/* * Copyright (C) STRATO AG 2012. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "extent_map.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "volumes.h" #include "async-thread.h" #include "check-integrity.h" #include "rcu-string.h" #include "dev-replace.h" #include "sysfs.h" static int btrfs_dev_replace_finishing(struct btrfs_fs_info *fs_info, int scrub_ret); static void btrfs_dev_replace_update_device_in_mapping_tree( struct btrfs_fs_info *fs_info, struct btrfs_device *srcdev, struct btrfs_device *tgtdev); static int btrfs_dev_replace_find_srcdev(struct btrfs_root *root, u64 srcdevid, char *srcdev_name, struct btrfs_device **device); static u64 __btrfs_dev_replace_cancel(struct btrfs_fs_info *fs_info); static int btrfs_dev_replace_kthread(void *data); static int btrfs_dev_replace_continue_on_mount(struct btrfs_fs_info *fs_info); int btrfs_init_dev_replace(struct btrfs_fs_info *fs_info) { struct btrfs_key key; struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct extent_buffer *eb; int slot; int ret = 0; struct btrfs_path *path = NULL; int item_size; struct btrfs_dev_replace_item *ptr; u64 src_devid; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } key.objectid = 0; key.type = BTRFS_DEV_REPLACE_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); if (ret) { no_valid_dev_replace_entry_found: ret = 0; dev_replace->replace_state = BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED; dev_replace->cont_reading_from_srcdev_mode = BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS; dev_replace->replace_state = 0; dev_replace->time_started = 0; dev_replace->time_stopped = 0; atomic64_set(&dev_replace->num_write_errors, 0); atomic64_set(&dev_replace->num_uncorrectable_read_errors, 0); dev_replace->cursor_left = 0; dev_replace->committed_cursor_left = 0; dev_replace->cursor_left_last_write_of_item = 0; dev_replace->cursor_right = 0; dev_replace->srcdev = NULL; dev_replace->tgtdev = NULL; dev_replace->is_valid = 0; dev_replace->item_needs_writeback = 0; goto out; } slot = path->slots[0]; eb = path->nodes[0]; item_size = btrfs_item_size_nr(eb, slot); ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_replace_item); if (item_size != sizeof(struct btrfs_dev_replace_item)) { btrfs_warn(fs_info, "dev_replace entry found has unexpected size, ignore entry"); goto no_valid_dev_replace_entry_found; } src_devid = btrfs_dev_replace_src_devid(eb, ptr); dev_replace->cont_reading_from_srcdev_mode = btrfs_dev_replace_cont_reading_from_srcdev_mode(eb, ptr); dev_replace->replace_state = btrfs_dev_replace_replace_state(eb, ptr); dev_replace->time_started = btrfs_dev_replace_time_started(eb, ptr); dev_replace->time_stopped = btrfs_dev_replace_time_stopped(eb, ptr); atomic64_set(&dev_replace->num_write_errors, btrfs_dev_replace_num_write_errors(eb, ptr)); atomic64_set(&dev_replace->num_uncorrectable_read_errors, btrfs_dev_replace_num_uncorrectable_read_errors(eb, ptr)); dev_replace->cursor_left = btrfs_dev_replace_cursor_left(eb, ptr); dev_replace->committed_cursor_left = dev_replace->cursor_left; dev_replace->cursor_left_last_write_of_item = dev_replace->cursor_left; dev_replace->cursor_right = btrfs_dev_replace_cursor_right(eb, ptr); dev_replace->is_valid = 1; dev_replace->item_needs_writeback = 0; switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: dev_replace->srcdev = NULL; dev_replace->tgtdev = NULL; break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: dev_replace->srcdev = btrfs_find_device(fs_info, src_devid, NULL, NULL); dev_replace->tgtdev = btrfs_find_device(fs_info, BTRFS_DEV_REPLACE_DEVID, NULL, NULL); /* * allow 'btrfs dev replace_cancel' if src/tgt device is * missing */ if (!dev_replace->srcdev && !btrfs_test_opt(dev_root, DEGRADED)) { ret = -EIO; btrfs_warn(fs_info, "cannot mount because device replace operation is ongoing and"); btrfs_warn(fs_info, "srcdev (devid %llu) is missing, need to run 'btrfs dev scan'?", src_devid); } if (!dev_replace->tgtdev && !btrfs_test_opt(dev_root, DEGRADED)) { ret = -EIO; btrfs_warn(fs_info, "cannot mount because device replace operation is ongoing and"); btrfs_warn(fs_info, "tgtdev (devid %llu) is missing, need to run 'btrfs dev scan'?", BTRFS_DEV_REPLACE_DEVID); } if (dev_replace->tgtdev) { if (dev_replace->srcdev) { dev_replace->tgtdev->total_bytes = dev_replace->srcdev->total_bytes; dev_replace->tgtdev->disk_total_bytes = dev_replace->srcdev->disk_total_bytes; dev_replace->tgtdev->commit_total_bytes = dev_replace->srcdev->commit_total_bytes; dev_replace->tgtdev->bytes_used = dev_replace->srcdev->bytes_used; dev_replace->tgtdev->commit_bytes_used = dev_replace->srcdev->commit_bytes_used; } dev_replace->tgtdev->is_tgtdev_for_dev_replace = 1; btrfs_init_dev_replace_tgtdev_for_resume(fs_info, dev_replace->tgtdev); } break; } out: btrfs_free_path(path); return ret; } /* * called from commit_transaction. Writes changed device replace state to * disk. */ int btrfs_run_dev_replace(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { int ret; struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *eb; struct btrfs_dev_replace_item *ptr; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; btrfs_dev_replace_lock(dev_replace); if (!dev_replace->is_valid || !dev_replace->item_needs_writeback) { btrfs_dev_replace_unlock(dev_replace); return 0; } btrfs_dev_replace_unlock(dev_replace); key.objectid = 0; key.type = BTRFS_DEV_REPLACE_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); if (ret < 0) { btrfs_warn(fs_info, "error %d while searching for dev_replace item!", ret); goto out; } if (ret == 0 && btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { /* * need to delete old one and insert a new one. * Since no attempt is made to recover any old state, if the * dev_replace state is 'running', the data on the target * drive is lost. * It would be possible to recover the state: just make sure * that the beginning of the item is never changed and always * contains all the essential information. Then read this * minimal set of information and use it as a base for the * new state. */ ret = btrfs_del_item(trans, dev_root, path); if (ret != 0) { btrfs_warn(fs_info, "delete too small dev_replace item failed %d!", ret); goto out; } ret = 1; } if (ret == 1) { /* need to insert a new item */ btrfs_release_path(path); ret = btrfs_insert_empty_item(trans, dev_root, path, &key, sizeof(*ptr)); if (ret < 0) { btrfs_warn(fs_info, "insert dev_replace item failed %d!", ret); goto out; } } eb = path->nodes[0]; ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_replace_item); btrfs_dev_replace_lock(dev_replace); if (dev_replace->srcdev) btrfs_set_dev_replace_src_devid(eb, ptr, dev_replace->srcdev->devid); else btrfs_set_dev_replace_src_devid(eb, ptr, (u64)-1); btrfs_set_dev_replace_cont_reading_from_srcdev_mode(eb, ptr, dev_replace->cont_reading_from_srcdev_mode); btrfs_set_dev_replace_replace_state(eb, ptr, dev_replace->replace_state); btrfs_set_dev_replace_time_started(eb, ptr, dev_replace->time_started); btrfs_set_dev_replace_time_stopped(eb, ptr, dev_replace->time_stopped); btrfs_set_dev_replace_num_write_errors(eb, ptr, atomic64_read(&dev_replace->num_write_errors)); btrfs_set_dev_replace_num_uncorrectable_read_errors(eb, ptr, atomic64_read(&dev_replace->num_uncorrectable_read_errors)); dev_replace->cursor_left_last_write_of_item = dev_replace->cursor_left; btrfs_set_dev_replace_cursor_left(eb, ptr, dev_replace->cursor_left_last_write_of_item); btrfs_set_dev_replace_cursor_right(eb, ptr, dev_replace->cursor_right); dev_replace->item_needs_writeback = 0; btrfs_dev_replace_unlock(dev_replace); btrfs_mark_buffer_dirty(eb); out: btrfs_free_path(path); return ret; } void btrfs_after_dev_replace_commit(struct btrfs_fs_info *fs_info) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; dev_replace->committed_cursor_left = dev_replace->cursor_left_last_write_of_item; } int