sync, &rdev->flags) || test_bit(Faulty, &rdev->flags)) continue; target = offset + index * (PAGE_SIZE/512); if (sync_page_io(rdev, target, roundup(size, bdev_logical_block_size(rdev->bdev)), page, REQ_OP_READ, 0, true)) { page->index = index; return 0; } } return -EIO; } static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev) { /* Iterate the disks of an mddev, using rcu to protect access to the * linked list, and raising the refcount of devices we return to ensure * they don't disappear while in use. * As devices are only added or removed when raid_disk is < 0 and * nr_pending is 0 and In_sync is clear, the entries we return will * still be in the same position on the list when we re-enter * list_for_each_entry_continue_rcu. * * Note that if entered with 'rdev == NULL' to start at the * beginning, we temporarily assign 'rdev' to an address which * isn't really an rdev, but which can be used by * list_for_each_entry_continue_rcu() to find the first entry. */ rcu_read_lock(); if (rdev == NULL) /* start at the beginning */ rdev = list_entry(&mddev->disks, struct md_rdev, same_set); else { /* release the previous rdev and start from there. */ rdev_dec_pending(rdev, mddev); } list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) { if (rdev->raid_disk >= 0 && !test_bit(Faulty, &rdev->flags)) { /* this is a usable devices */ atomic_inc(&rdev->nr_pending); rcu_read_unlock(); return rdev; } } rcu_read_unlock(); return NULL; } static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait) { struct md_rdev *rdev = NULL; struct block_device *bdev; struct mddev *mddev = bitmap->mddev; struct bitmap_storage *store = &bitmap->storage; while ((rdev = next_active_rdev(rdev, mddev)) != NULL) { int size = PAGE_SIZE; loff_t offset = mddev->bitmap_info.offset; bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev; if (page->index == store->file_pages-1) { int last_page_size = store->bytes & (PAGE_SIZE-1); if (last_page_size == 0) last_page_size = PAGE_SIZE; size = roundup(last_page_size, bdev_logical_block_size(bdev)); } /* Just make sure we aren't corrupting data or * metadata */ if (mddev->external) { /* Bitmap could be anywhere. */ if (rdev->sb_start + offset + (page->index * (PAGE_SIZE/512)) > rdev->data_offset && rdev->sb_start + offset < (rdev->data_offset + mddev->dev_sectors + (PAGE_SIZE/512))) goto bad_alignment; } else if (offset < 0) { /* DATA BITMAP METADATA */ if (offset + (long)(page->index * (PAGE_SIZE/512)) + size/512 > 0) /* bitmap runs in to metadata */ goto bad_alignment; if (rdev->data_offset + mddev->dev_sectors > rdev->sb_start + offset) /* data runs in to bitmap */ goto bad_alignment; } else if (rdev->sb_start < rdev->data_offset) { /* METADATA BITMAP DATA */ if (rdev->sb_start + offset + page->index*(PAGE_SIZE/512) + size/512 > rdev->data_offset) /* bitmap runs in to data */ goto bad_alignment; } else { /* DATA METADATA BITMAP - no problems */ } md_super_write(mddev, rdev, rdev->sb_start + offset + page->index * (PAGE_SIZE/512), size, page); } if (wait) md_super_wait(mddev); return 0; bad_alignment: return -EINVAL; } static void bitmap_file_kick(struct bitmap *bitmap); /* * write out a page to a file */ static void write_page(struct bitmap *bitmap, struct page *page, int wait) { struct buffer_head *bh; if (bitmap->storage.file == NULL) { switch (write_sb_page(bitmap, page, wait)) { case -EINVAL: set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); } } else { bh = page_buffers(page); while (bh && bh->b_blocknr) { atomic_inc(&bitmap->pending_writes); set_buffer_locked(bh); set_buffer_mapped(bh); submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); bh = bh->b_this_page; } if (wait) wait_event(bitmap->write_wait, atomic_read(&bitmap->pending_writes)==0); } if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) bitmap_file_kick(bitmap); } static void end_bitmap_write(struct buffer_head *bh, int uptodate) { struct bitmap *bitmap = bh->b_private; if (!uptodate) set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); if (atomic_dec_and_test(&bitmap->pending_writes)) wake_up(&bitmap->write_wait); } /* copied from buffer.c */ static void __clear_page_buffers(struct page *page) { ClearPagePrivate(page); set_page_private(page, 0); put_page(page); } static void free_buffers(struct page *page) { struct buffer_head *bh; if (!PagePrivate(page)) return; bh = page_buffers(page); while (bh) { struct buffer_head *next = bh->b_this_page; free_buffer_head(bh); bh = next; } __clear_page_buffers(page); put_page(page); } /* read a page from a file. * We both read the page, and attach buffers to the page to record the * address of each block (using bmap). These addresses will be used * to write the block later, completely bypassing the filesystem. * This usage is similar to how swap files are handled, and allows us * to write to a file with no concerns of memory allocation failing. */ static int read_page(struct file *file, unsigned long index, struct bitmap *bitmap, unsigned long count, struct page *page) { int ret = 0; struct inode *inode = file_inode(file); struct buffer_head *bh; sector_t block; pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE, (unsigned long long)index << PAGE_SHIFT); bh = alloc_page_buffers(page, 1<i_blkbits, 0); if (!bh) { ret = -ENOMEM; goto out; } attach_page_buffers(page, bh); block = index << (PAGE_SHIFT - inode->i_blkbits); while (bh) { if (count == 0) bh->b_blocknr = 0; else { bh->b_blocknr = bmap(inode, block); if (bh->b_blocknr == 0) { /* Cannot use this file! */ ret = -EINVAL; goto out; } bh->b_bdev = inode->i_sb->s_bdev; if (count < (1<i_blkbits)) count = 0; else count -= (1<i_blkbits); bh->b_end_io = end_bitmap_write; bh->b_private = bitmap; atomic_inc(&bitmap->pending_writes); set_buffer_locked(bh); set_buffer_mapped(bh); submit_bh(REQ_OP_READ, 0, bh); } block++; bh = bh->b_this_page; } page->index = index; wait_event(bitmap->write_wait, atomic_read(&bitmap->pending_writes)==0); if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) ret = -EIO; out: if (ret) printk(KERN_ALERT "md: bitmap read error: (%dB @ %llu): %d\n", (int)PAGE_SIZE, (unsigned long long)index << PAGE_SHIFT, ret); return ret; } /* * bitmap file superblock operations */ /* update the event counter and sync the superblock to disk */ void bitmap_update_sb(struct bitmap *bitmap) { bitmap_super_t *sb; if (!bitmap || !bitmap->mddev) /* no bitmap for this array */ return; if (bitmap->mddev->bitmap_info.external) return; if (!bitmap->storage.sb_page) /* no superblock */ return; sb = kmap_atomic(bitmap->storage.sb_page); sb->events = cpu_to_le64(bitmap->mddev->events); if (bitmap->mddev->events < bitmap->events_cleared) /* rocking back to read-only */ bitmap->events_cleared = bitmap->mddev->events; sb->events_cleared = cpu_to_le64(bitmap->events_cleared); sb->state = cpu_to_le32(bitmap->flags); /* Just in case these have been changed via sysfs: */ sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ); sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind); /* This might have been changed by a reshape */ sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize); sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes); sb->sectors_reserved = cpu_to_le32(bitmap->mddev-> bitmap_info.space); kunmap_atomic(sb); write_page(bitmap, bitmap->storage.sb_page, 1); } /* print out the bitmap file superblock */ void bitmap_print_sb(struct bitmap *bitmap) { bitmap_super_t *sb; if (!bitmap || !bitmap->storage.sb_page) return; sb = kmap_atomic(bitmap->storage.sb_page); printk(KERN_DEBUG "%s: bitmap file superblock:\n", bmname(bitmap)); printk(KERN_DEBUG " magic: %08x\n", le32_to_cpu(sb->magic)); printk(KERN_DEBUG " version: %d\n", le32_to_cpu(sb->version)); printk(KERN_DEBUG " uuid: %08x.