// SPDX-License-Identifier: GPL-2.0-or-later /* * NET An implementation of the SOCKET network access protocol. * * Version: @(#)socket.c 1.1.93 18/02/95 * * Authors: Orest Zborowski, * Ross Biro * Fred N. van Kempen, * * Fixes: * Anonymous : NOTSOCK/BADF cleanup. Error fix in * shutdown() * Alan Cox : verify_area() fixes * Alan Cox : Removed DDI * Jonathan Kamens : SOCK_DGRAM reconnect bug * Alan Cox : Moved a load of checks to the very * top level. * Alan Cox : Move address structures to/from user * mode above the protocol layers. * Rob Janssen : Allow 0 length sends. * Alan Cox : Asynchronous I/O support (cribbed from the * tty drivers). * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) * Jeff Uphoff : Made max number of sockets command-line * configurable. * Matti Aarnio : Made the number of sockets dynamic, * to be allocated when needed, and mr. * Uphoff's max is used as max to be * allowed to allocate. * Linus : Argh. removed all the socket allocation * altogether: it's in the inode now. * Alan Cox : Made sock_alloc()/sock_release() public * for NetROM and future kernel nfsd type * stuff. * Alan Cox : sendmsg/recvmsg basics. * Tom Dyas : Export net symbols. * Marcin Dalecki : Fixed problems with CONFIG_NET="n". * Alan Cox : Added thread locking to sys_* calls * for sockets. May have errors at the * moment. * Kevin Buhr : Fixed the dumb errors in the above. * Andi Kleen : Some small cleanups, optimizations, * and fixed a copy_from_user() bug. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) * Tigran Aivazian : Made listen(2) backlog sanity checks * protocol-independent * * This module is effectively the top level interface to the BSD socket * paradigm. * * Based upon Swansea University Computer Society NET3.039 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sysctl_net_busy_read __read_mostly; unsigned int sysctl_net_busy_poll __read_mostly; #endif static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); static int sock_mmap(struct file *file, struct vm_area_struct *vma); static int sock_close(struct inode *inode, struct file *file); static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait); static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #endif static int sock_fasync(int fd, struct file *filp, int on); static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); static void sock_splice_eof(struct file *file); #ifdef CONFIG_PROC_FS static void sock_show_fdinfo(struct seq_file *m, struct file *f) { struct socket *sock = f->private_data; const struct proto_ops *ops = READ_ONCE(sock->ops); if (ops->show_fdinfo) ops->show_fdinfo(m, sock); } #else #define sock_show_fdinfo NULL #endif /* * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear * in the operation structures but are done directly via the socketcall() multiplexor. */ static const struct file_operations socket_file_ops = { .owner = THIS_MODULE, .read_iter = sock_read_iter, .write_iter = sock_write_iter, .poll = sock_poll, .unlocked_ioctl = sock_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_sock_ioctl, #endif .uring_cmd = io_uring_cmd_sock, .mmap = sock_mmap, .release = sock_close, .fasync = sock_fasync, .splice_write = splice_to_socket, .splice_read = sock_splice_read, .splice_eof = sock_splice_eof, .show_fdinfo = sock_show_fdinfo, }; static const char * const pf_family_names[] = { [PF_UNSPEC] = "PF_UNSPEC", [PF_UNIX] = "PF_UNIX/PF_LOCAL", [PF_INET] = "PF_INET", [PF_AX25] = "PF_AX25", [PF_IPX] = "PF_IPX", [PF_APPLETALK] = "PF_APPLETALK", [PF_NETROM] = "PF_NETROM", [PF_BRIDGE] = "PF_BRIDGE", [PF_ATMPVC] = "PF_ATMPVC", [PF_X25] = "PF_X25", [PF_INET6] = "PF_INET6", [PF_ROSE] = "PF_ROSE", [PF_DECnet] = "PF_DECnet", [PF_NETBEUI] = "PF_NETBEUI", [PF_SECURITY] = "PF_SECURITY", [PF_KEY] = "PF_KEY", [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", [PF_PACKET] = "PF_PACKET", [PF_ASH] = "PF_ASH", [PF_ECONET] = "PF_ECONET", [PF_ATMSVC] = "PF_ATMSVC", [PF_RDS] = "PF_RDS", [PF_SNA] = "PF_SNA", [PF_IRDA] = "PF_IRDA", [PF_PPPOX] = "PF_PPPOX", [PF_WANPIPE] = "PF_WANPIPE", [PF_LLC] = "PF_LLC", [PF_IB] = "PF_IB", [PF_MPLS] = "PF_MPLS", [PF_CAN] = "PF_CAN", [PF_TIPC] = "PF_TIPC", [PF_BLUETOOTH] = "PF_BLUETOOTH", [PF_IUCV] = "PF_IUCV", [PF_RXRPC] = "PF_RXRPC", [PF_ISDN] = "PF_ISDN", [PF_PHONET] = "PF_PHONET", [PF_IEEE802154] = "PF_IEEE802154", [PF_CAIF] = "PF_CAIF", [PF_ALG] = "PF_ALG", [PF_NFC] = "PF_NFC", [PF_VSOCK] = "PF_VSOCK", [PF_KCM] = "PF_KCM", [PF_QIPCRTR] = "PF_QIPCRTR", [PF_SMC] = "PF_SMC", [PF_XDP] = "PF_XDP", [PF_MCTP] = "PF_MCTP", }; /* * The protocol list. Each protocol is registered in here. */ static DEFINE_SPINLOCK(net_family_lock); static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; /* * Support routines. * Move socket addresses back and forth across the kernel/user * divide and look after the messy bits. */ /** * move_addr_to_kernel - copy a socket address into kernel space * @uaddr: Address in user space * @kaddr: Address in kernel space * @ulen: Length in user space * * The address is copied into kernel space. If the provided address is * too long an error code of -EINVAL is returned. If the copy gives * invalid addresses -EFAULT is returned. On a success 0 is returned. */ int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) { if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) return -EINVAL; if (ulen == 0) return 0; if (copy_from_user(kaddr, uaddr, ulen)) return -EFAULT; return audit_sockaddr(ulen, kaddr); } /** * move_addr_to_user - copy an address to user space * @kaddr: kernel space address * @klen: length of address in kernel * @uaddr: user space address * @ulen: pointer to user length field * * The value pointed to by ulen on entry is the buffer length available. * This is overwritten with the buffer space used. -EINVAL is returned * if an overlong buffer is specified or a negative buffer size. -EFAULT * is returned if either the buffer or the length field are not * accessible. * After copying the data up to the limit the user specifies, the true * length of the data is written over the length limit the user * specified. Zero is returned for a success. */ static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, void __user *uaddr, int __user *ulen) { int err; int len; BUG_ON(klen > sizeof(struct sockaddr_storage)); err = get_user(len, ulen); if (err) return err; if (len > klen) len = klen; if (len < 0) return -EINVAL; if (len) { if (audit_sockaddr(klen, kaddr)) return -ENOMEM; if (copy_to_user(uaddr, kaddr, len)) return -EFAULT; } /* * "fromlen shall refer to the value before truncation.." * 1003.1g */ return __put_user(klen, ulen); } static struct kmem_cache *sock_inode_cachep __ro_after_init; static struct inode *sock_alloc_inode(struct super_block *sb) { struct socket_alloc *ei; ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); if (!ei) return NULL; init_waitqueue_head(&ei->socket.wq.wait); ei->socket.wq.fasync_list = NULL; ei->socket.wq.flags = 0; ei->socket.state = SS_UNCONNECTED; ei->socket.flags = 0; ei->socket.ops = NULL; ei->socket.sk = NULL; ei->socket.file = NULL; return &ei->vfs_inode; } static void sock_free_inode(struct inode *inode) { struct socket_alloc *ei; ei = container_of(inode, struct socket_alloc, vfs_inode); kmem_cache_free(sock_inode_cachep, ei); } static void init_once(void *foo) { struct socket_alloc *ei = (struct socket_alloc *)foo; inode_init_once(&ei->vfs_inode); } static void init_inodecache(void) { sock_inode_cachep = kmem_cache_create("sock_inode_cache", sizeof(struct socket_alloc), 0, (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT), init_once); BUG_ON(sock_inode_cachep == NULL); } static const struct super_operations sockfs_ops = { .alloc_inode = sock_alloc_inode, .free_inode = sock_free_inode, .statfs = simple_statfs, }; /* * sockfs_dname() is called from d_path(). */ static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(buffer, buflen, "socket:[%lu]", d_inode(dentry)->i_ino); } static const struct dentry_operations sockfs_dentry_operations = { .d_dname = sockfs_dname, }; static int sockfs_xattr_get(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, void *value, size_t size) { if (value) { if (dentry->d_name.len + 1 > size) return -ERANGE; memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); } return dentry->d_name.len + 1; } #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) static const struct xattr_handler sockfs_xattr_handler = { .name = XATTR_NAME_SOCKPROTONAME, .get = sockfs_xattr_get, }; static int sockfs_security_xattr_set(const struct xattr_handler *handler, struct mnt_idmap *idmap, struct dentry *dentry, struct inode *inode, const char *suffix, const void *value, size_t size, int flags) { /* Handled by LSM. */ return -EAGAIN; } static const struct xattr_handler sockfs_security_xattr_handler = { .prefix = XATTR_SECURITY_PREFIX, .set = sockfs_security_xattr_set, }; static const struct xattr_handler * const sockfs_xattr_handlers[] = { &sockfs_xattr_handler, &sockfs_security_xattr_handler, NULL }; static int sockfs_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); if (!ctx) return -ENOMEM; ctx->ops = &sockfs_ops; ctx->dops = &sockfs_dentry_operations; ctx->xattr = sockfs_xattr_handlers; return 0; } static struct vfsmount *sock_mnt __read_mostly; static struct file_system_type sock_fs_type = { .name = "sockfs", .init_fs_context = sockfs_init_fs_context, .kill_sb = kill_anon_super, }; /* * Obtains the first available file descriptor and sets it up for use. * * These functions create file structures and maps them to fd space * of the current process. On success it returns file descriptor * and file struct implicitly stored