// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../lib/kstrtox.h" /* If kernel subsystem is allowing eBPF programs to call this function, * inside its own verifier_ops->get_func_proto() callback it should return * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments * * Different map implementations will rely on rcu in map methods * lookup/update/delete, therefore eBPF programs must run under rcu lock * if program is allowed to access maps, so check rcu_read_lock_held in * all three functions. */ BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_elem(map, key); } const struct bpf_func_proto bpf_map_lookup_elem_proto = { .func = bpf_map_lookup_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, void *, value, u64, flags) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return map->ops->map_update_elem(map, key, value, flags); } const struct bpf_func_proto bpf_map_update_elem_proto = { .func = bpf_map_update_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_PTR_TO_MAP_VALUE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return map->ops->map_delete_elem(map, key); } const struct bpf_func_proto bpf_map_delete_elem_proto = { .func = bpf_map_delete_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) { return map->ops->map_push_elem(map, value, flags); } const struct bpf_func_proto bpf_map_push_elem_proto = { .func = bpf_map_push_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) { return map->ops->map_pop_elem(map, value); } const struct bpf_func_proto bpf_map_pop_elem_proto = { .func = bpf_map_pop_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, }; BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) { return map->ops->map_peek_elem(map, value); } const struct bpf_func_proto bpf_map_peek_elem_proto = { .func = bpf_map_peek_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, }; BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); } const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { .func = bpf_map_lookup_percpu_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_get_prandom_u32_proto = { .func = bpf_user_rnd_u32, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_smp_processor_id) { return smp_processor_id(); } const struct bpf_func_proto bpf_get_smp_processor_id_proto = { .func = bpf_get_smp_processor_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_numa_node_id) { return numa_node_id(); } const struct bpf_func_proto bpf_get_numa_node_id_proto = { .func = bpf_get_numa_node_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_ns) { /* NMI safe access to clock monotonic */ return ktime_get_mono_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_ns_proto = { .func = bpf_ktime_get_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_boot_ns) { /* NMI safe access to clock boottime */ return ktime_get_boot_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { .func = bpf_ktime_get_boot_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_coarse_ns) { return ktime_get_coarse_ns(); } const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { .func = bpf_ktime_get_coarse_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_tai_ns) { /* NMI safe access to clock tai */ return ktime_get_tai_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { .func = bpf_ktime_get_tai_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_pid_tgid) { struct task_struct *task = current; if (unlikely(!task)) return -EINVAL; return (u64) task->tgid << 32 | task->pid; } const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { .func = bpf_get_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_uid_gid) { struct task_struct *task = current; kuid_t uid; kgid_t gid; if (unlikely(!task)) return -EINVAL; current_uid_gid(&uid, &gid); return (u64) from_kgid(&init_user_ns, gid) << 32 | from_kuid(&init_user_ns, uid); } const struct bpf_func_proto bpf_get_current_uid_gid_proto = { .func = bpf_get_current_uid_gid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) { struct task_struct *task = current; if (unlikely(!task)) goto err_clear; /* Verifier guarantees that size > 0 */ strscpy(buf, task->comm, size); return 0; err_clear: memset(buf, 0, size); return -EINVAL; } const struct bpf_func_proto bpf_get_current_comm_proto = { .func = bpf_get_current_comm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE, }; #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; union { __u32 val; arch_spinlock_t lock; } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); arch_spin_lock(l); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; arch_spin_unlock(l); } #else static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); do { atomic_cond_read_relaxed(l, !VAL); } while (atomic_xchg(l, 1)); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; atomic_set_release(l, 