%08x.%08x.%08x\n", *(__u32 *)(sb->uuid+0), *(__u32 *)(sb->uuid+4), *(__u32 *)(sb->uuid+8), *(__u32 *)(sb->uuid+12)); printk(KERN_DEBUG " events: %llu\n", (unsigned long long) le64_to_cpu(sb->events)); printk(KERN_DEBUG "events cleared: %llu\n", (unsigned long long) le64_to_cpu(sb->events_cleared)); printk(KERN_DEBUG " state: %08x\n", le32_to_cpu(sb->state)); printk(KERN_DEBUG " chunksize: %d B\n", le32_to_cpu(sb->chunksize)); printk(KERN_DEBUG " daemon sleep: %ds\n", le32_to_cpu(sb->daemon_sleep)); printk(KERN_DEBUG " sync size: %llu KB\n", (unsigned long long)le64_to_cpu(sb->sync_size)/2); printk(KERN_DEBUG "max write behind: %d\n", le32_to_cpu(sb->write_behind)); kunmap_atomic(sb); } /* * bitmap_new_disk_sb * @bitmap * * This function is somewhat the reverse of bitmap_read_sb. bitmap_read_sb * reads and verifies the on-disk bitmap superblock and populates bitmap_info. * This function verifies 'bitmap_info' and populates the on-disk bitmap * structure, which is to be written to disk. * * Returns: 0 on success, -Exxx on error */ static int bitmap_new_disk_sb(struct bitmap *bitmap) { bitmap_super_t *sb; unsigned long chunksize, daemon_sleep, write_behind; bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (bitmap->storage.sb_page == NULL) return -ENOMEM; bitmap->storage.sb_page->index = 0; sb = kmap_atomic(bitmap->storage.sb_page); sb->magic = cpu_to_le32(BITMAP_MAGIC); sb->version = cpu_to_le32(BITMAP_MAJOR_HI); chunksize = bitmap->mddev->bitmap_info.chunksize; BUG_ON(!chunksize); if (!is_power_of_2(chunksize)) { kunmap_atomic(sb); printk(KERN_ERR "bitmap chunksize not a power of 2\n"); return -EINVAL; } sb->chunksize = cpu_to_le32(chunksize); daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep; if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) { printk(KERN_INFO "Choosing daemon_sleep default (5 sec)\n"); daemon_sleep = 5 * HZ; } sb->daemon_sleep = cpu_to_le32(daemon_sleep); bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; /* * FIXME: write_behind for RAID1. If not specified, what * is a good choice? We choose COUNTER_MAX / 2 arbitrarily. */ write_behind = bitmap->mddev->bitmap_info.max_write_behind; if (write_behind > COUNTER_MAX) write_behind = COUNTER_MAX / 2; sb->write_behind = cpu_to_le32(write_behind); bitmap->mddev->bitmap_info.max_write_behind = write_behind; /* keep the array size field of the bitmap superblock up to date */ sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); memcpy(sb->uuid, bitmap->mddev->uuid, 16); set_bit(BITMAP_STALE, &bitmap->flags); sb->state = cpu_to_le32(bitmap->flags); bitmap->events_cleared = bitmap->mddev->events; sb->events_cleared = cpu_to_le64(bitmap->mddev->events); bitmap->mddev->bitmap_info.nodes = 0; kunmap_atomic(sb); return 0; } /* read the superblock from the bitmap file and initialize some bitmap fields */ static int bitmap_read_sb(struct bitmap *bitmap) { char *reason = NULL; bitmap_super_t *sb; unsigned long chunksize, daemon_sleep, write_behind; unsigned long long events; int nodes = 0; unsigned long sectors_reserved = 0; int err = -EINVAL; struct page *sb_page; loff_t offset = bitmap->mddev->bitmap_info.offset; if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) { chunksize = 128 * 1024 * 1024; daemon_sleep = 5 * HZ; write_behind = 0; set_bit(BITMAP_STALE, &bitmap->flags); err = 0; goto out_no_sb; } /* page 0 is the superblock, read it... */ sb_page = alloc_page(GFP_KERNEL); if (!sb_page) return -ENOMEM; bitmap->storage.sb_page = sb_page; re_read: /* If cluster_slot is set, the cluster is setup */ if (bitmap->cluster_slot >= 0) { sector_t bm_blocks = bitmap->mddev->resync_max_sectors; sector_div(bm_blocks, bitmap->mddev->bitmap_info.chunksize >> 9); /* bits to bytes */ bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t); /* to 4k blocks */ bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096); offset = bitmap->mddev->bitmap_info.offset + (bitmap->cluster_slot * (bm_blocks << 3)); pr_info("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__, bitmap->cluster_slot, offset); } if (bitmap->storage.file) { loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host); int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize; err = read_page(bitmap->storage.file, 0, bitmap, bytes, sb_page); } else { err = read_sb_page(bitmap->mddev, offset, sb_page, 0, sizeof(bitmap_super_t)); } if (err) return err; err = -EINVAL; sb = kmap_atomic(sb_page); chunksize = le32_to_cpu(sb->chunksize); daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ; write_behind = le32_to_cpu(sb->write_behind); sectors_reserved = le32_to_cpu(sb->sectors_reserved); /* Setup nodes/clustername only if bitmap version is * cluster-compatible */ if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) { nodes = le32_to_cpu(sb->nodes); strlcpy(bitmap->mddev->bitmap_info.cluster_name, sb->cluster_name, 64); } /* verify that the bitmap-specific fields are valid */ if (sb->magic != cpu_to_le32(BITMAP_MAGIC)) reason = "bad magic"; else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO || le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED) reason = "unrecognized superblock version"; else if (chunksize < 512) reason = "bitmap chunksize too small"; else if (!is_power_of_2(chunksize)) reason = "bitmap chunksize not a power of 2"; else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT) reason = "daemon sleep period out of range"; else if (write_behind > COUNTER_MAX) reason = "write-behind limit out of range (0 - 16383)"; if (reason) { printk(KERN_INFO "%s: invalid bitmap file superblock: %s\n", bmname(bitmap), reason); goto out; } /* keep the array size field of the bitmap superblock up to date */ sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); if (bitmap->mddev->persistent) { /* * We have a persistent array superblock, so compare the * bitmap's UUID and event counter to the mddev's */ if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) { printk(KERN_INFO "%s: bitmap superblock UUID mismatch\n", bmname(bitmap)); goto out; } events = le64_to_cpu(sb->events); if (!nodes && (events < bitmap->mddev->events)) { printk(KERN_INFO "%s: bitmap file is out of date (%llu < %llu) " "-- forcing full recovery\n", bmname(bitmap), events, (unsigned long long) bitmap->mddev->events); set_bit(BITMAP_STALE, &bitmap->flags); } } /* assign fields using values from superblock */ bitmap->flags |= le32_to_cpu(sb->state); if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN) set_bit(BITMAP_HOSTENDIAN, &bitmap->flags); bitmap->events_cleared = le64_to_cpu(sb->events_cleared); strlcpy(bitmap->mddev->bitmap_info.cluster_name, sb->cluster_name, 64); err = 0; out: kunmap_atomic(sb); /* Assiging chunksize is required for "re_read" */ bitmap->mddev->bitmap_info.chunksize = chunksize; if (err == 0 && nodes && (bitmap->cluster_slot < 0)) { err = md_setup_cluster(bitmap->mddev, nodes); if (err) { pr_err("%s: Could not setup cluster service (%d)\n", bmname(bitmap), err); goto out_no_sb; } bitmap->cluster_slot = md_cluster_ops->slot_number(bitmap->mddev); goto