/* * Driver for Xceive XC5000 "QAM/8VSB single chip tuner" * * Copyright (c) 2007 Xceive Corporation * Copyright (c) 2007 Steven Toth * Copyright (c) 2009 Devin Heitmueller * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "dvb_frontend.h" #include "xc5000.h" #include "tuner-i2c.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); static int no_poweroff; module_param(no_poweroff, int, 0644); MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" "\t\t1 keep device energized and with tuner ready all the times.\n" "\t\tFaster, but consumes more power and keeps the device hotter"); static DEFINE_MUTEX(xc5000_list_mutex); static LIST_HEAD(hybrid_tuner_instance_list); #define dprintk(level, fmt, arg...) if (debug >= level) \ printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) struct xc5000_priv { struct tuner_i2c_props i2c_props; struct list_head hybrid_tuner_instance_list; u32 if_khz; u16 xtal_khz; u32 freq_hz; u32 bandwidth; u8 video_standard; u8 rf_mode; u8 radio_input; int chip_id; u16 pll_register_no; u8 init_status_supported; u8 fw_checksum_supported; }; /* Misc Defines */ #define MAX_TV_STANDARD 24 #define XC_MAX_I2C_WRITE_LENGTH 64 /* Signal Types */ #define XC_RF_MODE_AIR 0 #define XC_RF_MODE_CABLE 1 /* Result codes */ #define XC_RESULT_SUCCESS 0 #define XC_RESULT_RESET_FAILURE 1 #define XC_RESULT_I2C_WRITE_FAILURE 2 #define XC_RESULT_I2C_READ_FAILURE 3 #define XC_RESULT_OUT_OF_RANGE 5 /* Product id */ #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 #define XC_PRODUCT_ID_FW_LOADED 0x1388 /* Registers */ #define XREG_INIT 0x00 #define XREG_VIDEO_MODE 0x01 #define XREG_AUDIO_MODE 0x02 #define XREG_RF_FREQ 0x03 #define XREG_D_CODE 0x04 #define XREG_IF_OUT 0x05 #define XREG_SEEK_MODE 0x07 #define XREG_POWER_DOWN 0x0A /* Obsolete */ /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */ #define XREG_OUTPUT_AMP 0x0B #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ #define XREG_SMOOTHEDCVBS 0x0E #define XREG_XTALFREQ 0x0F #define XREG_FINERFREQ 0x10 #define XREG_DDIMODE 0x11 #define XREG_ADC_ENV 0x00 #define XREG_QUALITY 0x01 #define XREG_FRAME_LINES 0x02 #define XREG_HSYNC_FREQ 0x03 #define XREG_LOCK 0x04 #define XREG_FREQ_ERROR 0x05 #define XREG_SNR 0x06 #define XREG_VERSION 0x07 #define XREG_PRODUCT_ID 0x08 #define XREG_BUSY 0x09 #define XREG_BUILD 0x0D #define XREG_TOTALGAIN 0x0F #define XREG_FW_CHECKSUM 0x12 #define XREG_INIT_STATUS 0x13 /* Basic firmware description. This will remain with the driver for documentation purposes. This represents an I2C firmware file encoded as a string of unsigned char. Format is as follows: char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB char[1 ]=len0_LSB -> length of first write transaction char[2 ]=data0 -> first byte to be sent char[3 ]=data1 char[4 ]=data2 char[ ]=... char[M ]=dataN -> last byte to be sent char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB char[M+2]=len1_LSB -> length of second write transaction char[M+3]=data0 char[M+4]=data1 ... etc. The [len] value should be interpreted as follows: len= len_MSB _ len_LSB len=1111_1111_1111_1111 : End of I2C_SEQUENCE len=0000_0000_0000_0000 : Reset command: Do hardware reset len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms For the RESET and WAIT commands, the two following bytes will contain immediately the length of the following transaction. */ struct XC_TV_STANDARD { char *Name; u16 AudioMode; u16 VideoMode; }; /* Tuner standards */ #define MN_NTSC_PAL_BTSC 0 #define MN_NTSC_PAL_A2 1 #define MN_NTSC_PAL_EIAJ 2 #define MN_NTSC_PAL_Mono 3 #define BG_PAL_A2 4 #define BG_PAL_NICAM 5 #define BG_PAL_MONO 6 #define I_PAL_NICAM 7 #define I_PAL_NICAM_MONO 8 #define DK_PAL_A2 9 #define DK_PAL_NICAM 10 #define DK_PAL_MONO 11 #define DK_SECAM_A2DK1 12 #define DK_SECAM_A2LDK3 13 #define DK_SECAM_A2MONO 14 #define