#include #include #include #include #include #include #include #include #include #include #include #include #include #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ #define RINGBUF_PGOFF \ (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) /* consumer page and producer page */ #define RINGBUF_POS_PAGES 2 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) struct bpf_ringbuf { wait_queue_head_t waitq; struct irq_work work; u64 mask; struct page **pages; int nr_pages; raw_spinlock_t spinlock ____cacheline_aligned_in_smp; /* For user-space producer ring buffers, an atomic_t busy bit is used * to synchronize access to the ring buffers in the kernel, rather than * the spinlock that is used for kernel-producer ring buffers. This is * done because the ring buffer must hold a lock across a BPF program's * callback: * * __bpf_user_ringbuf_peek() // lock acquired * -> program callback_fn() * -> __bpf_user_ringbuf_sample_release() // lock released * * It is unsafe and incorrect to hold an IRQ spinlock across what could * be a long execution window, so we instead simply disallow concurrent * access to the ring buffer by kernel consumers, and return -EBUSY from * __bpf_user_ringbuf_peek() if the busy bit is held by another task. */ atomic_t busy ____cacheline_aligned_in_smp; /* Consumer and producer counters are put into separate pages to * allow each position to be mapped with different permissions. * This prevents a user-space application from modifying the * position and ruining in-kernel tracking. The permissions of the * pages depend on who is producing samples: user-space or the * kernel. Note that the pending counter is placed in the same * page as the producer, so that it shares the same cache line. * * Kernel-producer * --------------- * The producer position and data pages are mapped as r/o in * userspace. For this approach, bits in the header of samples are * used to signal to user-space, and to other producers, whether a * sample is currently being written. * * User-space producer * ------------------- * Only the page containing the consumer position is mapped r/o in * user-space. User-space producers also use bits of the header to * communicate to the kernel, but the kernel must carefully check and * validate each sample to ensure that they're correctly formatted, and * fully contained within the ring buffer. */ unsigned long consumer_pos __aligned(PAGE_SIZE); unsigned long producer_pos __aligned(PAGE_SIZE); unsigned long pending_pos; char data[] __aligned(PAGE_SIZE); }; struct bpf_ringbuf_map { struct bpf_map map; struct bpf_ringbuf *rb; }; /* 8-byte ring buffer record header structure */ struct bpf_ringbuf_hdr { u32 len; u32 pg_off; }; static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) { const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | __GFP_ZERO; int nr_meta_pages = RINGBUF_NR_META_PAGES; int nr_data_pages = data_sz >> PAGE_SHIFT; int nr_pages = nr_meta_pages + nr_data_pages; struct page **pages, *page; struct bpf_ringbuf *rb; size_t array_size; int i; /* Each data page is mapped twice to allow "virtual" * continuous read of samples wrapping around the end of ring * buffer area: * ------------------------------------------------------ * | meta pages | real data pages | same data pages | * ------------------------------------------------------ * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | * ------------------------------------------------------ * | | TA DA | TA DA | * ------------------------------------------------------ * ^^^^^^^ * | * Here, no need to worry about special handling of wrapped-around * data due to double-mapped data pages. This works both in kernel and * when mmap()'ed in user-space, simplifying both kernel and * user-space implementations significantly. */ array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); pages = bpf_map_area_alloc(array_size, numa_node); if (!pages) return NULL; for (i = 0; i < nr_pages; i++) { page = alloc_pages_node(numa_node, flags, 0); if (!page) { nr_pages = i; goto err_free_pages; } pages[i] = page; if (i >= nr_meta_pages) pages[nr_data_pages + i] = page; } rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, VM_MAP | VM_USERMAP, PAGE_KERNEL); if (rb) { kmemleak_not_leak(pages); rb->pages = pages; rb->nr_pages = nr_pages; return rb; } err_free_pages: for (i = 0; i < nr_pages; i++) __free_page(pages[i]); bpf_map_area_free(pages); return NULL; } static void bpf_ringbuf_notify(struct irq_work *work) { struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); wake_up_all(&rb->waitq); } /* Maximum size of ring buffer area is limited by 32-bit page offset within * record header, counted in pages. Reserve 8 bits for extensibility, and * take into account few extra pages for consumer/producer pages and * non-mmap()'able parts, the current maximum size would be: * * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) * * This gives 64GB limit, which seems plenty for single ring buffer. Now * considering that the maximum value of data_sz is (4GB - 1), there * will be no overflow, so just note the size limit in the comments. */ static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) { struct bpf_ringbuf *rb; rb = bpf_ringbuf_area_alloc(data_sz, numa_node); if (!rb) return NULL; raw_spin_lock_init(&rb->spinlock); atomic_set(&rb->busy, 0); init_waitqueue_head(&rb->waitq); init_irq_work(&rb->work, bpf_ringbuf_notify); rb->mask = data_sz - 1; rb->consumer_pos = 0; rb->producer_pos = 0; rb->pending_pos = 0; return rb; } static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) { struct bpf_ringbuf_map *rb_map; if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) return ERR_PTR(-EINVAL); if (attr->key_size || attr->value_size || !is_power_of_2(attr->max_entries) || !PAGE_ALIGNED(attr->max_entries)) return ERR_PTR(-EINVAL); rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); if (!rb_map) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&rb_map->map, attr); rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); if (!rb_map->rb) { bpf_map_area_free(rb_map); return ERR_PTR(-ENOMEM); } return &rb_map->map; } static void bpf_ringbuf_free(struct bpf_ringbuf *rb) { /* copy pages pointer and nr_pages to local variable, as we are going * to unmap rb itself with vunmap() below */ struct page **pages = rb->pages; int i, nr_pages = rb->nr_pages; vunmap(rb); for (i = 0; i < nr_pages; i++) __free_page(pages[i]); bpf_map_area_free(pages); } static void ringbuf_map_free(struct bpf_map *map) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); bpf_ringbuf_free(rb_map->rb); bpf_map_area_free(rb_map); } static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) { return ERR_PTR(-ENOTSUPP); } static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return -ENOTSUPP; } static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) { return -ENOTSUPP; } static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -ENOTSUPP; } static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); if (vma->vm_flags & VM_WRITE) { /* allow writable mapping for the consumer_pos only */ if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) return -EPERM; } else { vm_flags_clear(vma, VM_MAYWRITE); } /* remap_vmalloc_range() checks size and offset constraints */ return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); } static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); if (vma->vm_flags & VM_WRITE) { if (vma->vm_pgoff == 0) /* Disallow writable mappings to the consumer pointer, * and allow writable mappings to both the producer * position, and the ring buffer data itself. */ return -EPERM; } else { vm_flags_clear(vma, VM_MAYWRITE); } /* remap_vmalloc_range() checks size and offset constraints */ return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); } static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) { unsigned long cons_pos, prod_pos; cons_pos = smp_load_acquire(&rb->consumer_pos); prod_pos = smp_load_acquire(&rb->producer_pos); return prod_pos - cons_pos; } static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) { return rb->mask + 1; } static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, struct poll_table_struct *pts) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); poll_wait(filp, &rb_map->rb->waitq, pts); if (ringbuf_avail_data_sz(rb_map->rb)) return EPOLLIN | EPOLLRDNORM; return 0; } static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, struct poll_table_struct *pts) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); poll_wait(filp, &rb_map->rb->waitq, pts); if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) return EPOLLOUT | EPOLLWRNORM; return 0; } static u64 ringbuf_map_mem_usage(const struct bpf_map *map) { struct bpf_ringbuf *rb; int nr_data_pages; int nr_meta_pages; u64 usage = sizeof(struct bpf_ringbuf_map); rb = container_of(map, struct bpf_ringbuf_map, map)->rb; usage += (u64)rb->nr_pages << PAGE_SHIFT; nr_meta_pages = RINGBUF_NR_META_PAGES; nr_data_pages = map->max_entries >> PAGE_SHIFT; usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); return usage; } BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) const struct bpf_map_ops ringbuf_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = ringbuf_map_alloc, .map_free = ringbuf_map_free, .map_mmap = ringbuf_map_mmap_kern, .map_poll = ringbuf_map_poll_kern, .map_lookup_elem = ringbuf_map_lookup_elem, .map_update_elem = ringbuf_map_update_elem, .map_delete_elem = ringbuf_map_delete_elem, .map_get_next_key = ringbuf_map_get_next_key, .map_mem_usage = ringbuf_map_mem_usage, .map_btf_id = &ringbuf_map_btf_ids[0], }; BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) const struct bpf_map_ops user_ringbuf_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = ringbuf_map_alloc, .map_free = ringbuf_map_free, .map_mmap = ringbuf_map_mmap_user, .map_poll = ringbuf_map_poll_user, .map_lookup_elem = ringbuf_map_lookup_elem, .map_update_elem = ringbuf_map_update_elem, .map_delete_elem = ringbuf_map_delete_elem, .map_get_next_key = ringbuf_map_get_next_key, .map_mem_usage = ringbuf_map_mem_usage, .map_btf_id = &user_ringbuf_map_btf_ids[0], }; /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, * calculate offset from record metadata to ring buffer in pages, rounded * down. This page offset is stored as part of record metadata and allows to * restore struct bpf_ringbuf * from record pointer. This page offset is * stored at offset 4 of record metadata header. */ static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, struct bpf_ringbuf_hdr *hdr) { return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; } /* Given pointer to ring buffer record header, restore pointer to struct * bpf_ringbuf itself by using page offset stored at offset 4 */ static struct bpf_ringbuf * bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) { unsigned long addr = (unsigned long)(void *)hdr; unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; return (void*)((addr & PAGE_MASK) - off); } static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) { unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags; struct bpf_ringbuf_hdr *hdr; u32 len, pg_off, tmp_size, hdr_len; if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) return NULL; len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); if (len > ringbuf_total_data_sz(rb)) return NULL; cons_pos = smp_load_acquire(&rb->consumer_pos); if (in_nmi()) { if (!raw_spin_trylock_irqsave(&rb->spinlock, flags)) return NULL; } else { raw_spin_lock_irqsave(&rb->spinlock, flags); } pend_pos = rb->pending_pos; prod_pos = rb->producer_pos; new_prod_pos = prod_pos + len; while (pend_pos < prod_pos) { hdr = (void *)rb->data + (pend_pos & rb->mask); hdr_len = READ_ONCE(hdr->len); if (hdr_len & BPF_RINGBUF_BUSY_BIT) break; tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT; tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8); pend_pos += tmp_size; } rb->pending_pos = pend_pos; /* check for out of ringbuf space: * - by ensuring producer position doesn't advance more than * (ringbuf_size - 1) ahead * - by ensuring oldest not yet committed record until newest * record does not span more than (ringbuf_size - 1) */ if (new_prod_pos - cons_pos > rb->mask || new_prod_pos - pend_pos > rb->mask) { raw_spin_unlock_irqrestore(&rb->spinlock, flags); return NULL; } hdr = (void *)rb->data + (prod_pos & rb->mask); pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); hdr->len = size | BPF_RINGBUF_BUSY_BIT; hdr->pg_off = pg_off; /* pairs with consumer's smp_load_acquire() */ smp_store_release(&rb->producer_pos, new_prod_pos); raw_spin_unlock_irqrestore(&rb->spinlock, flags); return (void *)hdr + BPF_RINGBUF_HDR_SZ; } BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) { struct bpf_ringbuf_map *rb_map; if (unlikely(flags)) return 0; rb_map = container_of(map, struct bpf_ringbuf_map, map); return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); } const struct bpf_func_proto bpf_ringbuf_reserve_proto = { .func = bpf_ringbuf_reserve, .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) { unsigned long rec_pos, cons_pos; struct bpf_ringbuf_hdr *hdr; struct bpf_ringbuf *rb; u32 new_len; hdr = sample - BPF_RINGBUF_HDR_SZ; rb = bpf_ringbuf_restore_from_rec(hdr); new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; if (discard) new_len |= BPF_RINGBUF_DISCARD_BIT; /* update record header with correct final size prefix */ xchg(&hdr->len, new_len); /* if consumer caught up and is waiting for our record, notify about * new data availability */ rec_pos = (void *)hdr - (void *)rb->data; cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; if (flags & BPF_RB_FORCE_WAKEUP) irq_work_queue(&rb->work); else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) irq_work_queue(&rb->work); } BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) { bpf_ringbuf_commit(sample, flags, false /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_submit_proto = { .func = bpf_ringbuf_submit, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) { bpf_ringbuf_commit(sample, flags, true /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_discard_proto = { .func = bpf_ringbuf_discard, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, u64, flags) { struct bpf_ringbuf_map *rb_map; void *rec; if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) return -EINVAL; rb_map = container_of(map, struct bpf_ringbuf_map, map); rec = __bpf_ringbuf_reserve(rb_map->rb, size); if (!rec) return -EAGAIN; memcpy(rec, data, size); bpf_ringbuf_commit(rec, flags, false /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_output_proto = { .func = bpf_ringbuf_output, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) { struct bpf_ringbuf *rb; rb = container_of(map, struct bpf_ringbuf_map, map)->rb; switch (flags) { case BPF_RB_AVAIL_DATA: return ringbuf_avail_data_sz(rb); case BPF_RB_RING_SIZE: return ringbuf_total_data_sz(rb); case BPF_RB_CONS_POS: return smp_load_acquire(&rb->consumer_pos); case BPF_RB_PROD_POS: return smp_load_acquire(&rb->producer_pos); default: return 0; } } const struct bpf_func_proto