in sock->file. * Note that another thread may close file descriptor before we return * from this function. We use the fact that now we do not refer * to socket after mapping. If one day we will need it, this * function will increment ref. count on file by 1. * * In any case returned fd MAY BE not valid! * This race condition is unavoidable * with shared fd spaces, we cannot solve it inside kernel, * but we take care of internal coherence yet. */ /** * sock_alloc_file - Bind a &socket to a &file * @sock: socket * @flags: file status flags * @dname: protocol name * * Returns the &file bound with @sock, implicitly storing it * in sock->file. If dname is %NULL, sets to "". * * On failure @sock is released, and an ERR pointer is returned. * * This function uses GFP_KERNEL internally. */ struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) { struct file *file; if (!dname) dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, O_RDWR | (flags & O_NONBLOCK), &socket_file_ops); if (IS_ERR(file)) { sock_release(sock); return file; } file->f_mode |= FMODE_NOWAIT; sock->file = file; file->private_data = sock; stream_open(SOCK_INODE(sock), file); return file; } EXPORT_SYMBOL(sock_alloc_file); static int sock_map_fd(struct socket *sock, int flags) { struct file *newfile; int fd = get_unused_fd_flags(flags); if (unlikely(fd < 0)) { sock_release(sock); return fd; } newfile = sock_alloc_file(sock, flags, NULL); if (!IS_ERR(newfile)) { fd_install(fd, newfile); return fd; } put_unused_fd(fd); return PTR_ERR(newfile); } /** * sock_from_file - Return the &socket bounded to @file. * @file: file * * On failure returns %NULL. */ struct socket *sock_from_file(struct file *file) { if (likely(file->f_op == &socket_file_ops)) return file->private_data; /* set in sock_alloc_file */ return NULL; } EXPORT_SYMBOL(sock_from_file); /** * sockfd_lookup - Go from a file number to its socket slot * @fd: file handle * @err: pointer to an error code return * * The file handle passed in is locked and the socket it is bound * to is returned. If an error occurs the err pointer is overwritten * with a negative errno code and NULL is returned. The function checks * for both invalid handles and passing a handle which is not a socket. * * On a success the socket object pointer is returned. */ struct socket *sockfd_lookup(int fd, int *err) { struct file *file; struct socket *sock; file = fget(fd); if (!file) { *err = -EBADF; return NULL; } sock = sock_from_file(file); if (!sock) { *err = -ENOTSOCK; fput(file); } return sock; } EXPORT_SYMBOL(sockfd_lookup); static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, size_t size) { ssize_t len; ssize_t used = 0; len = security_inode_listsecurity(d_inode(dentry), buffer, size); if (len < 0) return len; used += len; if (buffer) { if (size < used) return -ERANGE; buffer += len; } len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); used += len; if (buffer) { if (size < used) return -ERANGE; memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); buffer += len; } return used; } static int sockfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *iattr) { int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); if (!err && (iattr->ia_valid & ATTR_UID)) { struct socket *sock = SOCKET_I(d_inode(dentry)); if (sock->sk) sock->sk->sk_uid = iattr->ia_uid; else err = -ENOENT; } return err; } static const struct inode_operations sockfs_inode_ops = { .listxattr = sockfs_listxattr, .setattr = sockfs_setattr, }; /** * sock_alloc - allocate a socket * * Allocate a new inode and socket object. The two are bound together * and initialised. The socket is then returned. If we are out of inodes * NULL is returned. This functions uses GFP_KERNEL internally. */ struct socket *sock_alloc(void) { struct inode *inode; struct socket *sock; inode = new_inode_pseudo(sock_mnt->mnt_sb); if (!inode) return NULL; sock = SOCKET_I(inode); inode->i_ino = get_next_ino(); inode->i_mode = S_IFSOCK | S_IRWXUGO; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_op = &sockfs_inode_ops; return sock; } EXPORT_SYMBOL(sock_alloc); static void __sock_release(struct socket *sock, struct inode *inode) { const struct proto_ops *ops = READ_ONCE(sock->ops); if (ops) { struct module *owner = ops->owner; if (inode) inode_lock(inode); ops->release(sock); sock->sk = NULL; if (inode) inode_unlock(inode); sock->ops = NULL; module_put(owner); } if (sock->wq.fasync_list) pr_err("%s: fasync list not empty!\n", __func__); if (!sock->file) { iput(SOCK_INODE(sock)); return; } sock->file = NULL; } /** * sock_release - close a socket * @sock: socket to close * * The socket is released from the protocol stack if it has a release * callback, and the inode is then released if the socket is bound to * an inode not a file. */ void sock_release(struct socket *sock) { __sock_release(sock, NULL); } EXPORT_SYMBOL(sock_release); void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) { u8 flags = *tx_flags; if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { flags |= SKBTX_HW_TSTAMP; /* PTP hardware clocks can provide a free running cycle counter * as a time base for virtual clocks. Tell driver to use the * free running cycle counter for timestamp if socket is bound * to virtual clock. */ if (tsflags & SOF_TIMESTAMPING_BIND_PHC) flags |= SKBTX_HW_TSTAMP_USE_CYCLES; } if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) flags |= SKBTX_SW_TSTAMP; if (tsflags & SOF_TIMESTAMPING_TX_SCHED) flags |= SKBTX_SCHED_TSTAMP; *tx_flags = flags; } EXPORT_SYMBOL(__sock_tx_timestamp); INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, size_t)); INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, size_t)); static noinline void call_trace_sock_send_length(struct sock *sk, int ret, int flags) { trace_sock_send_length(sk, ret, 0); } static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) { int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, inet_sendmsg, sock, msg, msg_data_left(msg)); BUG_ON(ret == -EIOCBQUEUED); if (trace_sock_send_length_enabled()) call_trace_sock_send_length(sock->sk, ret, 0); return ret; } static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) { int err = security_socket_sendmsg(sock, msg, msg_data_left(msg)); return err ?: sock_sendmsg_nosec(sock, msg); } /** * sock_sendmsg - send a message through @sock * @sock: socket * @msg: message to send * * Sends @msg through @sock, passing through LSM. * Returns the number of bytes sent, or an error code. */ int sock_sendmsg(struct socket *sock, struct msghdr *msg) { struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; struct sockaddr_storage address; int save_len = msg->msg_namelen; int ret; if (msg->msg_name) { memcpy(&address, msg->msg_name, msg->msg_namelen); msg->msg_name = &address; } ret = __sock_sendmsg(sock, msg); msg->msg_name = save_addr; msg->msg_namelen = save_len; return ret; } EXPORT_SYMBOL(sock_sendmsg); /** * kernel_sendmsg - send a message through @sock (kernel-space) * @sock: socket * @msg: message header * @vec: kernel vec * @num: vec array length * @size: total message data size * * Builds the message data with @vec and sends it through @sock. * Returns the number of bytes sent, or an error code. */ int kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size) { iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); return sock_sendmsg(sock, msg); } EXPORT_SYMBOL(kernel_sendmsg); /** * kernel_sendmsg_locked - send a message through @sock (kernel-space) * @sk: sock * @msg: message header * @vec: output s/g array * @num: output s/g array length * @size: total message data size * * Builds the message data with @vec and sends it through @sock. * Returns the number of bytes sent, or an error code. * Caller must hold @sk. */ int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, struct kvec *vec, size_t num, size_t size) { struct socket *sock = sk->sk_socket; const struct proto_ops *ops = READ_ONCE(sock->ops); if (!ops->sendmsg_locked) return sock_no_sendmsg_locked(sk, msg, size); iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); } EXPORT_SYMBOL(kernel_sendmsg_locked); static bool skb_is_err_queue(const struct sk_buff *skb) { /* pkt_type of skbs enqueued on the error queue are set to * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do * in recvmsg, since skbs received on a local socket will never * have a pkt_type of PACKET_OUTGOING. */ return skb->pkt_type == PACKET_OUTGOING; } /* On transmit, software and hardware timestamps are returned independently. * As the two skb clones share the hardware timestamp, which may be updated * before the software timestamp is received, a hardware TX timestamp may be * returned only if there is no software TX timestamp. Ignore false software * timestamps, which may be made in the __sock_recv_timestamp() call when the * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a * hardware timestamp. */ static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) { return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); } static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) { bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); struct net_device *orig_dev; ktime_t hwtstamp; rcu_read_lock(); orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); if (orig_dev) { *if_index = orig_dev->ifindex; hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); } else { hwtstamp = shhwtstamps->hwtstamp; } rcu_read_unlock(); return hwtstamp; } static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, int if_index) { struct scm_ts_pktinfo ts_pktinfo; struct net_device *orig_dev; if (!skb_mac_header_was_set(skb)) return; memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); if (!if_index) { rcu_read_lock(); orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); if (orig_dev) if_index = orig_dev->ifindex; rcu_read_unlock(); } ts_pktinfo.if_index = if_index; ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, sizeof(ts_pktinfo), &ts_pktinfo); } /* * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) */ void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); struct scm_timestamping_internal tss; int empty = 1, false_tstamp = 0; struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); int if_index; ktime_t hwtstamp; u32 tsflags; /* Race occurred between timestamp enabling and packet receiving. Fill in the current time for now. */ if (need_software_tstamp && skb->tstamp == 0) { __net_timestamp(skb); false_tstamp = 1; } if (need_software_tstamp) { if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { if (new_tstamp) { struct __kernel_sock_timeval tv; skb_get_new_timestamp(skb, &tv); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(tv), &tv); } else { struct __kernel_old_timeval tv; skb_get_timestamp(skb, &tv); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } } else { if (new_tstamp) { struct __kernel_timespec ts; skb_get_new_timestampns(skb, &ts); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, sizeof(ts), &ts); } else { struct __kernel_old_timespec ts; skb_get_timestampns(skb, &ts); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, sizeof(ts), &ts); } } } memset(&tss, 0, sizeof(tss)); tsflags = READ_ONCE(sk->sk_tsflags); if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || skb_is_err_queue(skb) || !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) empty = 0; if (shhwtstamps && (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || skb_is_err_queue(skb) || !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && !skb_is_swtx_tstamp(skb, false_tstamp)) { if_index = 0; if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) hwtstamp = get_timestamp(sk, skb, &if_index); else hwtstamp = shhwtstamps->hwtstamp; if (tsflags & SOF_TIMESTAMPING_BIND_PHC) hwtstamp = ptp_convert_timestamp(&hwtstamp, READ_ONCE(sk->sk_bind_phc)); if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { empty = 0; if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && !skb_is_err_queue(skb)) put_ts_pktinfo(msg, skb, if_index); } } if (!empty) { if (sock_flag(sk, SOCK_TSTAMP_NEW)) put_cmsg_scm_timestamping64(msg, &tss); else put_cmsg_scm_timestamping(msg, &tss); if (skb_is_err_queue(skb) && skb->len && SKB_EXT_ERR(skb)->opt_stats) put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, skb->len, skb->data); } } EXPORT_SYMBOL_GPL(__sock_recv_timestamp); #ifdef CONFIG_WIRELESS void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int ack; if (!sock_flag(sk, SOCK_WIFI_STATUS)) return; if (!skb->wifi_acked_valid) return; ack = skb->wifi_acked; put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); } EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); #endif static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); } static void sock_recv_mark(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { if (sock_flag(sk, SOCK_RCVMARK) && skb) { /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ __u32 mark = skb->mark; put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); } } void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { sock_recv_timestamp(msg, sk, skb); sock_recv_drops(msg, sk, skb); sock_recv_mark(msg, sk, skb); } EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, size_t, int)); INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, size_t, int)); static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) { trace_sock_recv_length(sk, ret, flags); } static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, int flags) { int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, inet6_recvmsg, inet_recvmsg, sock, msg, msg_data_left(msg), flags); if (trace_sock_recv_length_enabled()) call_trace_sock_recv_length(sock->sk, ret, flags); return ret; } /** * sock_recvmsg - receive a message from @sock * @sock: socket * @msg: message to receive * @flags: message flags * * Receives @msg from @sock, passing through LSM. Returns the total number * of bytes received, or an error. */ int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) { int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); return err ?: sock_recvmsg_nosec(sock, msg, flags); } EXPORT_SYMBOL(sock_recvmsg); /** * kernel_recvmsg - Receive a message from a socket (kernel space) * @sock: The socket to receive the message from * @msg: Received message * @vec: Input s/g array for message data * @num: Size of input s/g array * @size: Number of bytes to read * @flags: Message flags (MSG_DONTWAIT, etc...) * * On return the msg structure contains the scatter/gather array passed in the * vec argument. The array is modified so that it consists of the unfilled * portion of the original array. * * The returned value is the total number of bytes received, or an error. */ int kernel_recvmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size, int flags) { msg->msg_control_is_user = false; iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); return sock_recvmsg(sock, msg, flags); } EXPORT_SYMBOL(kernel_recvmsg); static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct socket *sock = file->private_data; const struct proto_ops *ops; ops = READ_ONCE(sock->ops); if (unlikely(!ops->splice_read)) return copy_splice_read(file, ppos, pipe, len, flags); return ops->splice_read(sock, ppos, pipe, len, flags); } static void sock_splice_eof(struct file *file) { struct socket *sock = file->private_data; const struct proto_ops *ops; ops = READ_ONCE(sock->ops); if (ops->splice_eof) ops->splice_eof(sock); } static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *to, .msg_iocb = iocb}; ssize_t res; if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) msg.msg_flags = MSG_DONTWAIT; if (iocb->ki_pos != 0) return -ESPIPE; if (!iov_iter_count(to)) /* Match SYS5 behaviour */ return 0; res = sock_recvmsg(sock, &msg, msg.msg_flags); *to = msg.msg_iter; return res; } static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *from, .msg_iocb = iocb}; ssize_t res; if (iocb->ki_pos != 0) return -ESPIPE; if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) msg.msg_flags = MSG_DONTWAIT; if (sock->type == SOCK_SEQPACKET) msg.msg_flags |= MSG_EOR; res = __sock_sendmsg(sock, &msg); *from = msg.msg_iter; return res; } /* * Atomic setting of ioctl hooks to avoid race * with module unload. */ static DEFINE_MUTEX(br_ioctl_mutex); static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, unsigned int cmd, struct ifreq *ifr, void __user *uarg); void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, unsigned int cmd, struct ifreq *ifr, void __user *uarg)) { mutex_lock(&br_ioctl_mutex); br_ioctl_hook = hook; mutex_unlock(&br_ioctl_mutex); } EXPORT_SYMBOL(brioctl_set); int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, struct ifreq *ifr, void __user *uarg) { int err = -ENOPKG; if (!br_ioctl_hook) request_module("bridge"); mutex_lock(&br_ioctl_mutex); if (br_ioctl_hook) err = br_ioctl_hook(net, br, cmd, ifr, uarg); mutex_unlock(&br_ioctl_mutex); return err; } static DEFINE_MUTEX(vlan_ioctl_mutex); static int (*vlan_ioctl_hook) (struct net *, void __user *arg); void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) { mutex_lock(&vlan_ioctl_mutex); vlan_ioctl_hook = hook; mutex_unlock(&vlan_ioctl_mutex); } EXPORT_SYMBOL(vlan_ioctl_set); static long sock_do_ioctl(struct net *net, struct socket *sock, unsigned int cmd, unsigned long arg) { const struct proto_ops *ops = READ_ONCE(sock->ops); struct ifreq ifr; bool need_copyout; int err; void __user *argp = (void __user *)arg; void __user *data; err = ops->ioctl(sock, cmd, arg); /* * If this ioctl is unknown try to hand it down * to the NIC driver. */ if (err != -ENOIOCTLCMD) return err; if (!is_socket_ioctl_cmd(cmd)) return -ENOTTY; if (get_user_ifreq(&ifr, &data, argp)) return -EFAULT; err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); if (!err && need_copyout) if (put_user_ifreq(&ifr, argp)) return -EFAULT; return err; } /* * With an ioctl, arg may well be a user mode pointer, but we don't know * what to do with it - that's up to the protocol still. */ static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) { const struct proto_ops *ops; struct socket *sock; struct sock *sk; void __user *argp = (void __user *)arg; int pid, err; struct net *net; sock = file->private_data; ops = READ_ONCE(sock->ops); sk = sock->sk; net = sock_net(sk); if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { struct ifreq ifr; void __user *data; bool need_copyout; if (get_user_ifreq(&ifr, &data, argp)) return -EFAULT; err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); if (!err && need_copyout) if (put_user_ifreq(&ifr, argp)) return -EFAULT; } else #ifdef CONFIG_WEXT_CORE if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { err = wext_handle_ioctl(net, cmd, argp); } else #endif switch (cmd) { case FIOSETOWN: case SIOCSPGRP: err = -EFAULT; if (get_user(pid, (int __user *)argp)) break; err = f_setown(sock->file, pid, 1); break; case FIOGETOWN: case SIOCGPGRP: err = put_user(f_getown(sock->file), (int __user *)argp); break; case SIOCGIFBR: case SIOCSIFBR: case SIOCBRADDBR: case SIOCBRDELBR: err = br_ioctl_call(net, NULL, cmd, NULL, argp); break; case SIOCGIFVLAN: case SIOCSIFVLAN: err = -ENOPKG; if (!vlan_ioctl_hook) request_module("8021q"); mutex_lock(&vlan_ioctl_mutex); if (vlan_ioctl_hook) err = vlan_ioctl_hook(net, argp); mutex_unlock(&vlan_ioctl_mutex); break; case SIOCGSKNS: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = open_related_ns(&net->ns, get_net_ns); break; case SIOCGSTAMP_OLD: case SIOCGSTAMPNS_OLD: if (!ops->gettstamp) { err = -ENOIOCTLCMD; break; } err = ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, !IS_ENABLED(CONFIG_64BIT)); break; case SIOCGSTAMP_NEW: case SIOCGSTAMPNS_NEW: if (!ops->gettstamp) { err = -ENOIOCTLCMD; break; } err = ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_NEW, false); break; case SIOCGIFCONF: err = dev_ifconf(net, argp); break; default: err = sock_do_ioctl(net, sock, cmd, arg); break; } return err; } /** * sock_create_lite - creates a socket * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * Creates a new socket and assigns it to @res, passing through LSM. * The new socket initialization is not complete, see kernel_accept(). * Returns 0 or an error. On failure @res is set to %NULL. * This function internally uses GFP_KERNEL. */ int sock_create_lite(int family, int type, int protocol, struct socket **res) { int err; struct socket *sock = NULL; err = security_socket_create(family, type, protocol, 1); if (err) goto out; sock = sock_alloc(); if (!sock) { err = -ENOMEM; goto out; } sock->type = type; err = security_socket_post_create(sock, family, type, protocol, 1); if (err) goto out_release; out: *res = sock; return err; out_release: sock_release(sock); sock = NULL; goto out; } EXPORT_SYMBOL(sock_create_lite); /* No kernel lock held - perfect */ static __poll_t sock_poll(struct file *file, poll_table *wait) { struct socket *sock = file->private_data; const struct proto_ops *ops = READ_ONCE(sock->ops); __poll_t events = poll_requested_events(wait), flag = 0; if (!ops->poll) return 0; if (sk_can_busy_loop(sock->sk)) { /* poll once if requested by the syscall */ if (events & POLL_BUSY_LOOP) sk_busy_loop(sock->sk, 1); /* if this socket can poll_ll, tell the system call */ flag = POLL_BUSY_LOOP; } return ops->poll(file, sock, wait) | flag; } static int sock_mmap(struct file *file, struct vm_area_struct *vma) { struct socket *sock = file->private_data; return READ_ONCE(sock->ops)->mmap(file, sock, vma); } static int sock_close(struct inode *inode, struct file *filp) { __sock_release(SOCKET_I(inode), inode); return 0; } /* * Update the socket async list * * Fasync_list locking strategy. * * 1. fasync_list is modified only under process context socket lock * i.e. under semaphore. * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) * or under socket lock */ static int sock_fasync(int fd, struct file *filp, int on) { struct socket *sock = filp->private_data; struct sock *sk = sock->sk; struct socket_wq *wq = &sock->wq; if (sk == NULL) return -EINVAL; lock_sock(sk); fasync_helper(fd, filp, on, &wq->fasync_list); if (!wq->fasync_list) sock_reset_flag(sk, SOCK_FASYNC); else sock_set_flag(sk, SOCK_FASYNC); release_sock(sk); return 0; } /* This function may be called only under rcu_lock */ int sock_wake_async(struct socket_wq *wq, int how, int band) { if (!wq || !wq->fasync_list) return -1; switch (how) { case SOCK_WAKE_WAITD: if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) break; goto call_kill; case SOCK_WAKE_SPACE: if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) break; fallthrough; case SOCK_WAKE_IO: call_kill: kill_fasync(&wq->fasync_list, SIGIO, band); break; case SOCK_WAKE_URG: kill_fasync(&wq->fasync_list, SIGURG, band); } return 0; } EXPORT_SYMBOL(sock_wake_async); /** * __sock_create - creates a socket * @net: net namespace * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * @kern: boolean for kernel space sockets * * Creates a new socket and assigns it to @res, passing through LSM. * Returns 0 or an error. On failure @res is set to %NULL. @kern must * be set to true if the socket resides in kernel space. * This function internally uses GFP_KERNEL. */ int __sock_create(struct net *net, int family, int type, int protocol, struct socket **res, int kern) { int err; struct socket *sock; const struct net_proto_family *pf; /* * Check protocol is in range */ if (family < 0 || family >= NPROTO) return -EAFNOSUPPORT; if (type < 0 || type >= SOCK_MAX) return -EINVAL; /* Compatibility. This uglymoron is moved from INET layer to here to avoid deadlock in module load. */ if (family == PF_INET && type == SOCK_PACKET) { pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); family = PF_PACKET; } err = security_socket_create(family, type, protocol, kern); if (err) return err; /* * Allocate the socket and allow the family to set things up. if * the protocol is 0, the family is instructed to select an appropriate * default. */ sock = sock_alloc(); if (!sock) { net_warn_ratelimited("socket: no more sockets\n"); return -ENFILE; /* Not exactly a match, but its the closest posix thing */ } sock->type = type; #ifdef CONFIG_MODULES /* Attempt to load a protocol module if the find failed. * * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user * requested real, full-featured networking support upon configuration. * Otherwise module support will break! */ if (rcu_access_pointer(net_families[family]) == NULL) request_module("net-pf-%d", family); #endif rcu_read_lock(); pf = rcu_dereference(net_families[family]); err = -EAFNOSUPPORT; if (!pf) goto out_release; /* * We will call the ->create function, that possibly is in a loadable * module, so we have to bump that loadable module refcnt first. */ if (!try_module_get(pf->owner)) goto out_release; /* Now protected by module ref count */ rcu_read_unlock(); err = pf->create(net, sock, protocol, kern); if (err < 0) { /* ->create should release the allocated sock->sk object on error * but it may leave the dangling pointer */ sock->sk = NULL; goto out_module_put; } /* * Now to bump the refcnt of the [loadable] module that owns this * socket at sock_release time we decrement its refcnt. */ if (!try_module_get(sock->ops->owner)) goto out_module_busy; /* * Now that we're done with the ->create function, the [loadable] * module can have its refcnt decremented */ module_put(pf->owner); err = security_socket_post_create(sock, family, type, protocol, kern); if (err) goto out_sock_release; *res = sock; return 0; out_module_busy: err = -EAFNOSUPPORT; out_module_put: sock->ops = NULL; module_put(pf->owner); out_sock_release: sock_release(sock); return err; out_release: rcu_read_unlock(); goto out_sock_release; } EXPORT_SYMBOL(__sock_create); /** * sock_create - creates a socket * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * A wrapper around __sock_create(). * Returns 0 or an error. This function internally uses GFP_KERNEL. */ int sock_create(int family, int type, int protocol, struct socket **res) { return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); } EXPORT_SYMBOL(sock_create); /** * sock_create_kern - creates a socket (kernel space) * @net: net namespace * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * A wrapper around __sock_create(). * Returns 0 or an error. This function internally uses GFP_KERNEL. */ int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) { return __sock_create(net, family, type, protocol, res, 1); } EXPORT_SYMBOL(sock_create_kern); static struct socket *__sys_socket_create(int family, int type, int protocol) { struct socket *sock; int retval; /* Check the SOCK_* constants for consistency. */ BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return ERR_PTR(-EINVAL); type &= SOCK_TYPE_MASK; retval = sock_create(family, type, protocol, &sock); if (retval < 0) return ERR_PTR(retval); return sock; } struct file *__sys_socket_file(int family, int type, int protocol) { struct socket *sock; int flags; sock = __sys_socket_create(family, type, protocol); if (IS_ERR(sock)) return ERR_CAST(sock); flags = type & ~SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; return sock_alloc_file(sock, flags, NULL); } /* A hook for bpf progs to attach to and update socket protocol. * * A static noinline declaration here could cause the compiler to * optimize away the function. A global noinline declaration will * keep the definition, but may optimize away the callsite. * Therefore, __weak is needed to ensure that the call is still * emitted, by telling the compiler that we don't know what the * function might eventually be. */ __bpf_hook_start(); __weak noinline int update_socket_protocol(int family, int type, int protocol) { return protocol; } __bpf_hook_end(); int __sys_socket(int family, int type, int protocol) { struct socket *sock; int flags; sock = __sys_socket_create(family, type, update_socket_protocol(family, type, protocol)); if (IS_ERR(sock)) return PTR_ERR(sock); flags = type & ~SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); } SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) { return __sys_socket(family, type, protocol); } /* * Create a pair of connected sockets. */ int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) { struct socket *sock1, *sock2; int fd1, fd2, err; struct file *newfile1, *newfile2; int flags; flags = type & ~SOCK_TYPE_MASK; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; type &= SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; /* * reserve descriptors and make sure we won't fail * to return them to userland. */ fd1 = get_unused_fd_flags(flags); if (unlikely(fd1 < 0)) return fd1; fd2 = get_unused_fd_flags(flags); if (unlikely(fd2 < 0)) { put_unused_fd(fd1); return fd2; } err = put_user(fd1, &usockvec[0]); if (err) goto out; err = put_user(fd2, &usockvec[1]); if (err) goto out; /* * Obtain the first socket and check if the underlying protocol * supports the socketpair