L_SECAM_NICAM 15 #define LC_SECAM_NICAM 16 #define DTV6 17 #define DTV8 18 #define DTV7_8 19 #define DTV7 20 #define FM_Radio_INPUT2 21 #define FM_Radio_INPUT1 22 #define FM_Radio_INPUT1_MONO 23 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = { {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, {"B/G-PAL-A2", 0x0A00, 0x8049}, {"B/G-PAL-NICAM", 0x0C04, 0x8049}, {"B/G-PAL-MONO", 0x0878, 0x8059}, {"I-PAL-NICAM", 0x1080, 0x8009}, {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, {"D/K-PAL-A2", 0x1600, 0x8009}, {"D/K-PAL-NICAM", 0x0E80, 0x8009}, {"D/K-PAL-MONO", 0x1478, 0x8009}, {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, {"L-SECAM-NICAM", 0x8E82, 0x0009}, {"L'-SECAM-NICAM", 0x8E82, 0x4009}, {"DTV6", 0x00C0, 0x8002}, {"DTV8", 0x00C0, 0x800B}, {"DTV7/8", 0x00C0, 0x801B}, {"DTV7", 0x00C0, 0x8007}, {"FM Radio-INPUT2", 0x9802, 0x9002}, {"FM Radio-INPUT1", 0x0208, 0x9002}, {"FM Radio-INPUT1_MONO", 0x0278, 0x9002} }; struct xc5000_fw_cfg { char *name; u16 size; u16 pll_reg; u8 init_status_supported; u8 fw_checksum_supported; }; #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw" static const struct xc5000_fw_cfg xc5000a_1_6_114 = { .name = XC5000A_FIRMWARE, .size = 12401, .pll_reg = 0x806c, }; #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw" static const struct xc5000_fw_cfg xc5000c_41_024_5 = { .name = XC5000C_FIRMWARE, .size = 16497, .pll_reg = 0x13, .init_status_supported = 1, .fw_checksum_supported = 1, }; static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id) { switch (chip_id) { default: case XC5000A: return &xc5000a_1_6_114; case XC5000C: return &xc5000c_41_024_5; } } static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force); static int xc5000_is_firmware_loaded(struct dvb_frontend *fe); static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val); static int xc5000_TunerReset(struct dvb_frontend *fe); static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) { struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = 0, .buf = buf, .len = len }; if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len); return XC_RESULT_I2C_WRITE_FAILURE; } return XC_RESULT_SUCCESS; } #if 0 /* This routine is never used because the only time we read data from the i2c bus is when we read registers, and we want that to be an atomic i2c transaction in case we are on a multi-master bus */ static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) { struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, .buf = buf, .len = len }; if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len); return -EREMOTEIO; } return 0; } #endif static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) { u8 buf[2] = { reg >> 8, reg & 0xff }; u8 bval[2] = { 0, 0 }; struct i2c_msg msg[2] = { { .addr = priv->i2c_props.addr, .flags = 0, .buf = &buf[0], .len = 2 }, { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, }; if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { printk(KERN_WARNING "xc5000: I2C read failed\n"); return -EREMOTEIO; } *val = (bval[0] << 8) | bval[1]; return XC_RESULT_SUCCESS; } static void xc_wait(int wait_ms) { msleep(wait_ms); } static int xc5000_TunerReset(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; int ret; dprintk(1, "%s()\n", __func__); if (fe->callback) { ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? fe->dvb->priv : priv->i2c_props.adap->algo_data, DVB_FRONTEND_COMPONENT_TUNER, XC5000_TUNER_RESET, 0); if (ret) { printk(KERN_ERR "xc5000: reset failed\n"); return XC_RESULT_RESET_FAILURE; } } else { printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n"); return XC_RESULT_RESET_FAILURE; } return XC_RESULT_SUCCESS; } static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData) { u8 buf[4]; int WatchDogTimer = 100; int result; buf[0] = (regAddr >> 8) & 