btrfs_dev_replace_start(struct btrfs_root *root, struct btrfs_ioctl_dev_replace_args *args) { struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; int ret; struct btrfs_device *tgt_device = NULL; struct btrfs_device *src_device = NULL; switch (args->start.cont_reading_from_srcdev_mode) { case BTRFS_IOCTL_DEV_REPLACE_CONT_READING_FROM_SRCDEV_MODE_ALWAYS: case BTRFS_IOCTL_DEV_REPLACE_CONT_READING_FROM_SRCDEV_MODE_AVOID: break; default: return -EINVAL; } if ((args->start.srcdevid == 0 && args->start.srcdev_name[0] == '\0') || args->start.tgtdev_name[0] == '\0') return -EINVAL; /* the disk copy procedure reuses the scrub code */ mutex_lock(&fs_info->volume_mutex); ret = btrfs_dev_replace_find_srcdev(root, args->start.srcdevid, args->start.srcdev_name, &src_device); if (ret) { mutex_unlock(&fs_info->volume_mutex); return ret; } ret = btrfs_init_dev_replace_tgtdev(root, args->start.tgtdev_name, src_device, &tgt_device); mutex_unlock(&fs_info->volume_mutex); if (ret) return ret; /* * Here we commit the transaction to make sure commit_total_bytes * of all the devices are updated. */ trans = btrfs_attach_transaction(root); if (!IS_ERR(trans)) { ret = btrfs_commit_transaction(trans, root); if (ret) return ret; } else if (PTR_ERR(trans) != -ENOENT) { return PTR_ERR(trans); } btrfs_dev_replace_lock(dev_replace); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: args->result = BTRFS_IOCTL_DEV_REPLACE_RESULT_ALREADY_STARTED; goto leave; } dev_replace->cont_reading_from_srcdev_mode = args->start.cont_reading_from_srcdev_mode; WARN_ON(!src_device); dev_replace->srcdev = src_device; WARN_ON(!tgt_device); dev_replace->tgtdev = tgt_device; btrfs_info_in_rcu(root->fs_info, "dev_replace from %s (devid %llu) to %s started", src_device->missing ? "" : rcu_str_deref(src_device->name), src_device->devid, rcu_str_deref(tgt_device->name)); /* * from now on, the writes to the srcdev are all duplicated to * go to the tgtdev as well (refer to btrfs_map_block()). */ dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED; dev_replace->time_started = get_seconds(); dev_replace->cursor_left = 0; dev_replace->committed_cursor_left = 0; dev_replace->cursor_left_last_write_of_item = 0; dev_replace->cursor_right = 0; dev_replace->is_valid = 1; dev_replace->item_needs_writeback = 1; args->result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR; btrfs_dev_replace_unlock(dev_replace); ret = btrfs_sysfs_add_device_link(tgt_device->fs_devices, tgt_device); if (ret) btrfs_err(root->fs_info, "kobj add dev failed %d\n", ret); btrfs_wait_ordered_roots(root->fs_info, -1); /* force writing the updated state information to disk */ trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); btrfs_dev_replace_lock(dev_replace); goto leave; } ret = btrfs_commit_transaction(trans, root); WARN_ON(ret); /* the disk copy procedure reuses the scrub code */ ret = btrfs_scrub_dev(fs_info, src_device->devid, 0, btrfs_device_get_total_bytes(src_device), &dev_replace->scrub_progress, 0, 1); ret = btrfs_dev_replace_finishing(root->fs_info, ret); /* don't warn if EINPROGRESS, someone else might be running scrub */ if (ret == -EINPROGRESS) { args->result = BTRFS_IOCTL_DEV_REPLACE_RESULT_SCRUB_INPROGRESS; ret = 0; } else { WARN_ON(ret); } return ret; leave: dev_replace->srcdev = NULL; dev_replace->tgtdev = NULL; btrfs_dev_replace_unlock(dev_replace); btrfs_destroy_dev_replace_tgtdev(fs_info, tgt_device); return ret; } /* * blocked until all flighting bios are finished. */ static void btrfs_rm_dev_replace_blocked(struct btrfs_fs_info *fs_info) { set_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state); wait_event(fs_info->replace_wait, !percpu_counter_sum( &fs_info->bio_counter)); } /* * we have removed target device, it is safe to allow new bios request. */ static void btrfs_rm_dev_replace_unblocked(struct btrfs_fs_info *fs_info) { clear_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state); wake_up(&fs_info->replace_wait); } static