re_read; } out_no_sb: if (test_bit(BITMAP_STALE, &bitmap->flags)) bitmap->events_cleared = bitmap->mddev->events; bitmap->mddev->bitmap_info.chunksize = chunksize; bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; bitmap->mddev->bitmap_info.max_write_behind = write_behind; bitmap->mddev->bitmap_info.nodes = nodes; if (bitmap->mddev->bitmap_info.space == 0 || bitmap->mddev->bitmap_info.space > sectors_reserved) bitmap->mddev->bitmap_info.space = sectors_reserved; if (err) { bitmap_print_sb(bitmap); if (bitmap->cluster_slot < 0) md_cluster_stop(bitmap->mddev); } return err; } /* * general bitmap file operations */ /* * on-disk bitmap: * * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap * file a page at a time. There's a superblock at the start of the file. */ /* calculate the index of the page that contains this bit */ static inline unsigned long file_page_index(struct bitmap_storage *store, unsigned long chunk) { if (store->sb_page) chunk += sizeof(bitmap_super_t) << 3; return chunk >> PAGE_BIT_SHIFT; } /* calculate the (bit) offset of this bit within a page */ static inline unsigned long file_page_offset(struct bitmap_storage *store, unsigned long chunk) { if (store->sb_page) chunk += sizeof(bitmap_super_t) << 3; return chunk & (PAGE_BITS - 1); } /* * return a pointer to the page in the filemap that contains the given bit * */ static inline struct page *filemap_get_page(struct bitmap_storage *store, unsigned long chunk) { if (file_page_index(store, chunk) >= store->file_pages) return NULL; return store->filemap[file_page_index(store, chunk)]; } static int bitmap_storage_alloc(struct bitmap_storage *store, unsigned long chunks, int with_super, int slot_number) { int pnum, offset = 0; unsigned long num_pages; unsigned long bytes; bytes = DIV_ROUND_UP(chunks, 8); if (with_super) bytes += sizeof(bitmap_super_t); num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE); offset = slot_number * num_pages; store->filemap = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL); if (!store->filemap) return -ENOMEM; if (with_super && !store->sb_page) { store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO); if (store->sb_page == NULL) return -ENOMEM; } pnum = 0; if (store->sb_page) { store->filemap[0] = store->sb_page; pnum = 1; store->sb_page->index = offset; } for ( ; pnum < num_pages; pnum++) { store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO); if (!store->filemap[pnum]) { store->file_pages = pnum; return -ENOMEM; } store->filemap[pnum]->index = pnum + offset; } store->file_pages = pnum; /* We need 4 bits per page, rounded up to a multiple * of sizeof(unsigned long) */ store->filemap_attr = kzalloc( roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)), GFP_KERNEL); if (!store->filemap_attr) return -ENOMEM; store->bytes = bytes; return 0; } static void bitmap_file_unmap(struct bitmap_storage *store) { struct page **map, *sb_page; int pages; struct file *file; file = store->file; map = store->filemap; pages = store->file_pages; sb_page = store->sb_page; while (pages--) if (map[pages] != sb_page) /* 0 is sb_page, release it below */ free_buffers(map[pages]); kfree(map); kfree(store->filemap_attr); if (sb_page) free_buffers(sb_page); if (file) { struct inode *inode = file_inode(file); invalidate_mapping_pages(inode->i_mapping, 0, -1); fput(file); } } /* * bitmap_file_kick - if an error occurs while manipulating the bitmap file * then it is no longer reliable, so we stop using it and we mark the file * as failed in the superblock */ static void bitmap_file_kick(struct bitmap *bitmap) { char *path, *ptr = NULL; if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) { bitmap_update_sb(bitmap); if (bitmap->storage.file) { path = kmalloc(PAGE_SIZE, GFP_KERNEL); if (path) ptr = file_path(bitmap->storage.file, path, PAGE_SIZE); printk(KERN_ALERT "%s: kicking failed bitmap file %s from array!\n", bmname(bitmap), IS_ERR(ptr) ? "" : ptr); kfree(path); } else printk(KERN_ALERT "%s: disabling internal bitmap due to errors\n", bmname(bitmap)); } } enum bitmap_page_attr { BITMAP_PAGE_DIRTY = 0, /* there are set bits that need to be synced */ BITMAP_PAGE_PENDING = 1, /* there are bits that are being cleaned. * i.e. counter is 1 or 2. */ BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */ }; static inline void set_page_attr(struct bitmap *bitmap, int pnum, enum bitmap_page_attr attr) { set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); } static inline void clear_page_attr(struct bitmap *bitmap, int pnum, enum bitmap_page_attr attr) { clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); } static inline int test_page_attr(struct bitmap *bitmap, int pnum, enum bitmap_page_attr attr) { return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); } static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum, enum bitmap_page_attr attr) { return test_and_clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); } /* * bitmap_file_set_bit -- called before performing a write to the md device * to set (and eventually sync) a particular bit in the bitmap file * * we set the bit immediately, then we record the page number so that * when an unplug occurs, we can flush the dirty pages out to disk */ static void bitmap_file_set_bit(struct bitmap *bitmap, sector_t block) { unsigned long bit; struct page *page; void *kaddr; unsigned long chunk = block >> bitmap->counts.chunkshift; struct bitmap_storage *store = &bitmap->storage; unsigned long node_offset = 0; if (mddev_is_clustered(bitmap->mddev)) node_offset = bitmap->cluster_slot * store->file_pages; page = filemap_get_page(&bitmap->storage, chunk); if (!page) return; bit = file_page_offset(&bitmap->storage, chunk); /* set the bit */ kaddr = kmap_atomic(page); if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) set_bit(bit, kaddr); else set_bit_le(bit, kaddr); kunmap_atomic(kaddr); pr_debug("set file bit %lu page %lu\n", bit, page->index); /* record page number so it gets flushed to disk when unplug occurs */ set_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_DIRTY); } static void bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block) { unsigned long bit; struct page *page; void *paddr; unsigned long chunk = block >> bitmap->counts.chunkshift; struct bitmap_storage *store = &bitmap->storage; unsigned long node_offset = 0; if (mddev_is_clustered(bitmap->mddev)) node_offset = bitmap->cluster_slot * store->file_pages; page = filemap_get_page(&bitmap->storage, chunk); if (!page) return; bit = file_page_offset(&bitmap->storage, chunk); paddr = kmap_atomic(page); if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) clear_bit(bit, paddr); else clear_bit_le(bit, paddr); kunmap_atomic(paddr); if (!test_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_NEEDWRITE)) { set_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_PENDING); bitmap->allclean = 0; } } static int bitmap_file_test_bit(struct bitmap *bitmap, sector_t block) { unsigned long bit; struct page *page; void *paddr; unsigned long chunk = block >> bitmap->counts.chunkshift; int set = 0; page = filemap_get_page(&bitmap->storage, chunk); if (!page) return -EINVAL; bit = file_page_offset(&bitmap->storage, chunk); paddr = kmap_atomic(page); if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) set = test_bit(bit, paddr); else set = test_bit_le(bit, paddr); kunmap_atomic(paddr); return set; } /* this gets called