bpf_ringbuf_query_proto = { .func = bpf_ringbuf_query, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) { struct bpf_ringbuf_map *rb_map; void *sample; int err; if (unlikely(flags)) { bpf_dynptr_set_null(ptr); return -EINVAL; } err = bpf_dynptr_check_size(size); if (err) { bpf_dynptr_set_null(ptr); return err; } rb_map = container_of(map, struct bpf_ringbuf_map, map); sample = __bpf_ringbuf_reserve(rb_map->rb, size); if (!sample) { bpf_dynptr_set_null(ptr); return -EINVAL; } bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); return 0; } const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { .func = bpf_ringbuf_reserve_dynptr, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE, }; BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) { if (!ptr->data) return 0; bpf_ringbuf_commit(ptr->data, flags, false /* discard */); bpf_dynptr_set_null(ptr); return 0; } const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { .func = bpf_ringbuf_submit_dynptr, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) { if (!ptr->data) return 0; bpf_ringbuf_commit(ptr->data, flags, true /* discard */); bpf_dynptr_set_null(ptr); return 0; } const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { .func = bpf_ringbuf_discard_dynptr, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, .arg2_type = ARG_ANYTHING, }; static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) { int err; u32 hdr_len, sample_len, total_len, flags, *hdr; u64 cons_pos, prod_pos; /* Synchronizes with smp_store_release() in user-space producer. */ prod_pos = smp_load_acquire(&rb->producer_pos); if (prod_pos % 8) return -EINVAL; /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ cons_pos = smp_load_acquire(&rb->consumer_pos); if (cons_pos >= prod_pos) return -ENODATA; hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); /* Synchronizes with smp_store_release() in user-space producer. */ hdr_len = smp_load_acquire(hdr); flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); sample_len = hdr_len & ~flags; total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); /* The sample must fit within the region advertised by the producer position. */ if (total_len > prod_pos - cons_pos) return -EINVAL; /* The sample must fit within the data region of the ring buffer. */ if (total_len > ringbuf_total_data_sz(rb)) return -E2BIG; /* The sample must fit into a struct bpf_dynptr. */ err = bpf_dynptr_check_size(sample_len); if (err) return -E2BIG; if (flags & BPF_RINGBUF_DISCARD_BIT) { /* If the discard bit is set, the sample should be skipped. * * Update the consumer pos, and return -EAGAIN so the caller * knows to skip this sample and try to read the next one. */ smp_store_release(&rb->consumer_pos, cons_pos + total_len); return -EAGAIN; } if (flags & BPF_RINGBUF_BUSY_BIT) return -ENODATA; *sample = (void *)((uintptr_t)rb->data + (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); *size = sample_len; return 0; } static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) { u64 consumer_pos; u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); /* Using smp_load_acquire() is unnecessary here, as the busy-bit * prevents another task from writing to consumer_pos after it was read * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). */ consumer_pos = rb->consumer_pos; /* Synchronizes with smp_load_acquire() in user-space producer. */ smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); } BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, void *, callback_fn, void *, callback_ctx, u64, flags) { struct bpf_ringbuf *rb; long samples, discarded_samples = 0, ret = 0; bpf_callback_t callback = (bpf_callback_t)callback_fn; u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; int busy = 0; if (unlikely(flags & ~wakeup_flags)) return -EINVAL; rb = container_of(map, struct bpf_ringbuf_map, map)->rb; /* If another consumer is already consuming a sample, wait for them to finish. */ if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) return -EBUSY; for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { int err; u32 size; void *sample; struct bpf_dynptr_kern dynptr; err = __bpf_user_ringbuf_peek(rb, &sample, &size); if (err) { if (err == -ENODATA) { break; } else if (err == -EAGAIN) { discarded_samples++; continue; } else { ret = err; goto schedule_work_return; } } bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); __bpf_user_ringbuf_sample_release(rb, size, flags); } ret = samples - discarded_samples; schedule_work_return: /* Prevent the clearing of the busy-bit from being reordered before the * storing of any rb consumer or producer positions. */ atomic_set_release(&rb->busy, 0); if (flags & BPF_RB_FORCE_WAKEUP) irq_work_queue(&rb->work); else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) irq_work_queue(&rb->work); return ret; } const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { .func = bpf_user_ringbuf_drain, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_FUNC, .arg3_type = ARG_PTR_TO_STACK_OR_NULL, .arg4_type = ARG_ANYTHING, };