call. */ err = sock_create(family, type, protocol, &sock1); if (unlikely(err < 0)) goto out; err = sock_create(family, type, protocol, &sock2); if (unlikely(err < 0)) { sock_release(sock1); goto out; } err = security_socket_socketpair(sock1, sock2); if (unlikely(err)) { sock_release(sock2); sock_release(sock1); goto out; } err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); if (unlikely(err < 0)) { sock_release(sock2); sock_release(sock1); goto out; } newfile1 = sock_alloc_file(sock1, flags, NULL); if (IS_ERR(newfile1)) { err = PTR_ERR(newfile1); sock_release(sock2); goto out; } newfile2 = sock_alloc_file(sock2, flags, NULL); if (IS_ERR(newfile2)) { err = PTR_ERR(newfile2); fput(newfile1); goto out; } audit_fd_pair(fd1, fd2); fd_install(fd1, newfile1); fd_install(fd2, newfile2); return 0; out: put_unused_fd(fd2); put_unused_fd(fd1); return err; } SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, int __user *, usockvec) { return __sys_socketpair(family, type, protocol, usockvec); } int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, int addrlen) { int err; err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); if (!err) err = READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)address, addrlen); return err; } /* * Bind a name to a socket. Nothing much to do here since it's * the protocol's responsibility to handle the local address. * * We move the socket address to kernel space before we call * the protocol layer (having also checked the address is ok). */ int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) { struct socket *sock; struct sockaddr_storage address; CLASS(fd, f)(fd); int err; if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; err = move_addr_to_kernel(umyaddr, addrlen, &address); if (unlikely(err)) return err; return __sys_bind_socket(sock, &address, addrlen); } SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) { return __sys_bind(fd, umyaddr, addrlen); } /* * Perform a listen. Basically, we allow the protocol to do anything * necessary for a listen, and if that works, we mark the socket as * ready for listening. */ int __sys_listen_socket(struct socket *sock, int backlog) { int somaxconn, err; somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); if ((unsigned int)backlog > somaxconn) backlog = somaxconn; err = security_socket_listen(sock, backlog); if (!err) err = READ_ONCE(sock->ops)->listen(sock, backlog); return err; } int __sys_listen(int fd, int backlog) { CLASS(fd, f)(fd); struct socket *sock; if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; return __sys_listen_socket(sock, backlog); } SYSCALL_DEFINE2(listen, int, fd, int, backlog) { return __sys_listen(fd, backlog); } struct file *do_accept(struct file *file, struct proto_accept_arg *arg, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { struct socket *sock, *newsock; struct file *newfile; int err, len; struct sockaddr_storage address; const struct proto_ops *ops; sock = sock_from_file(file); if (!sock) return ERR_PTR(-ENOTSOCK); newsock = sock_alloc(); if (!newsock) return ERR_PTR(-ENFILE); ops = READ_ONCE(sock->ops); newsock->type = sock->type; newsock->ops = ops; /* * We don't need try_module_get here, as the listening socket (sock) * has the protocol module (sock->ops->owner) held. */ __module_get(ops->owner); newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); if (IS_ERR(newfile)) return newfile; err = security_socket_accept(sock, newsock); if (err) goto out_fd; arg->flags |= sock->file->f_flags; err = ops->accept(sock, newsock, arg); if (err < 0) goto out_fd; if (upeer_sockaddr) { len = ops->getname(newsock, (struct sockaddr *)&address, 2); if (len < 0) { err = -ECONNABORTED; goto out_fd; } err = move_addr_to_user(&address, len, upeer_sockaddr, upeer_addrlen); if (err < 0) goto out_fd; } /* File flags are not inherited via accept() unlike another OSes. */ return newfile; out_fd: fput(newfile); return ERR_PTR(err); } static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { struct proto_accept_arg arg = { }; struct file *newfile; int newfd; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; newfd = get_unused_fd_flags(flags); if (unlikely(newfd < 0)) return newfd; newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags); if (IS_ERR(newfile)) { put_unused_fd(newfd); return PTR_ERR(newfile); } fd_install(newfd, newfile); return newfd; } /* * For accept, we attempt to create a new socket, set up the link * with the client, wake up the client, then return the new * connected fd. We collect the address of the connector in kernel * space and move it to user at the very end. This is unclean because * we open the socket then return an error. * * 1003.1g adds the ability to recvmsg() to query connection pending * status to recvmsg. We need to add that support in a way thats * clean when we restructure accept also. */ int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; return __sys_accept4_file(fd_file(f), upeer_sockaddr, upeer_addrlen, flags); } SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen, int, flags) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); } SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); } /* * Attempt to connect to a socket with the server address. The address * is in user space so we verify it is OK and move it to kernel space. * * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to * break bindings * * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and * other SEQPACKET protocols that take time to connect() as it doesn't * include the -EINPROGRESS status for such sockets. */ int __sys_connect_file(struct file *file, struct sockaddr_storage *address, int addrlen, int file_flags) { struct socket *sock; int err; sock = sock_from_file(file); if (!sock) { err = -ENOTSOCK; goto out; } err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); if (err) goto out; err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, addrlen, sock->file->f_flags | file_flags); out: return err; } int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) { struct sockaddr_storage address; CLASS(fd, f)(fd); int ret; if (fd_empty(f)) return -EBADF; ret = move_addr_to_kernel(uservaddr, addrlen, &address); if (ret) return ret; return __sys_connect_file(fd_file(f), &address, addrlen, 0); } SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, int, addrlen) { return __sys_connect(fd, uservaddr, addrlen); } /* * Get the local address ('name') of a socket object. Move the obtained * name to user space. */ int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) { struct socket *sock; struct sockaddr_storage address; CLASS(fd, f)(fd); int err; if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; err = security_socket_getsockname(sock); if (err) return err; err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); if (err < 0) return err; /* "err" is actually length in this case */ return move_addr_to_user(&address, err, usockaddr, usockaddr_len); } SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { return __sys_getsockname(fd, usockaddr, usockaddr_len); } /* * Get the remote address ('name') of a socket object. Move the obtained * name to user space. */ int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) { struct socket *sock; struct sockaddr_storage address; CLASS(fd, f)(fd); int err; if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; err = security_socket_getpeername(sock); if (err) return err; err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); if (err < 0) return err; /* "err" is actually length in this case */ return move_addr_to_user(&address, err, usockaddr, usockaddr_len); } SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { return __sys_getpeername(fd, usockaddr, usockaddr_len); } /* * Send a datagram to a given address. We move the address into kernel * space and check the user space data area is readable before invoking * the protocol. */ int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, struct sockaddr __user *addr, int addr_len) { struct socket *sock; struct sockaddr_storage address; int err; struct msghdr msg; err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); if (unlikely(err)) return err; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; msg.msg_name = NULL; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_namelen = 0; msg.msg_ubuf = NULL; if (addr) { err = move_addr_to_kernel(addr, addr_len, &address); if (err < 0) return err; msg.msg_name = (struct sockaddr *)&address; msg.msg_namelen = addr_len; } flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; msg.msg_flags = flags; return __sock_sendmsg(sock, &msg); } SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, unsigned int, flags, struct sockaddr __user *, addr, int, addr_len) { return __sys_sendto(fd, buff, len, flags, addr, addr_len); } /* * Send a datagram down a socket. */ SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, unsigned int, flags) { return __sys_sendto(fd, buff, len, flags, NULL, 0); } /* * Receive a frame from the socket and optionally record the address of the * sender. We verify the buffers are writable and if needed move the * sender address from kernel to user space. */ int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, struct sockaddr __user *addr, int __user *addr_len) { struct sockaddr_storage address; struct msghdr msg = { /* Save some cycles and don't copy the address if not needed */ .msg_name = addr ? (struct sockaddr *)&address : NULL, }; struct socket *sock; int err, err2; err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); if (unlikely(err)) return err; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &msg, flags); if (err >= 0 && addr != NULL) { err2 = move_addr_to_user(&address, msg.msg_namelen, addr, addr_len); if (err2 < 0) err = err2; } return err; } SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags, struct sockaddr __user *, addr, int __user *, addr_len) { return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); } /* * Receive a datagram from a socket. */ SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags) { return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); } static bool sock_use_custom_sol_socket(const struct socket *sock) { return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); } int do_sock_setsockopt(struct socket *sock, bool compat, int level, int optname, sockptr_t optval, int optlen) { const struct proto_ops *ops; char *kernel_optval = NULL; int err; if (optlen < 0) return -EINVAL; err = security_socket_setsockopt(sock, level, optname); if (err) goto out_put; if (!compat) err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, optval, &optlen, &kernel_optval); if (err < 0) goto out_put; if (err > 0) { err = 0; goto out_put; } if (kernel_optval) optval = KERNEL_SOCKPTR(kernel_optval); ops = READ_ONCE(sock->ops); if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) err = sock_setsockopt(sock, level, optname, optval, optlen); else if (unlikely(!ops->setsockopt)) err = -EOPNOTSUPP; else err = ops->setsockopt(sock, level, optname, optval, optlen); kfree(kernel_optval); out_put: return err; } EXPORT_SYMBOL(do_sock_setsockopt); /* Set a socket option. Because we don't know the option lengths we have * to pass the user mode parameter for the protocols to sort out. */ int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, int optlen) { sockptr_t optval = USER_SOCKPTR(user_optval); bool compat = in_compat_syscall(); struct socket *sock; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); } SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, char __user *, optval, int, optlen) { return __sys_setsockopt(fd, level, optname, optval, optlen); } INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, int optname)); int do_sock_getsockopt(struct socket *sock, bool compat, int level, int optname, sockptr_t optval, sockptr_t optlen) { int max_optlen __maybe_unused = 0; const struct proto_ops *ops; int err; err = security_socket_getsockopt(sock, level, optname); if (err) return err; if (!compat) copy_from_sockptr(&max_optlen, optlen, sizeof(int)); ops = READ_ONCE(sock->ops); if (level == SOL_SOCKET) { err = sk_getsockopt(sock->sk, level, optname, optval, optlen); } else if (unlikely(!ops->getsockopt)) { err = -EOPNOTSUPP; } else { if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, "Invalid argument type")) return -EOPNOTSUPP; err = ops->getsockopt(sock, level, optname, optval.user, optlen.user); } if (!compat) err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, optval, optlen, max_optlen, err); return err; } EXPORT_SYMBOL(do_sock_getsockopt); /* * Get a socket option. Because we don't know the option lengths we have * to pass a user mode parameter for the protocols to sort out. */ int __sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) { struct socket *sock; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); } SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, char __user *, optval, int __user *, optlen) { return __sys_getsockopt(fd, level, optname, optval, optlen); } /* * Shutdown a socket. */ int __sys_shutdown_sock(struct socket *sock, int how) { int err; err = security_socket_shutdown(sock, how); if (!err) err = READ_ONCE(sock->ops)->shutdown(sock, how); return err; } int __sys_shutdown(int fd, int how) { struct socket *sock; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; return __sys_shutdown_sock(sock, how); } SYSCALL_DEFINE2(shutdown, int, fd, int, how) { return __sys_shutdown(fd, how); } /* A couple of helpful macros for getting the address of the 32/64 bit * fields which are the same type (int / unsigned) on our platforms. */ #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) struct used_address { struct sockaddr_storage name; unsigned int name_len; }; int __copy_msghdr(struct msghdr *kmsg, struct user_msghdr *msg, struct sockaddr __user **save_addr) { ssize_t err; kmsg->msg_control_is_user = true; kmsg->msg_get_inq = 0; kmsg->msg_control_user = msg->msg_control; kmsg->msg_controllen = msg->msg_controllen; kmsg->msg_flags = msg->msg_flags; kmsg->msg_namelen = msg->msg_namelen; if (!msg->msg_name) kmsg->msg_namelen = 0; if (kmsg->msg_namelen < 0) return -EINVAL; if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) kmsg->msg_namelen = sizeof(struct sockaddr_storage); if (save_addr) *save_addr = msg->msg_name; if (msg->msg_name && kmsg->msg_namelen) { if (!save_addr) { err = move_addr_to_kernel(msg->msg_name, kmsg->msg_namelen, kmsg->msg_name); if (err < 0) return err; } } else { kmsg->msg_name = NULL; kmsg->msg_namelen = 0; } if (msg->msg_iovlen > UIO_MAXIOV) return -EMSGSIZE; kmsg->msg_iocb = NULL; kmsg->msg_ubuf = NULL; return 0; } static int copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec **iov) { struct user_msghdr msg; ssize_t err; if (copy_from_user(&msg, umsg, sizeof(*umsg))) return -EFAULT; err = __copy_msghdr(kmsg, &msg, save_addr); if (err) return err; err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, msg.msg_iov, msg.msg_iovlen, UIO_FASTIOV, iov, &kmsg->msg_iter); return err < 0 ? err : 0; } static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags) { unsigned char ctl[sizeof(struct cmsghdr) + 20] __aligned(sizeof(__kernel_size_t)); /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; int ctl_len; ssize_t err; err = -ENOBUFS; if (msg_sys->msg_controllen > INT_MAX) goto out; flags |= (msg_sys->msg_flags & allowed_msghdr_flags); ctl_len = msg_sys->msg_controllen; if ((MSG_CMSG_COMPAT & flags) && ctl_len) { err = cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, sizeof(ctl)); if (err) goto out; ctl_buf = msg_sys->msg_control; ctl_len = msg_sys->msg_controllen; } else if (ctl_len) { BUILD_BUG_ON(sizeof(struct cmsghdr) != CMSG_ALIGN(sizeof(struct cmsghdr))); if (ctl_len > sizeof(ctl)) { ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out; } err = -EFAULT; if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) goto out_freectl; msg_sys->msg_control = ctl_buf; msg_sys->msg_control_is_user = false; } flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; msg_sys->msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys->msg_flags |= MSG_DONTWAIT; /* * If this is sendmmsg() and current destination address is same as * previously succeeded address, omit asking LSM's decision. * used_address->name_len is initialized to UINT_MAX so that the first * destination address never matches. */ if (used_address && msg_sys->msg_name && used_address->name_len == msg_sys->msg_namelen && !memcmp(&used_address->name, msg_sys->msg_name, used_address->name_len)) { err = sock_sendmsg_nosec(sock, msg_sys); goto out_freectl; } err = __sock_sendmsg(sock, msg_sys); /* * If this is sendmmsg() and sending to current destination address was * successful, remember it. */ if (used_address && err >= 0) { used_address->name_len = msg_sys->msg_namelen; if (msg_sys->msg_name) memcpy(&used_address->name, msg_sys->msg_name, used_address->name_len); } out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out: return err; } static int sendmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct iovec **iov) { int err; if (flags & MSG_CMSG_COMPAT) { struct compat_msghdr __user *msg_compat; msg_compat = (struct compat_msghdr __user *) umsg; err = get_compat_msghdr(msg, msg_compat, NULL, iov); } else { err = copy_msghdr_from_user(msg, umsg, NULL, iov); } if (err < 0) return err; return 0; } static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags) { struct sockaddr_storage address; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; ssize_t err; msg_sys->msg_name = &address; err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); if (err < 0) return err; err = ____sys_sendmsg(sock, msg_sys, flags, used_address, allowed_msghdr_flags); kfree(iov); return err; } /* * BSD sendmsg interface */ long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, unsigned int flags) { return ____sys_sendmsg(sock, msg, flags, NULL, 0); } long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat) { struct msghdr msg_sys; struct socket *sock; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); } SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { return __sys_sendmsg(fd, msg, flags, true); } /* * Linux sendmmsg interface */ int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, bool forbid_cmsg_compat) { int err, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct used_address used_address; unsigned int oflags = flags; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; if (vlen > UIO_MAXIOV) vlen = UIO_MAXIOV; datagrams = 0; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; used_address.name_len = UINT_MAX; entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; err = 0; flags |= MSG_BATCH; while (datagrams < vlen) { if (datagrams == vlen - 1) flags = oflags; if (MSG_CMSG_COMPAT & flags) { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; if (msg_data_left(&msg_sys)) break; cond_resched(); } /* We only return an error if no datagrams were able to be sent */ if (datagrams != 0) return datagrams; return err; } SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags) { return __sys_sendmmsg(fd, mmsg, vlen, flags, true); } static int recvmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct sockaddr __user **uaddr, struct iovec **iov) { ssize_t err; if (MSG_CMSG_COMPAT & flags) { struct compat_msghdr __user *msg_compat; msg_compat = (struct compat_msghdr __user *) umsg; err = get_compat_msghdr(msg, msg_compat, uaddr, iov); } else { err = copy_msghdr_from_user(msg, umsg, uaddr, iov); } if (err < 0) return err; return 0; } static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, struct user_msghdr __user *msg, struct sockaddr __user *uaddr, unsigned int flags, int nosec) { struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *) msg; int __user *uaddr_len = COMPAT_NAMELEN(msg); struct sockaddr_storage addr; unsigned long cmsg_ptr; int len; ssize_t err; msg_sys->msg_name = &addr; cmsg_ptr = (unsigned long)msg_sys->msg_control; msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); /* We assume all kernel code knows the size of sockaddr_storage */ msg_sys->msg_namelen = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; if (unlikely(nosec)) err = sock_recvmsg_nosec(sock, msg_sys, flags); else err = sock_recvmsg(sock, msg_sys, flags); if (err < 0) goto out; len = err; if (uaddr != NULL) { err = move_addr_to_user(&addr, msg_sys->msg_namelen, uaddr, uaddr_len); if (err < 0) goto out; } err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), COMPAT_FLAGS(msg)); if (err) goto out; if (MSG_CMSG_COMPAT & flags) err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg_compat->msg_controllen); else err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg->msg_controllen); if (err) goto out; err = len; out: return err; } static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, int nosec) { struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; /* user mode address pointers */ struct sockaddr __user *uaddr; ssize_t err; err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); if (err < 0) return err; err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); kfree(iov); return err; } /* * BSD recvmsg interface */ long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, struct user_msghdr __user *umsg, struct sockaddr __user *uaddr, unsigned int flags) { return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); } long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat) { struct msghdr msg_sys; struct socket *sock; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); } SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { return __sys_recvmsg(fd, msg, flags, true); } /* * Linux recvmmsg interface */ static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct timespec64 *timeout) { int err = 0, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct timespec64 end_time; struct timespec64 timeout64; if (timeout && poll_select_set_timeout(&end_time, timeout->tv_sec, timeout->tv_nsec)) return -EINVAL; datagrams = 0; CLASS(fd, f)(fd); if (fd_empty(f)) return -EBADF; sock = sock_from_file(fd_file(f)); if (unlikely(!sock)) return -ENOTSOCK; if (likely(!(flags & MSG_ERRQUEUE))) { err = sock_error(sock->sk); if (err) return err; } entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; while (datagrams < vlen) { /* * No need to ask LSM for more than the first datagram. */ if (MSG_CMSG_COMPAT & flags) { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ if (flags & MSG_WAITFORONE) flags |= MSG_DONTWAIT; if (timeout) { ktime_get_ts64(&timeout64); *timeout = timespec64_sub(end_time, timeout64); if (timeout->tv_sec < 0) { timeout->tv_sec = timeout->tv_nsec = 0; break; } /* Timeout, return less than vlen datagrams */ if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) break; } /* Out of band data, return right away */ if (msg_sys.msg_flags & MSG_OOB) break; cond_resched(); } if (err == 0) return datagrams; if (datagrams == 0) return err; /* * We may return less entries than requested (vlen) if the * sock is non block and there aren't enough datagrams... */ if (err != -EAGAIN) { /* * ... or if recvmsg returns an error after we * received some datagrams, where we record the * error to return on the next call or if the * app asks about it using getsockopt(SO_ERROR). */ WRITE_ONCE(sock->sk->sk_err, -err); } return datagrams; } int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct __kernel_timespec __user *timeout, struct old_timespec32 __user *timeout32) { int datagrams; struct timespec64 timeout_sys; if (timeout && get_timespec64(&timeout_sys, timeout)) return -EFAULT; if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) return -EFAULT; if (!timeout && !timeout32) return do_recvmmsg(fd, mmsg, vlen, flags, NULL); datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); if (datagrams <= 0) return datagrams; if (timeout && put_timespec64(&timeout_sys, timeout)) datagrams = -EFAULT; if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) datagrams = -EFAULT; return datagrams; } SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct __kernel_timespec __user *, timeout) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct old_timespec32 __user *, timeout) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); } #endif #ifdef __ARCH_WANT_SYS_SOCKETCALL /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(unsigned long)) static const unsigned char nargs[21] = { AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), AL(4), AL(5), AL(4) }; #undef AL /* * System call vectors. * * Argument checking cleaned up. Saved 20% in size. * This function doesn't need to set the kernel lock because * it is set by the callees. */ SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) { unsigned long a[AUDITSC_ARGS]; unsigned long a0, a1; int err; unsigned int len; if (call < 1 || call > SYS_SENDMMSG) return -EINVAL; call = array_index_nospec(call, SYS_SENDMMSG + 1); len = nargs[call]; if (len > sizeof(a)) return -EINVAL; /* copy_from_user should be SMP safe. */ if (copy_from_user(a, args, len)) return -EFAULT; err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); if (err) return err; a0 = a[0]; a1 = a[1]; switch (call) { case SYS_SOCKET: err = __sys_socket(a0, a1, a[2]); break; case SYS_BIND: err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_CONNECT: err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_LISTEN: err = __sys_listen(a0, a1); break; case SYS_ACCEPT: err = __sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], 0); break; case SYS_GETSOCKNAME: err = __sys_getsockname(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_GETPEERNAME: err = __sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_SOCKETPAIR: err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); break; case SYS_SEND: err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], NULL, 0); break; case SYS_SENDTO: err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], a[5]); break; case SYS_RECV: err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], NULL, NULL); break; case SYS_RECVFROM: err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], (int __user *)a[5]); break; case SYS_SHUTDOWN: err = __sys_shutdown(a0, a1); break; case SYS_SETSOCKOPT: err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); break; case SYS_GETSOCKOPT: err = __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); break; case SYS_SENDMSG: err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2], true); break; case SYS_SENDMMSG: err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], true); break; case SYS_RECVMSG: err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2], true); break; case SYS_RECVMMSG: if (IS_ENABLED(CONFIG_64BIT)) err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], (struct __kernel_timespec __user *)a[4], NULL); else err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], NULL, (struct old_timespec32 __user *)a[4]); break; case SYS_ACCEPT4: err = __sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], a[3]); break; default: err = -EINVAL; break; } return err; } #endif /* __ARCH_WANT_SYS_SOCKETCALL */ /** * sock_register - add a socket protocol handler * @ops: description of protocol * * This function is called by a protocol handler that wants to * advertise its address family, and have it linked into the * socket interface. The value ops->family corresponds to the * socket system call protocol family. */ int sock_register(const struct net_proto_family *ops) { int err; if (ops->family >= NPROTO) { pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); return -ENOBUFS; } spin_lock(&net_family_lock); if (rcu_dereference_protected(net_families[ops->family], lockdep_is_held(&net_family_lock))) err = -EEXIST; else { rcu_assign_pointer(net_families[ops->family], ops); err = 0; } spin_unlock(&net_family_lock); pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); return err; } EXPORT_SYMBOL(sock_register); /** * sock_unregister - remove a protocol handler * @family: protocol family to remove * * This function is called by a protocol handler that wants to * remove its address family, and have it unlinked from the * new socket creation. * * If protocol handler is a module, then it can use module reference * counts to protect against new references. If protocol handler is not * a module then it needs to provide its own protection in * the ops->create routine. */ void sock_unregister(int family) { BUG_ON(family < 0 || family >= NPROTO); spin_lock(&net_family_lock); RCU_INIT_POINTER(net_families[family], NULL); spin_unlock(&net_family_lock); synchronize_rcu(); pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); } EXPORT_SYMBOL(sock_unregister); bool sock_is_registered(int family) { return family < NPROTO && rcu_access_pointer(net_families[family]); } static int __init sock_init(void) { int err; /* * Initialize