0); } #endif static DEFINE_PER_CPU(unsigned long, irqsave_flags); static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) { unsigned long flags; local_irq_save(flags); __bpf_spin_lock(lock); __this_cpu_write(irqsave_flags, flags); } notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) { __bpf_spin_lock_irqsave(lock); return 0; } const struct bpf_func_proto bpf_spin_lock_proto = { .func = bpf_spin_lock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) { unsigned long flags; flags = __this_cpu_read(irqsave_flags); __bpf_spin_unlock(lock); local_irq_restore(flags); } notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) { __bpf_spin_unlock_irqrestore(lock); return 0; } const struct bpf_func_proto bpf_spin_unlock_proto = { .func = bpf_spin_unlock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, .arg1_btf_id = BPF_PTR_POISON, }; void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, bool lock_src) { struct bpf_spin_lock *lock; if (lock_src) lock = src + map->record->spin_lock_off; else lock = dst + map->record->spin_lock_off; preempt_disable(); __bpf_spin_lock_irqsave(lock); copy_map_value(map, dst, src); __bpf_spin_unlock_irqrestore(lock); preempt_enable(); } BPF_CALL_0(bpf_jiffies64) { return get_jiffies_64(); } const struct bpf_func_proto bpf_jiffies64_proto = { .func = bpf_jiffies64, .gpl_only = false, .ret_type = RET_INTEGER, }; #ifdef CONFIG_CGROUPS BPF_CALL_0(bpf_get_current_cgroup_id) { struct cgroup *cgrp; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); cgrp_id = cgroup_id(cgrp); rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { .func = bpf_get_current_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) { struct cgroup *cgrp; struct cgroup *ancestor; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); ancestor = cgroup_ancestor(cgrp, ancestor_level); cgrp_id = ancestor ? cgroup_id(ancestor) : 0; rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { .func = bpf_get_current_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; #endif /* CONFIG_CGROUPS */ #define BPF_STRTOX_BASE_MASK 0x1F static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, unsigned long long *res, bool *is_negative) { unsigned int base = flags & BPF_STRTOX_BASE_MASK; const char *cur_buf = buf; size_t cur_len = buf_len; unsigned int consumed; size_t val_len; char str[64]; if (!buf || !buf_len || !res || !is_negative) return -EINVAL; if (base != 0 && base != 8 && base != 10 && base != 16) return -EINVAL; if (flags & ~BPF_STRTOX_BASE_MASK) return -EINVAL; while (cur_buf < buf + buf_len && isspace(*cur_buf)) ++cur_buf; *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); if (*is_negative) ++cur_buf; consumed = cur_buf - buf; cur_len -= consumed; if (!cur_len) return -EINVAL; cur_len = min(cur_len, sizeof(str) - 1); memcpy(str, cur_buf, cur_len); str[cur_len] = '\0'; cur_buf = str; cur_buf = _parse_integer_fixup_radix(cur_buf, &base); val_len = _parse_integer(cur_buf, base, res); if (val_len & KSTRTOX_OVERFLOW) return -ERANGE; if (val_len == 0) return -EINVAL; cur_buf += val_len; consumed += cur_buf - str; return consumed; } static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, long long *res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) { if ((long long)-_res > 0) return -ERANGE; *res = -_res; } else { if ((long long)_res < 0) return -ERANGE; *res = _res; } return err; } BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, long *, res) { long long _res; int err; err = __bpf_strtoll(buf, buf_len, flags, &_res); if (err < 0) return err; if (_res != (long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtol_proto = { .func = bpf_strtol, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, unsigned long *, res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) return -EINVAL; if (_res != (unsigned long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtoul_proto = { .func = bpf_strtoul, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) { return strncmp(s1, s2, s1_sz); } static const struct bpf_func_proto bpf_strncmp_proto = { .func = bpf_strncmp, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_PTR_TO_CONST_STR, }; BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, struct bpf_pidns_info *, nsdata, u32, size) { struct task_struct *task = current; struct pid_namespace *pidns; int err = -EINVAL; if (unlikely(size != sizeof(struct bpf_pidns_info))) goto clear; if (unlikely((u64)(dev_t)dev != dev)) goto clear; if (unlikely(!task)) goto clear; pidns = task_active_pid_ns(task); if (unlikely(!pidns)) { err = -ENOENT; goto clear; } if (!ns_match(&pidns->ns, (dev_t)dev, ino)) goto clear; nsdata->pid = task_pid_nr_ns(task, pidns); nsdata->tgid = task_tgid_nr_ns(task, pidns); return 