0xFF; buf[1] = regAddr & 0xFF; buf[2] = (i2cData >> 8) & 0xFF; buf[3] = i2cData & 0xFF; result = xc_send_i2c_data(priv, buf, 4); if (result == XC_RESULT_SUCCESS) { /* wait for busy flag to clear */ while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) { result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf); if (result == XC_RESULT_SUCCESS) { if ((buf[0] == 0) && (buf[1] == 0)) { /* busy flag cleared */ break; } else { xc_wait(5); /* wait 5 ms */ WatchDogTimer--; } } } } if (WatchDogTimer <= 0) result = XC_RESULT_I2C_WRITE_FAILURE; return result; } static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) { struct xc5000_priv *priv = fe->tuner_priv; int i, nbytes_to_send, result; unsigned int len, pos, index; u8 buf[XC_MAX_I2C_WRITE_LENGTH]; index = 0; while ((i2c_sequence[index] != 0xFF) || (i2c_sequence[index + 1] != 0xFF)) { len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; if (len == 0x0000) { /* RESET command */ result = xc5000_TunerReset(fe); index += 2; if (result != XC_RESULT_SUCCESS) return result; } else if (len & 0x8000) { /* WAIT command */ xc_wait(len & 0x7FFF); index += 2; } else { /* Send i2c data whilst ensuring individual transactions * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. */ index += 2; buf[0] = i2c_sequence[index]; buf[1] = i2c_sequence[index + 1]; pos = 2; while (pos < len) { if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH; else nbytes_to_send = (len - pos + 2); for (i = 2; i < nbytes_to_send; i++) { buf[i] = i2c_sequence[index + pos + i - 2]; } result = xc_send_i2c_data(priv, buf, nbytes_to_send); if (result != XC_RESULT_SUCCESS) return result; pos += nbytes_to_send - 2; } index += len; } } return XC_RESULT_SUCCESS; } static int xc_initialize(struct xc5000_priv *priv) { dprintk(1, "%s()\n", __func__); return xc_write_reg(priv, XREG_INIT, 0); } static int xc_SetTVStandard(struct xc5000_priv *priv, u16 VideoMode, u16 AudioMode) { int ret; dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode); dprintk(1, "%s() Standard = %s\n", __func__, XC5000_Standard[priv->video_standard].Name); ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode); if (ret == XC_RESULT_SUCCESS) ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode); return ret; } static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode) { dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { rf_mode = XC_RF_MODE_CABLE; printk(KERN_ERR "%s(), Invalid mode, defaulting to CABLE", __func__); } return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); } static const struct dvb_tuner_ops xc5000_tuner_ops; static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz) { u16 freq_code; dprintk(1, "%s(%u)\n", __func__, freq_hz); if ((freq_hz > xc5000_tuner_ops.info.frequency_max) || (freq_hz < xc5000_tuner_ops.info.frequency_min)) return XC_RESULT_OUT_OF_RANGE; freq_code = (u16)(freq_hz / 15625); /* Starting in firmware version 1.1.44, Xceive recommends using the FINERFREQ for all normal tuning (the doc indicates reg 0x03 should only be used for fast scanning for channel lock) */ return xc_write_reg(priv, XREG_FINERFREQ, freq_code); } static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz) { u32 freq_code = (freq_khz * 1024)/1000; dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", __func__, freq_khz, freq_code); return xc_write_reg(priv, XREG_IF_OUT, freq_code); } static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope) { return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope); } static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz) { int result; u16 regData; u32 tmp; result = xc5000_readreg(priv, XREG_FREQ_ERROR, ®Data); if (result != XC_RESULT_SUCCESS) return result; tmp = (u32)regData; (*freq_error_hz) = (tmp * 15625) / 1000; return result; } static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status) { return