/* * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * vineetg: Jan 1011 * -sched_clock( ) no longer jiffies based. Uses the same clocksource * as gtod * * Rajeshwarr/Vineetg: Mar 2008 * -Implemented CONFIG_GENERIC_TIME (rather deleted arch specific code) * for arch independent gettimeofday() * -Implemented CONFIG_GENERIC_CLOCKEVENTS as base for hrtimers * * Vineetg: Mar 2008: Forked off from time.c which now is time-jiff.c */ /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1 * Each can programmed to go from @count to @limit and optionally * interrupt when that happens. * A write to Control Register clears the Interrupt * * We've designated TIMER0 for events (clockevents) * while TIMER1 for free running (clocksource) * * Newer ARC700 cores have 64bit clk fetching RTSC insn, preferred over TIMER1 * which however is currently broken */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Timer related Aux registers */ #define ARC_REG_TIMER0_LIMIT 0x23 /* timer 0 limit */ #define ARC_REG_TIMER0_CTRL 0x22 /* timer 0 control */ #define ARC_REG_TIMER0_CNT 0x21 /* timer 0 count */ #define ARC_REG_TIMER1_LIMIT 0x102 /* timer 1 limit */ #define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */ #define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */ #define TIMER_CTRL_IE (1 << 0) /* Interrupt when Count reaches limit */ #define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */ #define ARC_TIMER_MAX 0xFFFFFFFF /********** Clock Source Device *********/ #ifdef CONFIG_ARC_HAS_GFRC static int arc_counter_setup(void) { return 1; } static cycle_t arc_counter_read(struct clocksource *cs) { unsigned long flags; union { #ifdef CONFIG_CPU_BIG_ENDIAN struct { u32 h, l; }; #else struct { u32 l, h; }; #endif cycle_t full; } stamp; local_irq_save(flags); __mcip_cmd(CMD_GFRC_READ_LO, 0); stamp.l = read_aux_reg(ARC_REG_MCIP_READBACK); __mcip_cmd(CMD_GFRC_READ_HI, 0); stamp.h = read_aux_reg(ARC_REG_MCIP_READBACK); local_irq_restore(flags); return stamp.full; } static struct clocksource arc_counter = { .name = "ARConnect GFRC", .rating = 400, .read = arc_counter_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #else #ifdef CONFIG_ARC_HAS_RTC #define AUX_RTC_CTRL 0x103 #define AUX_RTC_LOW 0x104 #define AUX_RTC_HIGH 0x105 int arc_counter_setup(void) { write_aux_reg(AUX_RTC_CTRL, 1); /* Not usable in SMP */ return !IS_ENABLED(CONFIG_SMP); } static cycle_t arc_counter_read(struct clocksource *cs) { unsigned long status; union { #ifdef CONFIG_CPU_BIG_ENDIAN struct { u32 high, low; }; #else struct { u32 low, high; }; #endif cycle_t full; } stamp; __asm__ __volatile( "1: \n" " lr %0, [AUX_RTC_LOW] \n" " lr %1, [AUX_RTC_HIGH] \n" " lr %2, [AUX_RTC_CTRL] \n" " bbit0.nt %2, 31, 1b \n" : "=r" (stamp.low), "=r" (stamp.high), "=r" (status)); return stamp.full; } static struct clocksource arc_counter = { .name = "ARCv2 RTC", .rating = 350, .read = arc_counter_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #else /* !CONFIG_ARC_HAS_RTC */ /* * set 32bit TIMER1 to keep counting monotonically and wraparound */ int arc_counter_setup(void) { write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMER_MAX); write_aux_reg(ARC_REG_TIMER1_CNT, 0); write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH); /* Not usable in SMP */ return !IS_ENABLED(CONFIG_SMP); } static cycle_t arc_counter_read(struct clocksource *cs) { return (cycle_t) read_aux_reg(ARC_REG_TIMER1_CNT); } static struct clocksource arc_counter = { .name = "ARC Timer1", .rating = 300, .read = arc_counter_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #endif #endif /********** Clock Event Device *********/ static int arc_timer_irq = TIMER0_IRQ; /* * Arm the timer to interrupt after @cycles * The distinction for oneshot/periodic is done in arc_event_timer_ack() below */ static void arc_timer_event_setup(unsigned int cycles) { write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles); write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */ write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH); } static int arc_clkevent_set_next_event(unsigned long delta, struct clock_event_device *dev) { arc_timer_event_setup(delta); return 0; } static int arc_clkevent_set_periodic(struct clock_event_device *dev) { /* * At X Hz, 1 sec = 1000ms -> X cycles; * 10ms -> X / 100 cycles */ arc_timer_event_setup(arc_get_core_freq() / HZ); return 0; } static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = { .name = "ARC Timer0", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .rating = 300, .set_next_event = arc_clkevent_set_next_event, .set_state_periodic = arc_clkevent_set_periodic, }; static irqreturn_t timer_irq_handler(int irq, void *dev_id) { /* * Note that generic IRQ core could have passed @evt for @dev_id if * irq_set_chip_and_handler() asked for handle_percpu_devid_irq() */ struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int irq_reenable = clockevent_state_periodic(evt); /* * Any write to CTRL reg ACks the interrupt, we rewrite the * Count when [N]ot [H]alted bit. * And re-arm it if perioid by [I]nterrupt [E]nable bit */ write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH); evt->event_handler(evt); return IRQ_HANDLED; } static int arc_timer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); evt->cpumask = cpumask_of(smp_processor_id()); switch (action & ~CPU_TASKS_FROZEN) { case CPU_STARTING: clockevents_config_and_register(evt, arc_get_core_freq(), 0, ULONG_MAX); enable_percpu_irq(arc_timer_irq, 0); break; case CPU_DYING: disable_percpu_irq(arc_timer_irq); break; } return NOTIFY_OK; } static struct notifier_block arc_timer_cpu_nb = { .notifier_call = arc_timer_cpu_notify, }; /* * clockevent setup for boot CPU */ static void __init arc_clockevent_setup(void) { struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int ret; register_cpu_notifier(&arc_timer_cpu_nb); evt->cpumask = cpumask_of(smp_processor_id()); clockevents_config_and_register(evt, arc_get_core_freq(), 0, ARC_TIMER_MAX); /* Needs apriori irq_set_percpu_devid() done in intc map function */ ret = request_percpu_irq(arc_timer_irq, timer_irq_handler, "Timer0 (per-cpu-tick)", evt); if (ret) pr_err("Unable to register interrupt\n"); enable_percpu_irq(arc_timer_irq, 0); } /* * Called from start_kernel() - boot CPU only * * -Sets up h/w timers as applicable on boot cpu * -Also sets up any global state needed for timer subsystem: * - for "counting" timer, registers a clocksource, usable across CPUs * (provided that underlying counter h/w is synchronized across cores) * - for "event" timer, sets up TIMER0 IRQ (as that is platform agnostic) */ void __init time_init(void) { of_clk_init(NULL); clocksource_probe(); /* * sets up the timekeeping free-flowing counter which also returns * whether the counter is usable as clocksource */ if (arc_counter_setup()) /* * CLK upto 4.29 GHz can be safely represented in 32 bits * because Max 32 bit number is 4,294,967,295 */ clocksource_register_hz(&arc_counter, arc_get_core_freq()); arc_clockevent_setup(); }