0; clear: memset((void *)nsdata, 0, (size_t) size); return err; } const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { .func = bpf_get_ns_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { .func = bpf_get_raw_cpu_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, u64, flags, void *, data, u64, size) { if (unlikely(flags & ~(BPF_F_INDEX_MASK))) return -EINVAL; return bpf_event_output(map, flags, data, size, NULL, 0, NULL); } const struct bpf_func_proto bpf_event_output_data_proto = { .func = bpf_event_output_data, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, const void __user *, user_ptr) { int ret = copy_from_user(dst, user_ptr, size); if (unlikely(ret)) { memset(dst, 0, size); ret = -EFAULT; } return ret; } const struct bpf_func_proto bpf_copy_from_user_proto = { .func = bpf_copy_from_user, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) { int ret; /* flags is not used yet */ if (unlikely(flags)) return -EINVAL; if (unlikely(!size)) return 0; ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); if (ret == size) return 0; memset(dst, 0, size); /* Return -EFAULT for partial read */ return ret < 0 ? ret : -EFAULT; } const struct bpf_func_proto bpf_copy_from_user_task_proto = { .func = bpf_copy_from_user_task, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_BTF_ID, .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], .arg5_type = ARG_ANYTHING }; BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) { if (cpu >= nr_cpu_ids) return (unsigned long)NULL; return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); } const struct bpf_func_proto bpf_per_cpu_ptr_proto = { .func = bpf_per_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) { return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); } const struct bpf_func_proto bpf_this_cpu_ptr_proto = { .func = bpf_this_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, }; static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, size_t bufsz) { void __user *user_ptr = (__force void __user *)unsafe_ptr; buf[0] = 0; switch (fmt_ptype) { case 's': #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE if ((unsigned long)unsafe_ptr < TASK_SIZE) return strncpy_from_user_nofault(buf, user_ptr, bufsz); fallthrough; #endif case 'k': return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); case 'u': return strncpy_from_user_nofault(buf, user_ptr, bufsz); } return -EINVAL; } /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary * arguments representation. */ #define MAX_BPRINTF_BUF_LEN 512 /* Support executing three nested bprintf helper calls on a given CPU */ #define MAX_BPRINTF_NEST_LEVEL 3 struct bpf_bprintf_buffers { char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; }; static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); static int try_get_fmt_tmp_buf(char **tmp_buf) { struct bpf_bprintf_buffers *bufs; int nest_level; preempt_disable(); nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); return -EBUSY; } bufs = this_cpu_ptr(&bpf_bprintf_bufs); *tmp_buf = bufs->tmp_bufs[nest_level - 1]; return 0; } void bpf_bprintf_cleanup(void) { if (this_cpu_read(bpf_bprintf_nest_level)) { this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); } } /* * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers * * Returns a negative value if fmt is an invalid format string or 0 otherwise. * * This can be used in two ways: * - Format string verification only: when bin_args is NULL * - Arguments preparation: in addition to the above verification, it writes in * bin_args a binary representation of arguments usable by bstr_printf where * pointers from BPF have been sanitized. * * In argument preparation mode, if 0 is returned, safe temporary buffers are * allocated and bpf_bprintf_cleanup should be called to free them after use. */ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, u32 **bin_args, u32 num_args) { char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; size_t sizeof_cur_arg, sizeof_cur_ip; int err, i, num_spec = 0; u64 cur_arg; char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; fmt_end = strnchr(fmt, fmt_size, 0); if (!fmt_end) return -EINVAL; fmt_size = fmt_end - fmt; if (bin_args) { if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) return -EBUSY; tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; *bin_args = (u32 *)tmp_buf; } for (i = 0; i < fmt_size; i++) { if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { err = -EINVAL; goto out; } if (fmt[i] != '%') continue; if (fmt[i + 1] == '%') { i++; continue; } if (num_spec >= num_args) { err = -EINVAL; goto out; } /* The string is zero-terminated so if fmt[i] != 0, we can * always access fmt[i + 1], in the worst case it will be a 0 */ i++; /* skip optional "[0 +-][num]" width