xc5000_readreg(priv, XREG_LOCK, lock_status); } static int xc_get_version(struct xc5000_priv *priv, u8 *hw_majorversion, u8 *hw_minorversion, u8 *fw_majorversion, u8 *fw_minorversion) { u16 data; int result; result = xc5000_readreg(priv, XREG_VERSION, &data); if (result != XC_RESULT_SUCCESS) return result; (*hw_majorversion) = (data >> 12) & 0x0F; (*hw_minorversion) = (data >> 8) & 0x0F; (*fw_majorversion) = (data >> 4) & 0x0F; (*fw_minorversion) = data & 0x0F; return 0; } static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev) { return xc5000_readreg(priv, XREG_BUILD, buildrev); } static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz) { u16 regData; int result; result = xc5000_readreg(priv, XREG_HSYNC_FREQ, ®Data); if (result != XC_RESULT_SUCCESS) return result; (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100; return result; } static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines) { return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines); } static int xc_get_quality(struct xc5000_priv *priv, u16 *quality) { return xc5000_readreg(priv, XREG_QUALITY, quality); } static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr) { return xc5000_readreg(priv, XREG_SNR, snr); } static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain) { return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain); } static u16 WaitForLock(struct xc5000_priv *priv) { u16 lockState = 0; int watchDogCount = 40; while ((lockState == 0) && (watchDogCount > 0)) { xc_get_lock_status(priv, &lockState); if (lockState != 1) { xc_wait(5); watchDogCount--; } } return lockState; } #define XC_TUNE_ANALOG 0 #define XC_TUNE_DIGITAL 1 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode) { int found = 0; dprintk(1, "%s(%u)\n", __func__, freq_hz); if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS) return 0; if (mode == XC_TUNE_ANALOG) { if (WaitForLock(priv) == 1) found = 1; } return found; } static int xc_set_xtal(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; int ret = XC_RESULT_SUCCESS; switch (priv->chip_id) { default: case XC5000A: /* 32.000 MHz xtal is default */ break; case XC5000C: switch (priv->xtal_khz) { default: case 32000: /* 32.000 MHz xtal is default */ break; case 31875: /* 31.875 MHz xtal configuration */ ret = xc_write_reg(priv, 0x000f, 0x8081); break; } break; } return ret; } static int xc5000_fwupload(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; const struct firmware *fw; int ret; const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(priv->chip_id); priv->pll_register_no = desired_fw->pll_reg; priv->init_status_supported = desired_fw->init_status_supported; priv->fw_checksum_supported = desired_fw->fw_checksum_supported; /* request the firmware, this will block and timeout */ printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n", desired_fw->name); ret = request_firmware(&fw, desired_fw->name, priv->i2c_props.adap->dev.parent); if (ret) { printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n"); ret = XC_RESULT_RESET_FAILURE; goto out; } else { printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n", fw->size); ret = XC_RESULT_SUCCESS; } if (fw->size != desired_fw->size) { printk(KERN_ERR "xc5000: firmware incorrect size\n"); ret = XC_RESULT_RESET_FAILURE; } else { printk(KERN_INFO "xc5000: firmware uploading...\n"); ret = xc_load_i2c_sequence(fe, fw->data); if (XC_RESULT_SUCCESS == ret) ret = xc_set_xtal(fe); if (XC_RESULT_SUCCESS == ret) printk(KERN_INFO "xc5000: firmware upload complete...\n"); else printk(KERN_ERR "xc5000: firmware upload failed...