the network sysctl infrastructure. */ err = net_sysctl_init(); if (err) goto out; /* * Initialize skbuff SLAB cache */ skb_init(); /* * Initialize the protocols module. */ init_inodecache(); err = register_filesystem(&sock_fs_type); if (err) goto out; sock_mnt = kern_mount(&sock_fs_type); if (IS_ERR(sock_mnt)) { err = PTR_ERR(sock_mnt); goto out_mount; } /* The real protocol initialization is performed in later initcalls. */ #ifdef CONFIG_NETFILTER err = netfilter_init(); if (err) goto out; #endif ptp_classifier_init(); out: return err; out_mount: unregister_filesystem(&sock_fs_type); goto out; } core_initcall(sock_init); /* early initcall */ #ifdef CONFIG_PROC_FS void socket_seq_show(struct seq_file *seq) { seq_printf(seq, "sockets: used %d\n", sock_inuse_get(seq->private)); } #endif /* CONFIG_PROC_FS */ /* Handle the fact that while struct ifreq has the same *layout* on * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, * which are handled elsewhere, it still has different *size* due to * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, * resulting in struct ifreq being 32 and 40 bytes respectively). * As a result, if the struct happens to be at the end of a page and * the next page isn't readable/writable, we get a fault. To prevent * that, copy back and forth to the full size. */ int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) { if (in_compat_syscall()) { struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; memset(ifr, 0, sizeof(*ifr)); if (copy_from_user(ifr32, arg, sizeof(*ifr32))) return -EFAULT; if (ifrdata) *ifrdata = compat_ptr(ifr32->ifr_data); return 0; } if (copy_from_user(ifr, arg, sizeof(*ifr))) return -EFAULT; if (ifrdata) *ifrdata = ifr->ifr_data; return 0; } EXPORT_SYMBOL(get_user_ifreq); int put_user_ifreq(struct ifreq *ifr, void __user *arg) { size_t size = sizeof(*ifr); if (in_compat_syscall()) size = sizeof(struct compat_ifreq); if (copy_to_user(arg, ifr, size)) return -EFAULT; return 0; } EXPORT_SYMBOL(put_user_ifreq); #ifdef CONFIG_COMPAT static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) { compat_uptr_t uptr32; struct ifreq ifr; void __user *saved; int err; if (get_user_ifreq(&ifr, NULL, uifr32)) return -EFAULT; if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) return -EFAULT; saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); if (!err) { ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; if (put_user_ifreq(&ifr, uifr32)) err = -EFAULT; } return err; } /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, struct compat_ifreq __user *u_ifreq32) { struct ifreq ifreq; void __user *data; if (!is_socket_ioctl_cmd(cmd)) return -ENOTTY; if (get_user_ifreq(&ifreq, &data, u_ifreq32)) return -EFAULT; ifreq.ifr_data = data; return dev_ioctl(net, cmd, &ifreq, data, NULL); } static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); struct sock *sk = sock->sk; struct net *net = sock_net(sk); const struct proto_ops *ops; if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) return sock_ioctl(file, cmd, (unsigned long)argp); switch (cmd) { case SIOCWANDEV: return compat_siocwandev(net, argp); case SIOCGSTAMP_OLD: case SIOCGSTAMPNS_OLD: ops = READ_ONCE(sock->ops); if (!ops->gettstamp) return -ENOIOCTLCMD; return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, !COMPAT_USE_64BIT_TIME); case SIOCETHTOOL: case SIOCBONDSLAVEINFOQUERY: case SIOCBONDINFOQUERY: case SIOCSHWTSTAMP: case SIOCGHWTSTAMP: return compat_ifr_data_ioctl(net, cmd, argp); case FIOSETOWN: case SIOCSPGRP: case FIOGETOWN: case SIOCGPGRP: case SIOCBRADDBR: case SIOCBRDELBR: case SIOCGIFVLAN: case SIOCSIFVLAN: case SIOCGSKNS: case SIOCGSTAMP_NEW: case SIOCGSTAMPNS_NEW: case SIOCGIFCONF: case SIOCSIFBR: case SIOCGIFBR: return sock_ioctl(file, cmd, arg); case SIOCGIFFLAGS: case SIOCSIFFLAGS: case SIOCGIFMAP: case SIOCSIFMAP: case SIOCGIFMETRIC: case SIOCSIFMETRIC: case SIOCGIFMTU: case SIOCSIFMTU: case SIOCGIFMEM: case SIOCSIFMEM: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCGIFINDEX: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCSIFHWBROADCAST: case SIOCDIFADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCSIFPFLAGS: case SIOCGIFPFLAGS: case SIOCGIFTXQLEN: case SIOCSIFTXQLEN: case SIOCBRADDIF: case SIOCBRDELIF: case SIOCGIFNAME: case SIOCSIFNAME: case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: case SIOCBONDENSLAVE: case SIOCBONDRELEASE: case SIOCBONDSETHWADDR: case SIOCBONDCHANGEACTIVE: case SIOCSARP: case SIOCGARP: case SIOCDARP: case SIOCOUTQ: case SIOCOUTQNSD: case SIOCATMARK: return sock_do_ioctl(net, sock, cmd, arg); } return -ENOIOCTLCMD; } static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct socket *sock = file->private_data; const struct proto_ops *ops = READ_ONCE(sock->ops); int ret = -ENOIOCTLCMD; struct sock *sk; struct net *net; sk = sock->sk; net = sock_net(sk); if (ops->compat_ioctl) ret = ops->compat_ioctl(sock, cmd, arg); if (ret == -ENOIOCTLCMD && (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) ret = compat_wext_handle_ioctl(net, cmd, arg); if (ret == -ENOIOCTLCMD) ret = compat_sock_ioctl_trans(file, sock, cmd, arg); return ret; } #endif /** * kernel_bind - bind an address to a socket (kernel space) * @sock: socket * @addr: address * @addrlen: length of address * * Returns 0 or an error. */ int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) { struct sockaddr_storage address; memcpy(&address, addr, addrlen); return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, addrlen); } EXPORT_SYMBOL(kernel_bind); /** * kernel_listen - move socket to listening state (kernel space) * @sock: socket * @backlog: pending connections queue size * * Returns 0 or an error. */ int kernel_listen(struct socket *sock, int backlog) { return READ_ONCE(sock->ops)->listen(sock, backlog); } EXPORT_SYMBOL(kernel_listen); /** * kernel_accept - accept a connection (kernel space) * @sock: listening socket * @newsock: new connected socket * @flags: flags * * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. * If it fails, @newsock is guaranteed to be %NULL. * Returns 0 or an error. */ int kernel_accept(struct socket *sock, struct socket **newsock, int flags) { struct sock *sk = sock->sk; const struct proto_ops *ops = READ_ONCE(sock->ops); struct proto_accept_arg arg = { .flags = flags, .kern = true, }; int err; err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, newsock); if (err < 0) goto done; err = ops->accept(sock, *newsock, &arg); if (err < 0) { sock_release(*newsock); *newsock = NULL; goto done; } (*newsock)->ops = ops; __module_get(ops->owner); done: return err; } EXPORT_SYMBOL(kernel_accept); /** * kernel_connect - connect a socket (kernel space) * @sock: socket * @addr: address * @addrlen: address length * @flags: flags (O_NONBLOCK, ...) * * For datagram sockets, @addr is the address to which datagrams are sent * by default, and the only address from which datagrams are received. * For stream sockets, attempts to connect to @addr. * Returns 0 or an error code. */ int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, int flags) { struct sockaddr_storage address; memcpy(&address, addr, addrlen); return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, addrlen, flags); } EXPORT_SYMBOL(kernel_connect); /** * kernel_getsockname - get the address which the socket is bound (kernel space) * @sock: socket * @addr: address holder * * Fills the @addr pointer with the address which the socket is bound. * Returns the length of the address in bytes or an error code. */ int kernel_getsockname(struct socket *sock, struct sockaddr *addr) { return READ_ONCE(sock->ops)->getname(sock, addr, 0); } EXPORT_SYMBOL(kernel_getsockname); /** * kernel_getpeername - get the address which the socket is connected (kernel space) * @sock: socket * @addr: address holder * * Fills the @addr pointer with the address which the socket is connected. * Returns the length of the address in bytes or an error code. */ int kernel_getpeername(struct socket *sock, struct sockaddr *addr) { return READ_ONCE(sock->ops)->getname(sock, addr, 1); } EXPORT_SYMBOL(kernel_getpeername); /** * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) * @sock: socket * @how: connection part * * Returns 0 or an error. */ int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) { return READ_ONCE(sock->ops)->shutdown(sock, how); } EXPORT_SYMBOL(kernel_sock_shutdown); /** * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket * @sk: socket * * This routine returns the IP overhead imposed by a socket i.e. * the length of the underlying IP header, depending on whether * this is an IPv4 or IPv6 socket and the length from IP options turned * on at the socket. Assumes that the caller has a lock on the socket. */ u32 kernel_sock_ip_overhead(struct sock *sk) { struct inet_sock *inet; struct ip_options_rcu *opt; u32 overhead = 0; #if IS_ENABLED(CONFIG_IPV6) struct ipv6_pinfo *np; struct ipv6_txoptions *optv6 = NULL; #endif /* IS_ENABLED(CONFIG_IPV6) */ if (!sk) return overhead; switch (sk->sk_family) { case AF_INET: inet = inet_sk(sk); overhead += sizeof(struct iphdr); opt = rcu_dereference_protected(inet->inet_opt, sock_owned_by_user(sk)); if (opt) overhead += opt->opt.optlen; return overhead; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: np = inet6_sk(sk); overhead += sizeof(struct ipv6hdr); if (np) optv6 = rcu_dereference_protected(np->opt, sock_owned_by_user(sk)); if (optv6) overhead += (optv6->opt_flen + optv6->opt_nflen); return overhead; #endif /* IS_ENABLED(CONFIG_IPV6) */ default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ return overhead; } } EXPORT_SYMBOL(kernel_sock_ip_overhead);