formatting field */ while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || fmt[i] == ' ') i++; if (fmt[i] >= '1' && fmt[i] <= '9') { i++; while (fmt[i] >= '0' && fmt[i] <= '9') i++; } if (fmt[i] == 'p') { sizeof_cur_arg = sizeof(long); if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && fmt[i + 2] == 's') { fmt_ptype = fmt[i + 1]; i += 2; goto fmt_str; } if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || fmt[i + 1] == 'x' || fmt[i + 1] == 's' || fmt[i + 1] == 'S') { /* just kernel pointers */ if (tmp_buf) cur_arg = raw_args[num_spec]; i++; goto nocopy_fmt; } if (fmt[i + 1] == 'B') { if (tmp_buf) { err = snprintf(tmp_buf, (tmp_buf_end - tmp_buf), "%pB", (void *)(long)raw_args[num_spec]); tmp_buf += (err + 1); } i++; num_spec++; continue; } /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { err = -EINVAL; goto out; } i += 2; if (!tmp_buf) goto nocopy_fmt; sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, sizeof_cur_ip); if (err < 0) memset(cur_ip, 0, sizeof_cur_ip); /* hack: bstr_printf expects IP addresses to be * pre-formatted as strings, ironically, the easiest way * to do that is to call snprintf. */ ip_spec[2] = fmt[i - 1]; ip_spec[3] = fmt[i]; err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, ip_spec, &cur_ip); tmp_buf += err + 1; num_spec++; continue; } else if (fmt[i] == 's') { fmt_ptype = fmt[i]; fmt_str: if (fmt[i + 1] != 0 && !isspace(fmt[i + 1]) && !ispunct(fmt[i + 1])) { err = -EINVAL; goto out; } if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, fmt_ptype, tmp_buf_end - tmp_buf); if (err < 0) { tmp_buf[0] = '\0'; err = 1; } tmp_buf += err; num_spec++; continue; } else if (fmt[i] == 'c') { if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } *tmp_buf = raw_args[num_spec]; tmp_buf++; num_spec++; continue; } sizeof_cur_arg = sizeof(int); if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long); i++; } if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long long); i++; } if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x' && fmt[i] != 'X') { err = -EINVAL; goto out; } if (tmp_buf) cur_arg = raw_args[num_spec]; nocopy_fmt: if (tmp_buf) { tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { err = -ENOSPC; goto out; } if (sizeof_cur_arg == 8) { *(u32 *)tmp_buf = *(u32 *)&cur_arg; *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); } else { *(u32 *)tmp_buf = (u32)(long)cur_arg; } tmp_buf += sizeof_cur_arg; } num_spec++; } err = 0; out: if (err) bpf_bprintf_cleanup(); return err; } BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, const void *, data, u32, data_len) { int err, num_args; u32 *bin_args; if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || (data_len && !data)) return -EINVAL; num_args = data_len / 8; /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we * can safely give an unbounded size. */ err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); if (err < 0) return err; err = bstr_printf(str, str_size, fmt, bin_args); bpf_bprintf_cleanup(); return err + 1; } const struct bpf_func_proto bpf_snprintf_proto = { .func = bpf_snprintf, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM_OR_NULL, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_CONST_STR, .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; /* BPF map elements can contain 'struct bpf_timer'. * Such map owns all of its BPF timers. * 'struct bpf_timer' is allocated as part of map element allocation * and it's zero initialized. * That space is used to keep 'struct bpf_timer_kern'. * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and * remembers 'struct bpf_map *' pointer it's part of. * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. * bpf_timer_start() arms the timer. * If user space reference to a map goes to zero at this point * ops->map_release_uref callback is responsible for cancelling the timers, * freeing their memory, and decrementing prog's refcnts. * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. * Inner maps can contain bpf timers as well. ops->map_release_uref is * freeing the timers when inner map is replaced or deleted by user space. */ struct bpf_hrtimer { struct hrtimer timer; struct bpf_map *map; struct bpf_prog *prog; void __rcu *callback_fn; void *value; }; /* the actual struct hidden inside uapi struct bpf_timer */ struct bpf_timer_kern { struct bpf_hrtimer *timer; /* bpf_spin_lock is used here instead of spinlock_t to make * sure that it always fits into space reserved by struct bpf_timer * regardless of LOCKDEP and spinlock debug flags. */ struct bpf_spin_lock lock; } __attribute__((aligned(8))); static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) { struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); struct bpf_map *map = t->map; void *value = t->value; bpf_callback_t callback_fn; void *key; u32 idx; BTF_TYPE_EMIT(struct bpf_timer); callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); if (!callback_fn) goto out; /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and * cannot be preempted by another bpf_timer_cb() on the same cpu. * Remember the timer this callback is servicing to prevent * deadlock if callback_fn() calls bpf_timer_cancel() or * bpf_map_delete_elem() on the same timer. */ this_cpu_write(hrtimer_running, t); if (map->map_type == BPF_MAP_TYPE_ARRAY) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* compute the key */ idx = ((char *)value - array->value) / array->elem_size; key = &idx; } else { /* hash or lru */ key = value - round_up(map->key_size, 8); } callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); /* The verifier checked that return value is zero. */ this_cpu_write(hrtimer_running, NULL); out: return HRTIMER_NORESTART; } BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, u64, flags) { clockid_t clockid = flags & (MAX_CLOCKS - 1); struct bpf_hrtimer *t; int ret = 0; BUILD_BUG_ON(MAX_CLOCKS != 16); BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); if (in_nmi()) return -EOPNOTSUPP; if (flags >= MAX_CLOCKS || /* similar to timerfd except _ALARM variants are not supported */ (clockid != CLOCK_MONOTONIC && clockid != CLOCK_REALTIME && clockid != CLOCK_BOOTTIME)) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (t) { ret = -EBUSY; goto out; } if (!atomic64_read(&map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. */ ret = -EPERM; goto out; } /* allocate hrtimer via map_kmalloc to use memcg accounting */ t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); if (!t) { ret = -ENOMEM; goto out; } t->value = (void *)timer - map->record->timer_off; t->map = map; t->prog = NULL; rcu_assign_pointer(t->callback_fn, NULL); hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); t->timer.function = bpf_timer_cb; timer->timer = t; out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_init_proto = { .func = bpf_timer_init, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, struct bpf_prog_aux *, aux) { struct bpf_prog *prev, *prog = aux->prog; struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } if (!atomic64_read(&t->map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. Otherwise timer might still be * running even when bpf prog is detached and user space * is gone, since map_release_uref won't ever be called. */ ret = -EPERM; goto out; } prev = t->prog; if (prev != prog) { /* Bump prog refcnt once. Every bpf_timer_set_callback() * can pick different callback_fn-s within the same prog. */ prog = bpf_prog_inc_not_zero(prog); if (IS_ERR(prog)) { ret = PTR_ERR(prog); goto out; } if (prev) /* Drop prev prog refcnt when swapping with new prog */ bpf_prog_put(prev); t->prog = prog; } rcu_assign_pointer(t->callback_fn, callback_fn); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_set_callback_proto = { .func = bpf_timer_set_callback, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_PTR_TO_FUNC, }; BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) { struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; if (flags) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t || !t->prog) { ret = -EINVAL; goto out; } hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_start_proto = { .func = bpf_timer_start, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static void drop_prog_refcnt(struct bpf_hrtimer *t) { struct bpf_prog *prog = t->prog; if (prog) { bpf_prog_put(prog); t->prog = NULL; rcu_assign_pointer(t->callback_fn, NULL); } } BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) { struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } if (this_cpu_read(hrtimer_running) == t) { /* If bpf callback_fn is trying to bpf_timer_cancel() * its own timer the hrtimer_cancel() will deadlock * since it waits for callback_fn to finish */ ret = -EDEADLK; goto out; } drop_prog_refcnt(t); out: __bpf_spin_unlock_irqrestore(&timer->lock); /* Cancel the timer and wait for associated callback to finish * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); return ret; } static const struct bpf_func_proto bpf_timer_cancel_proto = { .func = bpf_timer_cancel, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, }; /* This function is called by map_delete/update_elem for individual element and * by ops->map_release_uref when the user space reference to a map reaches zero. */ void bpf_timer_cancel_and_free(void *val) { struct bpf_timer_kern *timer = val; struct bpf_hrtimer *t; /* Performance optimization: read timer->timer without lock first. */ if (!READ_ONCE(timer->timer)) return; __bpf_spin_lock_irqsave(&timer->lock); /* re-read it under