int btrfs_dev_replace_finishing(struct btrfs_fs_info *fs_info, int scrub_ret) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct btrfs_device *tgt_device; struct btrfs_device *src_device; struct btrfs_root *root = fs_info->tree_root; u8 uuid_tmp[BTRFS_UUID_SIZE]; struct btrfs_trans_handle *trans; int ret = 0; /* don't allow cancel or unmount to disturb the finishing procedure */ mutex_lock(&dev_replace->lock_finishing_cancel_unmount); btrfs_dev_replace_lock(dev_replace); /* was the operation canceled, or is it finished? */ if (dev_replace->replace_state != BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED) { btrfs_dev_replace_unlock(dev_replace); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return 0; } tgt_device = dev_replace->tgtdev; src_device = dev_replace->srcdev; btrfs_dev_replace_unlock(dev_replace); /* * flush all outstanding I/O and inode extent mappings before the * copy operation is declared as being finished */ ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); if (ret) { mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return ret; } btrfs_wait_ordered_roots(root->fs_info, -1); trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans, root); WARN_ON(ret); mutex_lock(&uuid_mutex); /* keep away write_all_supers() during the finishing procedure */ mutex_lock(&root->fs_info->fs_devices->device_list_mutex); mutex_lock(&root->fs_info->chunk_mutex); btrfs_dev_replace_lock(dev_replace); dev_replace->replace_state = scrub_ret ? BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED : BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED; dev_replace->tgtdev = NULL; dev_replace->srcdev = NULL; dev_replace->time_stopped = get_seconds(); dev_replace->item_needs_writeback = 1; /* replace old device with new one in mapping tree */ if (!scrub_ret) { btrfs_dev_replace_update_device_in_mapping_tree(fs_info, src_device, tgt_device); } else { btrfs_err_in_rcu(root->fs_info, "btrfs_scrub_dev(%s, %llu, %s) failed %d", src_device->missing ? "" : rcu_str_deref(src_device->name), src_device->devid, rcu_str_deref(tgt_device->name), scrub_ret); btrfs_dev_replace_unlock(dev_replace); mutex_unlock(&root->fs_info->chunk_mutex); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); mutex_unlock(&uuid_mutex); if (tgt_device) btrfs_destroy_dev_replace_tgtdev(fs_info, tgt_device); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return scrub_ret; } btrfs_info_in_rcu(root->fs_info, "dev_replace from %s (devid %llu) to %s finished", src_device->missing ? "" : rcu_str_deref(src_device->name), src_device->devid, rcu_str_deref(tgt_device->name)); tgt_device->is_tgtdev_for_dev_replace = 0; tgt_device->devid = src_device->devid; src_device->devid = BTRFS_DEV_REPLACE_DEVID; memcpy(uuid_tmp, tgt_device->uuid, sizeof(uuid_tmp)); memcpy(tgt_device->uuid, src_device->uuid, sizeof(tgt_device->uuid)); memcpy(src_device->uuid, uuid_tmp, sizeof(src_device->uuid)); btrfs_device_set_total_bytes(tgt_device, src_device->total_bytes); btrfs_device_set_disk_total_bytes(tgt_device, src_device->disk_total_bytes); btrfs_device_set_bytes_used(tgt_device, src_device->bytes_used); ASSERT(list_empty(&src_device->resized_list)); tgt_device->commit_total_bytes = src_device->commit_total_bytes; tgt_device->commit_bytes_used = src_device->bytes_used; if (fs_info->sb->s_bdev == src_device->bdev) fs_info->sb->s_bdev = tgt_device->bdev; if (fs_info->fs_devices->latest_bdev == src_device->bdev) fs_info->fs_devices->latest_bdev = tgt_device->bdev; list_add(&tgt_device->dev_alloc_list, &fs_info->fs_devices->alloc_list); fs_info->fs_devices->rw_devices++; btrfs_dev_replace_unlock(dev_replace); btrfs_rm_dev_replace_blocked(fs_info); btrfs_rm_dev_replace_remove_srcdev(fs_info, src_device); btrfs_rm_dev_replace_unblocked(fs_info); /* * this is again a consistent state where no dev_replace procedure * is running, the target device is part