when the md device is ready to unplug its underlying * (slave) device queues -- before we let any writes go down, we need to * sync the dirty pages of the bitmap file to disk */ void bitmap_unplug(struct bitmap *bitmap) { unsigned long i; int dirty, need_write; if (!bitmap || !bitmap->storage.filemap || test_bit(BITMAP_STALE, &bitmap->flags)) return; /* look at each page to see if there are any set bits that need to be * flushed out to disk */ for (i = 0; i < bitmap->storage.file_pages; i++) { if (!bitmap->storage.filemap) return; dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); need_write = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); if (dirty || need_write) { clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING); write_page(bitmap, bitmap->storage.filemap[i], 0); } } if (bitmap->storage.file) wait_event(bitmap->write_wait, atomic_read(&bitmap->pending_writes)==0); else md_super_wait(bitmap->mddev); if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) bitmap_file_kick(bitmap); } EXPORT_SYMBOL(bitmap_unplug); static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed); /* * bitmap_init_from_disk -- called at bitmap_create time to initialize * the in-memory bitmap from the on-disk bitmap -- also, sets up the * memory mapping of the bitmap file * Special cases: * if there's no bitmap file, or if the bitmap file had been * previously kicked from the array, we mark all the bits as * 1's in order to cause a full resync. * * We ignore all bits for sectors that end earlier than 'start'. * This is used when reading an out-of-date bitmap... */ static int bitmap_init_from_disk(struct bitmap *bitmap, sector_t start) { unsigned long i, chunks, index, oldindex, bit, node_offset = 0; struct page *page = NULL; unsigned long bit_cnt = 0; struct file *file; unsigned long offset; int outofdate; int ret = -ENOSPC; void *paddr; struct bitmap_storage *store = &bitmap->storage; chunks = bitmap->counts.chunks; file = store->file; if (!file && !bitmap->mddev->bitmap_info.offset) { /* No permanent bitmap - fill with '1s'. */ store->filemap = NULL; store->file_pages = 0; for (i = 0; i < chunks ; i++) { /* if the disk bit is set, set the memory bit */ int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift) >= start); bitmap_set_memory_bits(bitmap, (sector_t)i << bitmap->counts.chunkshift, needed); } return 0; } outofdate = test_bit(BITMAP_STALE, &bitmap->flags); if (outofdate) printk(KERN_INFO "%s: bitmap file is out of date, doing full " "recovery\n", bmname(bitmap)); if (file && i_size_read(file->f_mapping->host) < store->bytes) { printk(KERN_INFO "%s: bitmap file too short %lu < %lu\n", bmname(bitmap), (unsigned long) i_size_read(file->f_mapping->host), store->bytes); goto err; } oldindex = ~0L; offset = 0; if (!bitmap->mddev->bitmap_info.external) offset = sizeof(bitmap_super_t); if (mddev_is_clustered(bitmap->mddev)) node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE)); for (i = 0; i < chunks; i++) { int b; index = file_page_index(&bitmap->storage, i); bit = file_page_offset(&bitmap->storage, i); if (index != oldindex) { /* this is a new page, read it in */ int count; /* unmap the old page, we're done with it */ if (index == store->file_pages-1) count = store->bytes - index * PAGE_SIZE; else count = PAGE_SIZE; page = store->filemap[index]; if (file) ret = read_page(file, index, bitmap, count, page); else ret = read_sb_page( bitmap->mddev, bitmap->mddev->bitmap_info.offset, page, index + node_offset, count); if (ret) goto err; oldindex = index; if (outofdate) { /* * if bitmap is out of date, dirty the * whole page and write it out */ paddr = kmap_atomic(page); memset(paddr + offset, 0xff, PAGE_SIZE - offset); kunmap_atomic(paddr); write_page(bitmap, page, 1); ret = -EIO; if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) goto err; } } paddr = kmap_atomic(page); if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) b = test_bit(bit, paddr); else b = test_bit_le(bit, paddr); kunmap_atomic(paddr); if (b) { /* if the disk bit is set, set the memory bit */ int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift >= start); bitmap_set_memory_bits(bitmap, (sector_t)i << bitmap->counts.chunkshift, needed); bit_cnt++; } offset = 0; } printk(KERN_INFO "%s: bitmap initialized from disk: " "read %lu pages, set %lu of %lu bits\n", bmname(bitmap), store->file_pages, bit_cnt, chunks); return 0; err: printk(KERN_INFO "%s: bitmap initialisation failed: %d\n", bmname(bitmap), ret); return ret; } void bitmap_write_all(struct bitmap *bitmap) { /* We don't actually write all bitmap blocks here, * just flag them as needing to be written */ int i; if (!bitmap || !bitmap->storage.filemap) return; if (bitmap->storage.file) /* Only one copy, so nothing needed */ return; for (i = 0; i < bitmap->storage.file_pages; i++) set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); bitmap->allclean = 0; } static void bitmap_count_page(struct bitmap_counts *bitmap, sector_t offset, int inc) { sector_t chunk = offset >> bitmap->chunkshift; unsigned long page = chunk >> PAGE_COUNTER_SHIFT; bitmap->bp[page].count += inc; bitmap_checkfree(bitmap, page); } static void bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset) { sector_t chunk = offset >> bitmap->chunkshift; unsigned long page = chunk >> PAGE_COUNTER_SHIFT; struct bitmap_page *bp = &bitmap->bp[page]; if (!bp->pending) bp->pending = 1; } static bitmap_counter_t *bitmap_get_counter(struct bitmap_counts *bitmap, sector_t offset, sector_t *blocks, int create); /* * bitmap daemon -- periodically wakes up to clean bits and flush pages * out to disk */ void bitmap_daemon_work(struct mddev *mddev) { struct bitmap *bitmap; unsigned long j; unsigned long nextpage; sector_t blocks; struct bitmap_counts *counts; /* Use a mutex to guard daemon_work against * bitmap_destroy. */ mutex_lock(&mddev->bitmap_info.mutex); bitmap = mddev->bitmap; if (bitmap == NULL) { mutex_unlock(&mddev->bitmap_info.mutex); return; } if (time_before(jiffies, bitmap->daemon_lastrun + mddev->bitmap_info.daemon_sleep)) goto done; bitmap->daemon_lastrun = jiffies; if (bitmap->allclean) { mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; goto done; } bitmap->allclean = 1; /* Any file-page which is PENDING now needs to be written. * So set NEEDWRITE now, then after we make any last-minute changes * we will write it. */ for (j = 0; j < bitmap->storage.file_pages; j++) if (test_and_clear_page_attr(bitmap, j, BITMAP_PAGE_PENDING)) set_page_attr(bitmap, j, BITMAP_PAGE_NEEDWRITE); if (bitmap->need_sync && mddev->bitmap_info.external == 0) { /* Arrange for superblock update as well as * other changes */ bitmap_super_t *sb; bitmap->need_sync = 0; if (bitmap->storage.filemap) { sb = kmap_atomic(bitmap->storage.sb_page); sb->events_cleared = cpu_to_le64(bitmap->events_cleared); kunmap_atomic(sb); set_page_attr(bitmap, 0, BITMAP_PAGE_NEEDWRITE); } } /* Now look at the bitmap counters and if any are '2' or '1', * decrement and handle accordingly. */ counts = &bitmap->counts; spin_lock_irq(&counts->lock); nextpage = 0; for (j = 0; j < counts->chunks; j++) { bitmap_counter_t *bmc; sector_t block = (sector_t)j << counts->chunkshift; if (j == nextpage) { nextpage += PAGE_COUNTER_RATIO; if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) { j |= PAGE_COUNTER_MASK; continue; } counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0; } bmc = bitmap_get_counter(counts, block, &blocks, 0); if (!bmc) { j |= PAGE_COUNTER_MASK; continue; } if (*bmc == 1 && !bitmap->need_sync) { /* We can clear the bit */ *bmc = 0; bitmap_count_page(counts, block, -1); bitmap_file_clear_bit(bitmap, block); } else if (*bmc && *bmc <= 2) { *bmc = 1; bitmap_set_pending(counts, block); bitmap->allclean = 0; } } spin_unlock_irq(&counts->lock); /* Now start writeout on any page in NEEDWRITE that isn't DIRTY. * DIRTY pages need to be written by bitmap_unplug so it can wait * for them. * If we find any DIRTY page we stop there and let bitmap_unplug * handle all the rest. This is important in the case where * the first blocking holds the superblock and it has been updated. * We mustn't write any other blocks before the superblock. */ for (j = 0; j < bitmap->storage.file_pages && !test_bit(BITMAP_STALE, &bitmap->flags); j++) { if (test_page_attr(bitmap, j, BITMAP_PAGE_DIRTY)) /* bitmap_unplug will handle the rest */ break; if (test_and_clear_page_attr(bitmap, j, BITMAP_PAGE_NEEDWRITE)) { write_page(bitmap, bitmap->storage.filemap[j], 0); } } done: if (bitmap->allclean == 0) mddev->thread->timeout = mddev->bitmap_info.daemon_sleep; mutex_unlock(&mddev->bitmap_info.mutex); } static bitmap_counter_t *bitmap_get_counter(struct bitmap_counts *bitmap, sector_t offset, sector_t *blocks, int create) __releases(bitmap->lock) __acquires(bitmap->lock) { /* If 'create', we might release the lock and reclaim it. * The lock must have been taken with interrupts enabled. * If !create, we don't release the lock. */ sector_t chunk = offset >> bitmap->chunkshift; unsigned long page = chunk >> PAGE_COUNTER_SHIFT; unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT; sector_t csize; int err; err = bitmap_checkpage(bitmap, page, create, 0); if (bitmap->bp[page].hijacked || bitmap->bp[page].map == NULL) csize = ((sector_t)1) << (bitmap->chunkshift + PAGE_COUNTER_SHIFT - 1); else csize = ((sector_t)1) << bitmap->chunkshift; *blocks = csize - (offset & (csize - 1)); if (err < 0) return NULL; /* now locked ... */ if (bitmap->bp[page].hijacked) { /* hijacked pointer */ /* should we use the first or second counter field * of the hijacked pointer? */ int hi = (pageoff > PAGE_COUNTER_MASK); return &((bitmap_counter_t *) &bitmap->bp[page].map)[hi]; } else /* page is allocated */ return (bitmap_counter_t *) &(bitmap->bp[page].map[pageoff]); } int bitmap_startwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors, int behind) { if (!bitmap) return 0; if (behind) { int bw; atomic_inc(&bitmap->behind_writes); bw = atomic_read(&bitmap->behind_writes); if (bw > bitmap->behind_writes_used) bitmap->behind_writes_used = bw; pr_debug("inc write-behind count %d/%lu\n", bw, bitmap->mddev->bitmap_info.max_write_behind); } while (sectors) { sector_t blocks; bitmap_counter_t *bmc; spin_lock_irq(&bitmap->counts.lock); bmc = bitmap_get_counter(&bitmap->counts, offset, &blocks, 1); if (!bmc) { spin_unlock_irq(&bitmap->counts.lock); return 0; } if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) { DEFINE_WAIT(__wait); /* note that it is safe to do the prepare_to_wait * after the test as long as we do it before dropping * the spinlock. */ prepare_to_wait(&bitmap->overflow_wait, &__wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&bitmap->counts.lock); schedule(); finish_wait(&bitmap->overflow_wait, &__wait); continue; } switch (*bmc) { case 0: bitmap_file_set_bit(bitmap, offset); bitmap_count_page(&bitmap->counts, offset, 1); /* fall through */ case 1: *bmc = 2; } (*bmc)++; spin_unlock_irq(&bitmap->counts.lock); offset += blocks; if (sectors > blocks) sectors -= blocks; else sectors = 0; } return 0; } EXPORT_SYMBOL(bitmap_startwrite); void bitmap_endwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors, int success, int behind) { if (!bitmap) return; if (behind) { if (atomic_dec_and_test(&bitmap->behind_writes)) wake_up(&bitmap->behind_wait); pr_debug("dec write-behind count %d/%lu\n", atomic_read(&bitmap->behind_writes), bitmap->mddev->bitmap_info.max_write_behind); } while (sectors) { sector_t blocks; unsigned long flags; bitmap_counter_t *bmc; spin_lock_irqsave(&bitmap->counts.lock, flags); bmc = bitmap_get_counter(&bitmap->counts, offset, &blocks, 0); if (!bmc) { spin_unlock_irqrestore(&bitmap->counts.lock, flags); return; } if (success && !bitmap->mddev->degraded && bitmap->events_cleared < bitmap->mddev->events) { bitmap->events_cleared = bitmap->mddev->events; bitmap->need_sync = 1; sysfs_notify_dirent_safe(bitmap->sysfs_can_clear); } if (!success && !NEEDED(*bmc)) *bmc |= NEEDED_MASK; if (COUNTER(*bmc) == COUNTER_MAX) wake_up(&bitmap->overflow_wait); (*bmc)--; if (*bmc <= 2) { bitmap_set_pending(&bitmap->counts, offset); bitmap->allclean = 0; } spin_unlock_irqrestore(&bitmap->counts.lock, flags); offset += blocks; if (sectors > blocks) sectors -= blocks; else sectors = 0; } } EXPORT_SYMBOL(bitmap_endwrite); static int __bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded) { bitmap_counter_t *bmc; int rv; if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */ *blocks = 1024; return 1; /* always resync if no bitmap */ } spin_lock_irq(&bitmap->counts.lock); bmc = bitmap_get_counter(&bitmap->counts, offset, blocks, 0); rv = 0; if (bmc) { /* locked */ if (RESYNC(*bmc)) rv = 1; else if (NEEDED(*bmc)) { rv = 1; if (!degraded) { /* don't set/clear bits if degraded */ *bmc |= RESYNC_MASK; *bmc &= ~NEEDED_MASK; } } } spin_unlock_irq(&bitmap->counts.lock); return rv; } int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded) { /* bitmap_start_sync must always report on multiples of whole * pages, otherwise resync (which is very PAGE_SIZE based) will * get confused. * So call __bitmap_start_sync repeatedly (if needed) until * At least PAGE_SIZE>>9 blocks are covered. * Return the 'or' of the result. */ int rv = 0; sector_t blocks1; *blocks = 0; while (*blocks < (PAGE_SIZE>>9)) { rv |= __bitmap_start_sync(bitmap, offset, &blocks1, degraded); offset += blocks1; *blocks += blocks1; } return rv; } EXPORT_SYMBOL(bitmap_start_sync); void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted) { bitmap_counter_t *bmc; unsigned long flags; if (bitmap == NULL) { *blocks = 1024; return; } spin_lock_irqsave(&bitmap->counts.lock, flags); bmc = bitmap_get_counter(&bitmap->counts, offset, blocks, 0); if (bmc == NULL) goto unlock; /* locked */ if (RESYNC(*bmc)) { *bmc &= ~RESYNC_MASK; if (!NEEDED(*bmc) && aborted) *bmc |= NEEDED_MASK; else { if (*bmc <= 2) { bitmap_set_pending(&bitmap->counts, offset); bitmap->allclean = 0; } } } unlock: spin_unlock_irqrestore(&bitmap->counts.lock, flags); } EXPORT_SYMBOL(bitmap_end_sync); void bitmap_close_sync(struct bitmap *bitmap) { /* Sync has finished, and any bitmap chunks that weren't synced * properly have been aborted. It remains to us to clear the * RESYNC bit wherever it is still on */ sector_t sector = 0; sector_t blocks; if (!bitmap) return; while (sector < bitmap->mddev->resync_max_sectors) { bitmap_end_sync(bitmap, sector, &blocks, 0); sector += blocks; } } EXPORT_SYMBOL(bitmap_close_sync); void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force) { sector_t s = 0; sector_t blocks; if (!bitmap) return; if (sector == 0) { bitmap->last_end_sync = jiffies; return; } if (!force && time_before(jiffies, (bitmap->last_end_sync + bitmap->mddev->bitmap_info.daemon_sleep))) return; wait_event(bitmap->mddev->recovery_wait, atomic_read(&bitmap->mddev->recovery_active) == 