lock */ t = timer->timer; if (!t) goto out; drop_prog_refcnt(t); /* The subsequent bpf_timer_start/cancel() helpers won't be able to use * this timer, since it won't be initialized. */ timer->timer = NULL; out: __bpf_spin_unlock_irqrestore(&timer->lock); if (!t) return; /* Cancel the timer and wait for callback to complete if it was running. * If hrtimer_cancel() can be safely called it's safe to call kfree(t) * right after for both preallocated and non-preallocated maps. * The timer->timer = NULL was already done and no code path can * see address 't' anymore. * * Check that bpf_map_delete/update_elem() wasn't called from timer * callback_fn. In such case don't call hrtimer_cancel() (since it will * deadlock) and don't call hrtimer_try_to_cancel() (since it will just * return -1). Though callback_fn is still running on this cpu it's * safe to do kfree(t) because bpf_timer_cb() read everything it needed * from 't'. The bpf subprog callback_fn won't be able to access 't', * since timer->timer = NULL was already done. The timer will be * effectively cancelled because bpf_timer_cb() will return * HRTIMER_NORESTART. */ if (this_cpu_read(hrtimer_running) != t) hrtimer_cancel(&t->timer); kfree(t); } BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) { unsigned long *kptr = map_value; return xchg(kptr, (unsigned long)ptr); } /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to * denote type that verifier will determine. */ static const struct bpf_func_proto bpf_kptr_xchg_proto = { .func = bpf_kptr_xchg, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .ret_btf_id = BPF_PTR_POISON, .arg1_type = ARG_PTR_TO_KPTR, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, .arg2_btf_id = BPF_PTR_POISON, }; /* Since the upper 8 bits of dynptr->size is reserved, the * maximum supported size is 2^24 - 1. */ #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) #define DYNPTR_TYPE_SHIFT 28 #define DYNPTR_SIZE_MASK 0xFFFFFF #define DYNPTR_RDONLY_BIT BIT(31) static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_RDONLY_BIT; } static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) { ptr->size |= type << DYNPTR_TYPE_SHIFT; } u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_SIZE_MASK; } int bpf_dynptr_check_size(u32 size) { return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; } void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, enum bpf_dynptr_type type, u32 offset, u32 size) { ptr->data = data; ptr->offset = offset; ptr->size = size; bpf_dynptr_set_type(ptr, type); } void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) { memset(ptr, 0, sizeof(*ptr)); } static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len) { u32 size = bpf_dynptr_get_size(ptr); if (len > size || offset > size - len) return -E2BIG; return 0; } BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) { int err; BTF_TYPE_EMIT(struct bpf_dynptr); err = bpf_dynptr_check_size(size); if (err) goto error; /* flags is currently unsupported */ if (flags) { err = -EINVAL; goto error; } bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); return 0; error: bpf_dynptr_set_null(ptr); return err; } static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { .func = bpf_dynptr_from_mem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, }; BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src, u32, offset, u64, flags) { int err; if (!src->data || flags) return -EINVAL; err = bpf_dynptr_check_off_len(src, offset, len); if (err) return err; memcpy(dst, src->data + src->offset + offset, len); return 0; } static const struct bpf_func_proto bpf_dynptr_read_proto = { .func = bpf_dynptr_read, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_DYNPTR, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src, u32, len, u64, flags) { int err; if (!dst->data || flags || bpf_dynptr_is_rdonly(dst)) return -EINVAL; err = bpf_dynptr_check_off_len(dst, offset, len); if (err) return err; memcpy(dst->data + dst->offset + offset, src, len); return 0; } static const struct bpf_func_proto bpf_dynptr_write_proto = { .func = bpf_dynptr_write, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_DYNPTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE_OR_ZERO, .arg5_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) { int err; if (!ptr->data) return 0; err = bpf_dynptr_check_off_len(ptr, offset, len); if (err) return 0; if (bpf_dynptr_is_rdonly(ptr)) return 0; return (unsigned long)(ptr->data + ptr->offset + offset); } static const struct bpf_func_proto bpf_dynptr_data_proto = { .func = bpf_dynptr_data, .gpl_only = false, .