\n"); } out: release_firmware(fw); return ret; } static void xc_debug_dump(struct xc5000_priv *priv) { u16 adc_envelope; u32 freq_error_hz = 0; u16 lock_status; u32 hsync_freq_hz = 0; u16 frame_lines; u16 quality; u16 snr; u16 totalgain; u8 hw_majorversion = 0, hw_minorversion = 0; u8 fw_majorversion = 0, fw_minorversion = 0; u16 fw_buildversion = 0; u16 regval; /* Wait for stats to stabilize. * Frame Lines needs two frame times after initial lock * before it is valid. */ xc_wait(100); xc_get_ADC_Envelope(priv, &adc_envelope); dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); xc_get_frequency_error(priv, &freq_error_hz); dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); xc_get_lock_status(priv, &lock_status); dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", lock_status); xc_get_version(priv, &hw_majorversion, &hw_minorversion, &fw_majorversion, &fw_minorversion); xc_get_buildversion(priv, &fw_buildversion); dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n", hw_majorversion, hw_minorversion, fw_majorversion, fw_minorversion, fw_buildversion); xc_get_hsync_freq(priv, &hsync_freq_hz); dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); xc_get_frame_lines(priv, &frame_lines); dprintk(1, "*** Frame lines = %d\n", frame_lines); xc_get_quality(priv, &quality); dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07); xc_get_analogsnr(priv, &snr); dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f); xc_get_totalgain(priv, &totalgain); dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256, (totalgain % 256) * 100 / 256); if (priv->pll_register_no) { xc5000_readreg(priv, priv->pll_register_no, ®val); dprintk(1, "*** PLL lock status = 0x%04x\n", regval); } } static int xc5000_set_params(struct dvb_frontend *fe) { int ret, b; struct xc5000_priv *priv = fe->tuner_priv; u32 bw = fe->dtv_property_cache.bandwidth_hz; u32 freq = fe->dtv_property_cache.frequency; u32 delsys = fe->dtv_property_cache.delivery_system; if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) { dprintk(1, "Unable to load firmware and init tuner\n"); return -EINVAL; } dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq); switch (delsys) { case SYS_ATSC: dprintk(1, "%s() VSB modulation\n", __func__); priv->rf_mode = XC_RF_MODE_AIR; priv->freq_hz = freq - 1750000; priv->video_standard = DTV6; break; case SYS_DVBC_ANNEX_B: dprintk(1, "%s() QAM modulation\n", __func__); priv->rf_mode = XC_RF_MODE_CABLE; priv->freq_hz = freq - 1750000; priv->video_standard = DTV6; break; case SYS_ISDBT: /* All ISDB-T are currently for 6 MHz bw */ if (!bw) bw = 6000000; /* fall to OFDM handling */ case SYS_DMBTH: case SYS_DVBT: case SYS_DVBT2: dprintk(1, "%s() OFDM\n", __func__); switch (bw) { case 6000000: priv->video_standard = DTV6; priv->freq_hz = freq - 1750000; break; case 7000000: priv->video_standard = DTV7; priv->freq_hz = freq - 2250000; break; case 8000000: priv->video_standard = DTV8; priv->freq_hz = freq - 2750000; break; default: printk(KERN_ERR "xc5000 bandwidth not set!\n"); return -EINVAL; } priv->rf_mode = XC_RF_MODE_AIR; break; case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_C: dprintk(1, "%s() QAM modulation\n", __func__); priv->rf_mode = XC_RF_MODE_CABLE; if (bw <= 6000000) { priv->video_standard = DTV6; priv->freq_hz = freq - 1750000; b = 6; } else if (bw <= 7000000) { priv->video_standard = DTV7; priv->freq_hz = freq - 2250000; b = 7; } else { priv->video_standard = DTV7_8; priv->freq_hz = freq - 2750000; b = 8; } dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__, b, bw); break; default: printk(KERN_ERR "xc5000: delivery system is not supported!