0); bitmap->mddev->curr_resync_completed = sector; set_bit(MD_CHANGE_CLEAN, &bitmap->mddev->flags); sector &= ~((1ULL << bitmap->counts.chunkshift) - 1); s = 0; while (s < sector && s < bitmap->mddev->resync_max_sectors) { bitmap_end_sync(bitmap, s, &blocks, 0); s += blocks; } bitmap->last_end_sync = jiffies; sysfs_notify(&bitmap->mddev->kobj, NULL, "sync_completed"); } EXPORT_SYMBOL(bitmap_cond_end_sync); void bitmap_sync_with_cluster(struct mddev *mddev, sector_t old_lo, sector_t old_hi, sector_t new_lo, sector_t new_hi) { struct bitmap *bitmap = mddev->bitmap; sector_t sector, blocks = 0; for (sector = old_lo; sector < new_lo; ) { bitmap_end_sync(bitmap, sector, &blocks, 0); sector += blocks; } WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n"); for (sector = old_hi; sector < new_hi; ) { bitmap_start_sync(bitmap, sector, &blocks, 0); sector += blocks; } WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n"); } EXPORT_SYMBOL(bitmap_sync_with_cluster); static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed) { /* For each chunk covered by any of these sectors, set the * counter to 2 and possibly set resync_needed. They should all * be 0 at this point */ sector_t secs; bitmap_counter_t *bmc; spin_lock_irq(&bitmap->counts.lock); bmc = bitmap_get_counter(&bitmap->counts, offset, &secs, 1); if (!bmc) { spin_unlock_irq(&bitmap->counts.lock); return; } if (!*bmc) { *bmc = 2; bitmap_count_page(&bitmap->counts, offset, 1); bitmap_set_pending(&bitmap->counts, offset); bitmap->allclean = 0; } if (needed) *bmc |= NEEDED_MASK; spin_unlock_irq(&bitmap->counts.lock); } /* dirty the memory and file bits for bitmap chunks "s" to "e" */ void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e) { unsigned long chunk; for (chunk = s; chunk <= e; chunk++) { sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift; bitmap_set_memory_bits(bitmap, sec, 1); bitmap_file_set_bit(bitmap, sec); if (sec < bitmap->mddev->recovery_cp) /* We are asserting that the array is dirty, * so move the recovery_cp address back so * that it is obvious that it is dirty */ bitmap->mddev->recovery_cp = sec; } } /* * flush out any pending updates */ void bitmap_flush(struct mddev *mddev) { struct bitmap *bitmap = mddev->bitmap; long sleep; if (!bitmap) /* there was no bitmap */ return; /* run the daemon_work three time to ensure everything is flushed * that can be */ sleep = mddev->bitmap_info.daemon_sleep * 2; bitmap->daemon_lastrun -= sleep; bitmap_daemon_work(mddev); bitmap->daemon_lastrun -= sleep; bitmap_daemon_work(mddev); bitmap->daemon_lastrun -= sleep; bitmap_daemon_work(mddev); bitmap_update_sb(bitmap); } /* * free memory that was allocated */ static void bitmap_free(struct bitmap *bitmap) { unsigned long k, pages; struct bitmap_page *bp; if (!bitmap) /* there was no bitmap */ return; if (bitmap->sysfs_can_clear) sysfs_put(bitmap->sysfs_can_clear); if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info && bitmap->cluster_slot == md_cluster_ops->slot_number(bitmap->mddev)) md_cluster_stop(bitmap->mddev); /* Shouldn't be needed - but just in case.... */ wait_event(bitmap->write_wait, atomic_read(&bitmap->pending_writes) == 0); /* release the bitmap file */ bitmap_file_unmap(&bitmap->storage); bp = bitmap->counts.bp; pages = bitmap->counts.pages; /* free all allocated memory */ if (bp) /* deallocate the page memory */ for (k = 0; k < pages; k++) if (bp[k].map && !bp[k].hijacked) kfree(bp[k].map); kfree(bp); kfree(bitmap); } void bitmap_destroy(struct mddev *mddev) { struct bitmap *bitmap = mddev->bitmap; if (!bitmap) /* there was no bitmap */ return; mutex_lock(&mddev->bitmap_info.mutex); spin_lock(&mddev->lock); mddev->bitmap = NULL; /* disconnect from the md device */ spin_unlock(&mddev->lock); mutex_unlock(&mddev->bitmap_info.mutex); if (mddev->thread) mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; bitmap_free(bitmap); } /* * initialize the bitmap structure * if this returns an error, bitmap_destroy must be called to do clean up * once mddev->bitmap is set */ struct bitmap *bitmap_create(struct mddev *mddev, int slot) { struct bitmap *bitmap; sector_t blocks = mddev->resync_max_sectors; struct file *file = mddev->bitmap_info.file; int err; struct kernfs_node *bm = NULL; BUILD_BUG_ON(sizeof(bitmap_super_t) != 256); BUG_ON(file && mddev->bitmap_info.offset); bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL); if (!bitmap) return ERR_PTR(-ENOMEM); spin_lock_init(&bitmap->counts.lock); atomic_set(&bitmap->pending_writes, 0); init_waitqueue_head(&bitmap->write_wait); init_waitqueue_head(&bitmap->overflow_wait); init_waitqueue_head(&bitmap->behind_wait); bitmap->mddev = mddev; bitmap->cluster_slot = slot; if (mddev->kobj.sd) bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap"); if (bm) { bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear"); sysfs_put(bm); } else bitmap->sysfs_can_clear = NULL; bitmap->storage.file = file; if (file) { get_file(file); /* As future accesses to this file will use bmap, * and bypass the page cache, we must sync the file * first. */ vfs_fsync(file, 1); } /* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */ if (!mddev->bitmap_info.external) { /* * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is * instructing us to create a new on-disk bitmap instance. */ if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags)) err = bitmap_new_disk_sb(bitmap); else err = bitmap_read_sb(bitmap); } else { err = 0; if (mddev->bitmap_info.chunksize == 0 || mddev->bitmap_info.daemon_sleep == 0) /* chunksize and time_base need to be * set first. */ err = -EINVAL; } if (err) goto error; bitmap->daemon_lastrun = jiffies; err = bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize, 1); if (err) goto error; printk(KERN_INFO "created bitmap (%lu pages) for device %s\n", bitmap->counts.pages, bmname(bitmap)); err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0; if (err) goto error; return bitmap; error: bitmap_free(bitmap); return ERR_PTR(err); } int bitmap_load(struct mddev *mddev) { int err = 0; sector_t start = 0; sector_t sector = 0; struct bitmap *bitmap = mddev->bitmap; if (!bitmap) goto out; if (mddev_is_clustered(mddev)) md_cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes); /* Clear out old bitmap info first: Either there is none, or we * are resuming after someone else has possibly changed things, * so we should forget old cached info. * All chunks should be clean, but some might need_sync. */ while (sector < mddev->resync_max_sectors) { sector_t blocks; bitmap_start_sync(bitmap, sector, &blocks, 0); sector += blocks; } bitmap_close_sync(bitmap); if (mddev->degraded == 0 || bitmap->events_cleared == mddev->events) /* no need to keep dirty bits to optimise a * re-add of a missing device */ start = mddev->recovery_cp; mutex_lock(&mddev->bitmap_info.mutex); err = bitmap_init_from_disk(bitmap, start); mutex_unlock(&mddev->bitmap_info.mutex); if (err) goto out; clear_bit(BITMAP_STALE, &bitmap->flags); /* Kick recovery in case any bits were set */ set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery); mddev->thread->timeout = mddev->bitmap_info.daemon_sleep; md_wakeup_thread(mddev->thread); bitmap_update_sb(bitmap); if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) err = -EIO; out: return err; } EXPORT_SYMBOL_GPL(bitmap_load); /* Loads