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, .arg1_type = ARG_PTR_TO_DYNPTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, }; const struct bpf_func_proto bpf_get_current_task_proto __weak; const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; const struct bpf_func_proto bpf_probe_read_user_proto __weak; const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; const struct bpf_func_proto bpf_task_pt_regs_proto __weak; const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id) { switch (func_id) { case BPF_FUNC_map_lookup_elem: return &bpf_map_lookup_elem_proto; case BPF_FUNC_map_update_elem: return &bpf_map_update_elem_proto; case BPF_FUNC_map_delete_elem: return &bpf_map_delete_elem_proto; case BPF_FUNC_map_push_elem: return &bpf_map_push_elem_proto; case BPF_FUNC_map_pop_elem: return &bpf_map_pop_elem_proto; case BPF_FUNC_map_peek_elem: return &bpf_map_peek_elem_proto; case BPF_FUNC_map_lookup_percpu_elem: return &bpf_map_lookup_percpu_elem_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_raw_smp_processor_id_proto; case BPF_FUNC_get_numa_node_id: return &bpf_get_numa_node_id_proto; case BPF_FUNC_tail_call: return &bpf_tail_call_proto; case BPF_FUNC_ktime_get_ns: return &bpf_ktime_get_ns_proto; case BPF_FUNC_ktime_get_boot_ns: return &bpf_ktime_get_boot_ns_proto; case BPF_FUNC_ktime_get_tai_ns: return &bpf_ktime_get_tai_ns_proto; case BPF_FUNC_ringbuf_output: return &bpf_ringbuf_output_proto; case BPF_FUNC_ringbuf_reserve: return &bpf_ringbuf_reserve_proto; case BPF_FUNC_ringbuf_submit: return &bpf_ringbuf_submit_proto; case BPF_FUNC_ringbuf_discard: return &bpf_ringbuf_discard_proto; case BPF_FUNC_ringbuf_query: return &bpf_ringbuf_query_proto; case BPF_FUNC_strncmp: return &bpf_strncmp_proto; case BPF_FUNC_strtol: return &bpf_strtol_proto; case BPF_FUNC_strtoul: return &bpf_strtoul_proto; default: break; } if (!bpf_capable()) return NULL; switch (func_id) { case BPF_FUNC_spin_lock: return &bpf_spin_lock_proto; case BPF_FUNC_spin_unlock: return &bpf_spin_unlock_proto; case BPF_FUNC_jiffies64: return &bpf_jiffies64_proto; case BPF_FUNC_per_cpu_ptr: return &bpf_per_cpu_ptr_proto; case BPF_FUNC_this_cpu_ptr: return &bpf_this_cpu_ptr_proto; case BPF_FUNC_timer_init: return &bpf_timer_init_proto; case BPF_FUNC_timer_set_callback: return &bpf_timer_set_callback_proto; case BPF_FUNC_timer_start: return &bpf_timer_start_proto; case BPF_FUNC_timer_cancel: return &bpf_timer_cancel_proto; case BPF_FUNC_kptr_xchg: return &bpf_kptr_xchg_proto; case BPF_FUNC_for_each_map_elem: return &bpf_for_each_map_elem_proto; case BPF_FUNC_loop: return &bpf_loop_proto; case BPF_FUNC_user_ringbuf_drain: return &bpf_user_ringbuf_drain_proto; case BPF_FUNC_ringbuf_reserve_dynptr: return &bpf_ringbuf_reserve_dynptr_proto; case BPF_FUNC_ringbuf_submit_dynptr: return &bpf_ringbuf_submit_dynptr_proto; case BPF_FUNC_ringbuf_discard_dynptr: return &bpf_ringbuf_discard_dynptr_proto; case BPF_FUNC_dynptr_from_mem: return &bpf_dynptr_from_mem_proto; case BPF_FUNC_dynptr_read: return &bpf_dynptr_read_proto; case BPF_FUNC_dynptr_write: return &bpf_dynptr_write_proto; case BPF_FUNC_dynptr_data: return &bpf_dynptr_data_proto; #ifdef CONFIG_CGROUPS case BPF_FUNC_cgrp_storage_get: return &bpf_cgrp_storage_get_proto; case BPF_FUNC_cgrp_storage_delete: return &bpf_cgrp_storage_delete_proto; #endif default: break; } if (!perfmon_capable()) return NULL; switch (func_id) { case BPF_FUNC_trace_printk: return bpf_get_trace_printk_proto(); case BPF_FUNC_get_current_task: return &bpf_get_current_task_proto; case BPF_FUNC_get_current_task_btf: return &bpf_get_current_task_btf_proto; case BPF_FUNC_probe_read_user: return &bpf_probe_read_user_proto; case BPF_FUNC_probe_read_kernel: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_proto; case BPF_FUNC_probe_read_user_str: return &bpf_probe_read_user_str_proto; case BPF_FUNC_probe_read_kernel_str: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_str_proto; case BPF_FUNC_snprintf_btf: return &bpf_snprintf_btf_proto; case BPF_FUNC_snprintf: return &bpf_snprintf_proto; case BPF_FUNC_task_pt_regs: return &bpf_task_pt_regs_proto; case BPF_FUNC_trace_vprintk: return bpf_get_trace_vprintk_proto(); default: return NULL; } } void bpf_list_head_free(const struct btf_field *field, void *list_head, struct bpf_spin_lock *spin_lock) { struct list_head *head = list_head, *orig_head = list_head; BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); /* Do the actual list draining outside the lock to not hold the lock for * too long, and also prevent deadlocks if tracing programs end up * executing on entry/exit of functions called inside the critical * section, and end up doing map ops that call bpf_list_head_free for * the same map value again. */ __bpf_spin_lock_irqsave(spin_lock); if (!head->next || list_empty(head)) goto unlock; head = head->next; unlock: INIT_LIST_HEAD(orig_head); __bpf_spin_unlock_irqrestore(spin_lock); while (head != orig_head) { void *obj = head; obj -= field->list_head.node_offset; head = head->next; /* The contained type can also have resources, including a * bpf_list_head which needs to be freed. */ bpf_obj_free_fields(field->list_head.value_rec, obj); /* bpf_mem_free requires migrate_disable(), since we can be * called from map free path as well apart from BPF program (as * part of map ops doing bpf_obj_free_fields). */ migrate_disable(); bpf_mem_free(&bpf_global_ma, obj); migrate_enable(); } } __diag_push(); __diag_ignore_all("-Wmissing-prototypes", "Global functions as their definitions will be in vmlinux BTF"); void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; u64 size = local_type_id__k; void *p; if (unlikely(!bpf_global_ma_set)) return NULL; p = bpf_mem_alloc(&bpf_global_ma, size); if (!p) return NULL; if (meta) bpf_obj_init(meta->field_offs, p); return p; } void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; void *p = p__alloc; if (meta) bpf_obj_free_fields(meta->record, p); bpf_mem_free(&bpf_global_ma, p); } static void __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head, bool tail) { struct list_head *n = (void *)node, *h = (void *)head; if (unlikely(!h->next)) INIT_LIST_HEAD(h); if (unlikely(!n->next)) INIT_LIST_HEAD(n); tail ? list_add_tail(n, h) : list_add(n, h); } void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node) { return __bpf_list_add(node, head, false); } void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node) { return __bpf_list_add(node, head, true); } static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) { struct list_head *n, *h = (void *)head; if (unlikely(!h->next)) INIT_LIST_HEAD(h); if (list_empty(h)) return NULL; n = tail ? h->prev : h->next; list_del_init(n); return (struct bpf_list_node *)n; } struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) { return __bpf_list_del(head, false); } struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) { return __bpf_list_del(head, true); } /** * bpf_task_acquire - Acquire a reference to a task. A task acquired by this * kfunc which is not stored in a map as a kptr, must be released by calling * bpf_task_release(). * @p: The task on which a reference is being acquired. */ struct task_struct *bpf_task_acquire(struct task_struct *p) { refcount_inc(&p->rcu_users); return p; } /** * bpf_task_kptr_get - Acquire a reference on a struct task_struct kptr. A task * kptr acquired by this kfunc which is not subsequently stored in a map, must * be released by calling bpf_task_release(). * @pp: A pointer to a task kptr on which a reference is being acquired. */ struct task_struct *bpf_task_kptr_get(struct task_struct **pp) { struct task_struct *p; rcu_read_lock(); p = READ_ONCE(*pp); /* Another context could remove the task from the map and release it at * any time, including after we've done the lookup above. This is safe * because we're in an RCU read region, so the task is guaranteed to * remain valid until at least the rcu_read_unlock() below. */ if (p && !refcount_inc_not_zero(&p->rcu_users)) /* If the task had been removed from the map and freed as * described above, refcount_inc_not_zero() will return false. * The task will be freed at some point after the current RCU * gp has ended, so just return NULL to the user. */ p = NULL; rcu_read_unlock(); return p; } /** * bpf_task_release - Release the reference acquired on a struct task_struct *. * If this kfunc is invoked in an RCU read region, the task_struct is * guaranteed to not be freed until the current grace period has ended, even if * its refcount drops to 0. * @p: The task on which a reference is being released. */ void bpf_task_release(struct task_struct *p) { if (!p) return; put_task_struct_rcu_user(p); } __diag_pop(); BTF_SET8_START(generic_btf_ids) #ifdef CONFIG_KEXEC_CORE BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) #endif BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) BTF_ID_FLAGS(func, bpf_list_push_front) BTF_ID_FLAGS(func, bpf_list_push_back) BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS) BTF_ID_FLAGS(func, bpf_task_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) BTF_SET8_END(generic_btf_ids) static const struct btf_kfunc_id_set generic_kfunc_set = { .owner = THIS_MODULE, .set = &generic_btf_ids, }; BTF_ID_LIST(generic_dtor_ids) BTF_ID(struct, task_struct) BTF_ID(func, bpf_task_release) static int __init kfunc_init(void) { int ret; const struct btf_id_dtor_kfunc generic_dtors[] = { { .btf_id = generic_dtor_ids[0], .kfunc_btf_id = generic_dtor_ids[1] }, }; ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); return ret ?: register_btf_id_dtor_kfuncs(generic_dtors, ARRAY_SIZE(generic_dtors), THIS_MODULE); } late_initcall(kfunc_init);