\n"); return -EINVAL; } dprintk(1, "%s() frequency=%d (compensated to %d)\n", __func__, freq, priv->freq_hz); ret = xc_SetSignalSource(priv, priv->rf_mode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetSignalSource(%d) failed\n", priv->rf_mode); return -EREMOTEIO; } ret = xc_SetTVStandard(priv, XC5000_Standard[priv->video_standard].VideoMode, XC5000_Standard[priv->video_standard].AudioMode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); return -EREMOTEIO; } ret = xc_set_IF_frequency(priv, priv->if_khz); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n", priv->if_khz); return -EIO; } xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a); xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL); if (debug) xc_debug_dump(priv); priv->bandwidth = bw; return 0; } static int xc5000_is_firmware_loaded(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; int ret; u16 id; ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id); if (ret == XC_RESULT_SUCCESS) { if (id == XC_PRODUCT_ID_FW_NOT_LOADED) ret = XC_RESULT_RESET_FAILURE; else ret = XC_RESULT_SUCCESS; } dprintk(1, "%s() returns %s id = 0x%x\n", __func__, ret == XC_RESULT_SUCCESS ? "True" : "False", id); return ret; } static int xc5000_set_tv_freq(struct dvb_frontend *fe, struct analog_parameters *params) { struct xc5000_priv *priv = fe->tuner_priv; u16 pll_lock_status; int ret; dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", __func__, params->frequency); /* Fix me: it could be air. */ priv->rf_mode = params->mode; if (params->mode > XC_RF_MODE_CABLE) priv->rf_mode = XC_RF_MODE_CABLE; /* params->frequency is in units of 62.5khz */ priv->freq_hz = params->frequency * 62500; /* FIX ME: Some video standards may have several possible audio standards. We simply default to one of them here. */ if (params->std & V4L2_STD_MN) { /* default to BTSC audio standard */ priv->video_standard = MN_NTSC_PAL_BTSC; goto tune_channel; } if (params->std & V4L2_STD_PAL_BG) { /* default to NICAM audio standard */ priv->video_standard = BG_PAL_NICAM; goto tune_channel; } if (params->std & V4L2_STD_PAL_I) { /* default to NICAM audio standard */ priv->video_standard = I_PAL_NICAM; goto tune_channel; } if (params->std & V4L2_STD_PAL_DK) { /* default to NICAM audio standard */ priv->video_standard = DK_PAL_NICAM; goto tune_channel; } if (params->std & V4L2_STD_SECAM_DK) { /* default to A2 DK1 audio standard */ priv->video_standard = DK_SECAM_A2DK1; goto tune_channel; } if (params->std & V4L2_STD_SECAM_L) { priv->video_standard = L_SECAM_NICAM; goto tune_channel; } if (params->std & V4L2_STD_SECAM_LC) { priv->video_standard = LC_SECAM_NICAM; goto tune_channel; } tune_channel: ret = xc_SetSignalSource(priv, priv->rf_mode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetSignalSource(%d) failed\n", priv->rf_mode); return -EREMOTEIO; } ret = xc_SetTVStandard(priv, XC5000_Standard[priv->video_standard].VideoMode, XC5000_Standard[priv->video_standard].AudioMode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); return -EREMOTEIO; } xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); if (debug) xc_debug_dump(priv); if (priv->pll_register_no != 0) { msleep(20); xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status); if (pll_lock_status > 63) { /* PLL is unlocked, force reload of the firmware */ dprintk(1, "xc5000: PLL not locked (0x%x). Reloading...\n", pll_lock_status); if (xc_load_fw_and_init_tuner(fe, 1) != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: Unable to reload fw\n"); return -EREMOTEIO; } goto tune_channel; } } return 0; } static int xc5000_set_radio_freq(struct dvb_frontend *fe, struct analog_parameters *params) { struct xc5000_priv *priv = fe->tuner_priv; int ret = -EINVAL; u8 radio_input; dprintk(1, "%s() frequency=%d (in units of khz)\n", __func__, params->frequency); if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) { dprintk(1, "%s() radio input not configured\n", __func__); return -EINVAL; } if (priv->radio_input == XC5000_RADIO_FM1) radio_input = FM_Radio_INPUT1; else if (priv->radio_input == XC5000_RADIO_FM2) radio_input = FM_Radio_INPUT2; else if (priv->radio_input == XC5000_RADIO_FM1_MONO) radio_input = FM_Radio_INPUT1_MONO; else { dprintk(1, "%s() unknown radio input %d\n", __func__, priv->radio_input); return -EINVAL; } priv->freq_hz = params->frequency * 125 / 2; priv->rf_mode = XC_RF_MODE_AIR; ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode, XC5000_Standard[radio_input].AudioMode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); return -EREMOTEIO; } ret = xc_SetSignalSource(priv, priv->rf_mode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetSignalSource(%d) failed\n", priv->rf_mode); return -EREMOTEIO; } if ((priv->radio_input == XC5000_RADIO_FM1) || (priv->radio_input == XC5000_RADIO_FM2)) xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); else if (priv->radio_input == XC5000_RADIO_FM1_MONO) xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06); xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); return 0; } static int xc5000_set_analog_params(struct dvb_frontend *fe, struct analog_parameters *params) { struct xc5000_priv *priv = fe->tuner_priv; int ret = -EINVAL; if (priv->i2c_props.adap == NULL) return -EINVAL; if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) { dprintk(1, "Unable to load firmware and init tuner\n"); return -EINVAL; } switch (params->mode) { case V4L2_TUNER_RADIO: ret = xc5000_set_radio_freq(fe, params); break; case V4L2_TUNER_ANALOG_TV: case V4L2_TUNER_DIGITAL_TV: ret = xc5000_set_tv_freq(fe, params); break; } return ret; } static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); *freq = priv->freq_hz; return 0; } static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); *freq = priv->if_khz * 1000; return 0; } static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); *bw = priv->bandwidth; return 0; } static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) { struct xc5000_priv *priv = fe->tuner_priv; u16 lock_status = 0; xc_get_lock_status(priv, &lock_status); dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); *status = lock_status; return 0; } static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force) { struct xc5000_priv *priv = fe->tuner_priv; int ret = XC_RESULT_SUCCESS; u16 pll_lock_status; u16 fw_ck; if (force || xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { fw_retry: ret = xc5000_fwupload(fe); if (ret != XC_RESULT_SUCCESS) return ret; msleep(20); if (priv->fw_checksum_supported) { if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck) != XC_RESULT_SUCCESS) { dprintk(1, "%s() FW checksum reading failed.\n", __func__); goto fw_retry; } if (fw_ck == 0) { dprintk(1, "%s() FW checksum failed = 0x%04x\n", __func__, fw_ck); goto fw_retry; } } /* Start the tuner self-calibration process */ ret |= xc_initialize(priv); if (ret != XC_RESULT_SUCCESS) goto fw_retry; /* Wait for calibration to complete. * We could continue but XC5000 will clock stretch subsequent * I2C transactions until calibration is complete. This way we * don't have to rely on clock stretching working. */ xc_wait(100); if (priv->init_status_supported) { if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck) != XC_RESULT_SUCCESS) { dprintk(1, "%s() FW failed reading init status.\n", __func__); goto fw_retry; } if (fw_ck == 0) { dprintk(1, "%s() FW init status failed = 0x%04x\n", __func__, fw_ck); goto fw_retry; } } if (priv->pll_register_no) { xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status); if (pll_lock_status > 63) { /* PLL is unlocked, force reload of the firmware */ printk(KERN_ERR "xc5000: PLL not running after fwload.