the bitmap associated with slot and copies the resync information * to our bitmap */ int bitmap_copy_from_slot(struct mddev *mddev, int slot, sector_t *low, sector_t *high, bool clear_bits) { int rv = 0, i, j; sector_t block, lo = 0, hi = 0; struct bitmap_counts *counts; struct bitmap *bitmap = bitmap_create(mddev, slot); if (IS_ERR(bitmap)) return PTR_ERR(bitmap); rv = bitmap_init_from_disk(bitmap, 0); if (rv) goto err; counts = &bitmap->counts; for (j = 0; j < counts->chunks; j++) { block = (sector_t)j << counts->chunkshift; if (bitmap_file_test_bit(bitmap, block)) { if (!lo) lo = block; hi = block; bitmap_file_clear_bit(bitmap, block); bitmap_set_memory_bits(mddev->bitmap, block, 1); bitmap_file_set_bit(mddev->bitmap, block); } } if (clear_bits) { bitmap_update_sb(bitmap); /* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs * BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */ for (i = 0; i < bitmap->storage.file_pages; i++) if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING)) set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); bitmap_unplug(bitmap); } bitmap_unplug(mddev->bitmap); *low = lo; *high = hi; err: bitmap_free(bitmap); return rv; } EXPORT_SYMBOL_GPL(bitmap_copy_from_slot); void bitmap_status(struct seq_file *seq, struct bitmap *bitmap) { unsigned long chunk_kb; struct bitmap_counts *counts; if (!bitmap) return; counts = &bitmap->counts; chunk_kb = bitmap->mddev->bitmap_info.chunksize >> 10; seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " "%lu%s chunk", counts->pages - counts->missing_pages, counts->pages, (counts->pages - counts->missing_pages) << (PAGE_SHIFT - 10), chunk_kb ? chunk_kb : bitmap->mddev->bitmap_info.chunksize, chunk_kb ? "KB" : "B"); if (bitmap->storage.file) { seq_printf(seq, ", file: "); seq_file_path(seq, bitmap->storage.file, " \t\n"); } seq_printf(seq, "\n"); } int bitmap_resize(struct bitmap *bitmap, sector_t blocks, int chunksize, int init) { /* If chunk_size is 0, choose an appropriate chunk size. * Then possibly allocate new storage space. * Then quiesce, copy bits, replace bitmap, and re-start * * This function is called both to set up the initial bitmap * and to resize the bitmap while the array is active. * If this happens as a result of the array being resized, * chunksize will be zero, and we need to choose a suitable * chunksize, otherwise we use what we are given. */ struct bitmap_storage store; struct bitmap_counts old_counts; unsigned long chunks; sector_t block; sector_t old_blocks, new_blocks; int chunkshift; int ret = 0; long pages; struct bitmap_page *new_bp; if (chunksize == 0) { /* If there is enough space, leave the chunk size unchanged, * else increase by factor of two until there is enough space. */ long bytes; long space = bitmap->mddev->bitmap_info.space; if (space == 0) { /* We don't know how much space there is, so limit * to current size - in sectors. */ bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8); if (!bitmap->mddev->bitmap_info.external) bytes += sizeof(bitmap_super_t); space = DIV_ROUND_UP(bytes, 512); bitmap->mddev->bitmap_info.space = space; } chunkshift = bitmap->counts.chunkshift; chunkshift--; do { /* 'chunkshift' is shift from block size to chunk size */ chunkshift++; chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); bytes = DIV_ROUND_UP(chunks, 8); if (!bitmap->mddev->bitmap_info.external) bytes += sizeof(bitmap_super_t); } while (bytes > (space << 9)); } else chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT; chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); memset(&store, 0, sizeof(store)); if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file) ret = bitmap_storage_alloc(&store, chunks, !bitmap->mddev->bitmap_info.external, mddev_is_clustered(bitmap->mddev) ? bitmap->cluster_slot : 0); if (ret) { bitmap_file_unmap(&store); goto err; } pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO); new_bp = kzalloc(pages * sizeof(*new_bp), GFP_KERNEL); ret = -ENOMEM; if (!new_bp) { bitmap_file_unmap(&store); goto err; } if (!init) bitmap->mddev->pers->quiesce(bitmap->mddev, 1); store.file = bitmap->storage.file; bitmap->storage.file = NULL; if (store.sb_page && bitmap->storage.sb_page) memcpy(page_address(store.sb_page), page_address(bitmap->storage.sb_page), sizeof(bitmap_super_t)); bitmap_file_unmap(&bitmap->storage); bitmap->storage = store; old_counts = bitmap->counts; bitmap->counts.bp = new_bp; bitmap->counts.pages = pages; bitmap->counts.missing_pages = pages; bitmap->counts.chunkshift = chunkshift; bitmap->counts.chunks = chunks; bitmap->mddev->bitmap_info.chunksize = 1 << (chunkshift + BITMAP_BLOCK_SHIFT); blocks = min(old_counts.chunks << old_counts.chunkshift, chunks << chunkshift); spin_lock_irq(&bitmap->counts.lock); /* For cluster raid, need to pre-allocate bitmap */ if (mddev_is_clustered(bitmap->mddev)) { unsigned long page; for (page = 0; page < pages; page++) { ret = bitmap_checkpage(&bitmap->counts, page, 1, 1); if (ret) { unsigned long k; /* deallocate the page memory */ for (k = 0; k < page; k++) { kfree(new_bp[k].map); } /* restore some fields from old_counts */ bitmap->counts.bp = old_counts.bp; bitmap->counts.pages = old_counts.pages; bitmap->counts.missing_pages = old_counts.pages; bitmap->counts.chunkshift = old_counts.chunkshift; bitmap->counts.chunks = old_counts.chunks; bitmap->mddev->bitmap_info.chunksize = 1 << (old_counts.chunkshift + BITMAP_BLOCK_SHIFT); blocks = old_counts.chunks << old_counts.chunkshift; pr_err("Could not pre-allocate in-memory bitmap for cluster raid\n"); break; } else bitmap->counts.bp[page].count += 1; } } for (block = 0; block < blocks; ) { bitmap_counter_t *bmc_old, *bmc_new; int set; bmc_old = bitmap_get_counter(&old_counts, block, &old_blocks, 0); set = bmc_old && NEEDED(*bmc_old); if (set) { bmc_new = bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); if (*bmc_new == 0) { /* need to set on-disk bits too. */ sector_t end = block + new_blocks; sector_t start = block >> chunkshift; start <<= chunkshift; while (start < end) { bitmap_file_set_bit(bitmap, block); start += 1 << chunkshift; } *bmc_new = 2; bitmap_count_page(&bitmap->counts, block, 1); bitmap_set_pending(&bitmap->counts, block); } *bmc_new |= NEEDED_MASK; if (new_blocks < old_blocks) old_blocks = new_blocks; } block += old_blocks; } if (!init) { int i; while (block < (chunks << chunkshift)) { bitmap_counter_t *bmc; bmc = bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); if (bmc) { /* new space. It needs to be resynced, so * we set NEEDED_MASK. */ if (*bmc == 0) { *bmc = NEEDED_MASK | 2; bitmap_count_page(&bitmap->counts, block, 1); bitmap_set_pending(&bitmap->counts, block); } } block += new_blocks; } for (i = 0; i < bitmap->storage.file_pages; i++) set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); } spin_unlock_irq(&bitmap->counts.lock); if (!init) { bitmap_unplug(bitmap); bitmap->mddev->pers->quiesce(bitmap->mddev, 0); } ret = 0; err: return ret; } EXPORT_SYMBOL_GPL(bitmap_resize); static ssize_t location_show(struct mddev *mddev, char *page) { ssize_t len; if (mddev->bitmap_info.file) len = sprintf(page, "file"); else if (mddev->bitmap_info.offset) len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset); else len = sprintf(page, "none"); len += sprintf(page+len, "\n"); return len; } static ssize_t location_store(struct mddev *mddev, const char *buf, size_t