\n"); goto fw_retry; } } /* Default to "CABLE" mode */ ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); } return ret; } static int xc5000_sleep(struct dvb_frontend *fe) { int ret; dprintk(1, "%s()\n", __func__); /* Avoid firmware reload on slow devices */ if (no_poweroff) return 0; /* According to Xceive technical support, the "powerdown" register was removed in newer versions of the firmware. The "supported" way to sleep the tuner is to pull the reset pin low for 10ms */ ret = xc5000_TunerReset(fe); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: %s() unable to shutdown tuner\n", __func__); return -EREMOTEIO; } else return XC_RESULT_SUCCESS; } static int xc5000_init(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: Unable to initialise tuner\n"); return -EREMOTEIO; } if (debug) xc_debug_dump(priv); return 0; } static int xc5000_release(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); mutex_lock(&xc5000_list_mutex); if (priv) hybrid_tuner_release_state(priv); mutex_unlock(&xc5000_list_mutex); fe->tuner_priv = NULL; return 0; } static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg) { struct xc5000_priv *priv = fe->tuner_priv; struct xc5000_config *p = priv_cfg; dprintk(1, "%s()\n", __func__); if (p->if_khz) priv->if_khz = p->if_khz; if (p->radio_input) priv->radio_input = p->radio_input; return 0; } static const struct dvb_tuner_ops xc5000_tuner_ops = { .info = { .name = "Xceive XC5000", .frequency_min = 1000000, .frequency_max = 1023000000, .frequency_step = 50000, }, .release = xc5000_release, .init = xc5000_init, .sleep = xc5000_sleep, .set_config = xc5000_set_config, .set_params = xc5000_set_params, .set_analog_params = xc5000_set_analog_params, .get_frequency = xc5000_get_frequency, .get_if_frequency = xc5000_get_if_frequency, .get_bandwidth = xc5000_get_bandwidth, .get_status = xc5000_get_status }; struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct xc5000_config *cfg) { struct xc5000_priv *priv = NULL; int instance; u16 id = 0; dprintk(1, "%s(%d-%04x)\n", __func__, i2c ? i2c_adapter_id(i2c) : -1, cfg ? cfg->i2c_address : -1); mutex_lock(&xc5000_list_mutex); instance = hybrid_tuner_request_state(struct xc5000_priv, priv, hybrid_tuner_instance_list, i2c, cfg->i2c_address, "xc5000"); switch (instance) { case 0: goto fail; break; case 1: /* new tuner instance */ priv->bandwidth = 6000000; fe->tuner_priv = priv; break; default: /* existing tuner instance */ fe->tuner_priv = priv; break; } if (priv->if_khz == 0) { /* If the IF hasn't been set yet, use the value provided by the caller (occurs in hybrid devices where the analog call to xc5000_attach occurs before the digital side) */ priv->if_khz = cfg->if_khz; } if (priv->xtal_khz == 0) priv->xtal_khz = cfg->xtal_khz; if (priv->radio_input == 0) priv->radio_input = cfg->radio_input; /* don't override chip id if it's already been set unless explicitly specified */ if ((priv->chip_id == 0) || (cfg->chip_id)) /* use default chip id if none specified, set to 0 so it can be overridden if this is a hybrid driver */ priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0; /* Check if firmware has been loaded. It is possible that another instance of the driver has loaded the firmware. */ if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS) goto fail; switch (id) { case XC_PRODUCT_ID_FW_LOADED: printk(KERN_INFO "xc5000: Successfully identified at address 0x%02x\n", cfg->i2c_address); printk(KERN_INFO "xc5000: Firmware has been loaded previously\n"); break; case XC_PRODUCT_ID_FW_NOT_LOADED: printk(KERN_INFO "xc5000: Successfully identified at address 0x%02x\n", cfg->i2c_address); printk(KERN_INFO "xc5000: Firmware has not been loaded previously\n"); break; default: printk(KERN_ERR "xc5000: Device not found at addr 0x%02x (0x%x)\n", cfg->i2c_address, id); goto fail; } mutex_unlock(&xc5000_list_mutex); memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, sizeof(struct dvb_tuner_ops)); return fe; fail: mutex_unlock(&xc5000_list_mutex); xc5000_release(fe); return NULL; } EXPORT_SYMBOL(xc5000_attach); MODULE_AUTHOR("Steven Toth"); MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(XC5000A_FIRMWARE); MODULE_FIRMWARE(XC5000C_FIRMWARE);