len) { int rv; rv = mddev_lock(mddev); if (rv) return rv; if (mddev->pers) { if (!mddev->pers->quiesce) { rv = -EBUSY; goto out; } if (mddev->recovery || mddev->sync_thread) { rv = -EBUSY; goto out; } } if (mddev->bitmap || mddev->bitmap_info.file || mddev->bitmap_info.offset) { /* bitmap already configured. Only option is to clear it */ if (strncmp(buf, "none", 4) != 0) { rv = -EBUSY; goto out; } if (mddev->pers) { mddev->pers->quiesce(mddev, 1); bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); } mddev->bitmap_info.offset = 0; if (mddev->bitmap_info.file) { struct file *f = mddev->bitmap_info.file; mddev->bitmap_info.file = NULL; fput(f); } } else { /* No bitmap, OK to set a location */ long long offset; if (strncmp(buf, "none", 4) == 0) /* nothing to be done */; else if (strncmp(buf, "file:", 5) == 0) { /* Not supported yet */ rv = -EINVAL; goto out; } else { if (buf[0] == '+') rv = kstrtoll(buf+1, 10, &offset); else rv = kstrtoll(buf, 10, &offset); if (rv) goto out; if (offset == 0) { rv = -EINVAL; goto out; } if (mddev->bitmap_info.external == 0 && mddev->major_version == 0 && offset != mddev->bitmap_info.default_offset) { rv = -EINVAL; goto out; } mddev->bitmap_info.offset = offset; if (mddev->pers) { struct bitmap *bitmap; mddev->pers->quiesce(mddev, 1); bitmap = bitmap_create(mddev, -1); if (IS_ERR(bitmap)) rv = PTR_ERR(bitmap); else { mddev->bitmap = bitmap; rv = bitmap_load(mddev); if (rv) mddev->bitmap_info.offset = 0; } mddev->pers->quiesce(mddev, 0); if (rv) { bitmap_destroy(mddev); goto out; } } } } if (!mddev->external) { /* Ensure new bitmap info is stored in * metadata promptly. */ set_bit(MD_CHANGE_DEVS, &mddev->flags); md_wakeup_thread(mddev->thread); } rv = 0; out: mddev_unlock(mddev); if (rv) return rv; return len; } static struct md_sysfs_entry bitmap_location = __ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store); /* 'bitmap/space' is the space available at 'location' for the * bitmap. This allows the kernel to know when it is safe to * resize the bitmap to match a resized array. */ static ssize_t space_show(struct mddev *mddev, char *page) { return sprintf(page, "%lu\n", mddev->bitmap_info.space); } static ssize_t space_store(struct mddev *mddev, const char *buf, size_t len) { unsigned long sectors; int rv; rv = kstrtoul(buf, 10, §ors); if (rv) return rv; if (sectors == 0) return -EINVAL; if (mddev->bitmap && sectors < (mddev->bitmap->storage.bytes + 511) >> 9) return -EFBIG; /* Bitmap is too big for this small space */ /* could make sure it isn't too big, but that isn't really * needed - user-space should be careful. */ mddev->bitmap_info.space = sectors; return len; } static struct md_sysfs_entry bitmap_space = __ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store); static ssize_t timeout_show(struct mddev *mddev, char *page) { ssize_t len; unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ; unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ; len = sprintf(page, "%lu", secs); if (jifs) len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs)); len += sprintf(page+len, "\n"); return len; } static ssize_t timeout_store(struct mddev *mddev, const char *buf, size_t len) { /* timeout can be set at any time */ unsigned long timeout; int rv = strict_strtoul_scaled(buf, &timeout, 4); if (rv) return rv; /* just to make sure we don't overflow... */ if (timeout >= LONG_MAX / HZ) return -EINVAL; timeout = timeout * HZ / 10000; if (timeout >= MAX_SCHEDULE_TIMEOUT) timeout = MAX_SCHEDULE_TIMEOUT-1; if (timeout < 1) timeout = 1; mddev->bitmap_info.daemon_sleep = timeout; if (mddev->thread) { /* if thread->timeout is MAX_SCHEDULE_TIMEOUT, then * the bitmap is all clean and we don't need to * adjust the timeout right now */ if (mddev->thread->timeout < MAX_SCHEDULE_TIMEOUT) { mddev->thread->timeout = timeout; md_wakeup_thread(mddev->thread); } } return len; } static struct md_sysfs_entry bitmap_timeout = __ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store); static ssize_t backlog_show(struct mddev *mddev, char *page) { return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind); } static ssize_t backlog_store(struct mddev *mddev, const char *buf, size_t len) { unsigned long backlog; int rv = kstrtoul(buf, 10, &backlog); if (rv) return rv; if (backlog > COUNTER_MAX) return -EINVAL; mddev->bitmap_info.max_write_behind = backlog; return len; } static struct md_sysfs_entry bitmap_backlog = __ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store); static ssize_t chunksize_show(struct mddev *mddev, char *page) { return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize); } static ssize_t chunksize_store(struct mddev *mddev, const char *buf, size_t len) { /* Can only be changed when no bitmap is active */ int rv; unsigned long csize; if (mddev->bitmap) return -EBUSY; rv = kstrtoul(buf, 10, &csize); if (rv) return rv; if (csize < 512 || !is_power_of_2(csize)) return -EINVAL; mddev->bitmap_info.chunksize = csize; return len; } static struct md_sysfs_entry bitmap_chunksize = __ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store); static ssize_t metadata_show(struct mddev *mddev, char *page) { if (mddev_is_clustered(mddev)) return sprintf(page, "clustered\n"); return sprintf(page, "%s\n", (mddev->bitmap_info.external ? "external" : "internal")); } static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len) { if (mddev->bitmap || mddev->bitmap_info.file || mddev->bitmap_info.offset) return -EBUSY; if (strncmp(buf, "external", 8) == 0) mddev->bitmap_info.external = 1; else if ((strncmp(buf, "internal", 8) == 0) || (strncmp(buf, "clustered", 9) == 0)) mddev->bitmap_info.external = 0; else return -EINVAL; return len; } static struct md_sysfs_entry bitmap_metadata = __ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store); static ssize_t can_clear_show(struct mddev *mddev, char *page) { int len; spin_lock(&mddev->lock); if (mddev->bitmap) len = sprintf(page, "%s\n", (mddev->bitmap->need_sync ? "false" : "true")); else len = sprintf(page, "\n"); spin_unlock(&mddev->lock); return len; } static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len) { if (mddev->bitmap == NULL) return -ENOENT; if (strncmp(buf, "false", 5) == 0) mddev->bitmap->need_sync = 1; else if (strncmp(buf, "true", 4) == 0) { if (mddev->degraded) return -EBUSY; mddev->bitmap->need_sync = 0; } else return -EINVAL; return len; } static struct md_sysfs_entry bitmap_can_clear = __ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store); static ssize_t behind_writes_used_show(struct mddev *mddev, char *page) { ssize_t ret; spin_lock(&mddev->lock); if (mddev->bitmap == NULL) ret = sprintf(page, "0\n"); else ret = sprintf(page, "%lu\n", mddev->bitmap->behind_writes_used); spin_unlock(&mddev->lock); return ret; } static ssize_t behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len) { if (mddev->bitmap) mddev->bitmap->behind_writes_used = 0; return len; } static struct md_sysfs_entry max_backlog_used = __ATTR(max_backlog_used, S_IRUGO | S_IWUSR, behind_writes_used_show, behind_writes_used_reset); static struct attribute *md_bitmap_attrs[] = { &bitmap_location.attr, &bitmap_space.attr, &bitmap_timeout.attr, &bitmap_backlog.attr, &bitmap_chunksize.attr, &bitmap_metadata.attr, &bitmap_can_clear.attr, &max_backlog_used.attr, NULL }; struct attribute_group md_bitmap_group = { .name = "bitmap", .attrs = md_bitmap_attrs, };