of the filesystem, the * source device is not part of the filesystem anymore and its 1st * superblock is scratched out so that it is no longer marked to * belong to this filesystem. */ mutex_unlock(&root->fs_info->chunk_mutex); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); mutex_unlock(&uuid_mutex); /* replace the sysfs entry */ btrfs_sysfs_rm_device_link(fs_info->fs_devices, src_device); btrfs_rm_dev_replace_free_srcdev(fs_info, src_device); /* write back the superblocks */ trans = btrfs_start_transaction(root, 0); if (!IS_ERR(trans)) btrfs_commit_transaction(trans, root); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return 0; } static void btrfs_dev_replace_update_device_in_mapping_tree( struct btrfs_fs_info *fs_info, struct btrfs_device *srcdev, struct btrfs_device *tgtdev) { struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; struct extent_map *em; struct map_lookup *map; u64 start = 0; int i; write_lock(&em_tree->lock); do { em = lookup_extent_mapping(em_tree, start, (u64)-1); if (!em) break; map = em->map_lookup; for (i = 0; i < map->num_stripes; i++) if (srcdev == map->stripes[i].dev) map->stripes[i].dev = tgtdev; start = em->start + em->len; free_extent_map(em); } while (start); write_unlock(&em_tree->lock); } static int btrfs_dev_replace_find_srcdev(struct btrfs_root *root, u64 srcdevid, char *srcdev_name, struct btrfs_device **device) { int ret; if (srcdevid) { ret = 0; *device = btrfs_find_device(root->fs_info, srcdevid, NULL, NULL); if (!*device) ret = -ENOENT; } else { ret = btrfs_find_device_missing_or_by_path(root, srcdev_name, device); } return ret; } void btrfs_dev_replace_status(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_dev_replace_args *args) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct btrfs_device *srcdev; btrfs_dev_replace_lock(dev_replace); /* even if !dev_replace_is_valid, the values are good enough for * the replace_status ioctl */ args->result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR; args->status.replace_state = dev_replace->replace_state; args->status.time_started = dev_replace->time_started; args->status.time_stopped = dev_replace->time_stopped; args->status.num_write_errors = atomic64_read(&dev_replace->num_write_errors); args->status.num_uncorrectable_read_errors = atomic64_read(&dev_replace->num_uncorrectable_read_errors); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: args->status.progress_1000 = 0; break; case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: args->status.progress_1000 = 1000; break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: srcdev = dev_replace->srcdev; args->status.progress_1000 = div_u64(dev_replace->cursor_left, div_u64(btrfs_device_get_total_bytes(srcdev), 1000)); break; } btrfs_dev_replace_unlock(dev_replace); } int btrfs_dev_replace_cancel(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_dev_replace_args *args) { args->result = __btrfs_dev_replace_cancel(fs_info); return 0; } static u64 __btrfs_dev_replace_cancel(struct btrfs_fs_info *fs_info) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct btrfs_device *tgt_device = NULL; struct btrfs_trans_handle *trans; struct btrfs_root *root = fs_info->tree_root; u64 result; int ret; if (fs_info->sb->s_flags & MS_RDONLY) return -EROFS; mutex_lock(&dev_replace->lock_finishing_cancel_unmount); btrfs_dev_replace_lock(dev_replace); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NOT_STARTED; btrfs_dev_replace_unlock(dev_replace); goto leave; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR; tgt_device = dev_replace->tgtdev; dev_replace->tgtdev = NULL; dev_replace->srcdev = NULL; break; } dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED; dev_replace->time_stopped = get_seconds(); dev_replace->item_needs_writeback = 1; btrfs_dev_replace_unlock(dev_replace); btrfs_scrub_cancel(fs_info); trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans, root); WARN_ON(ret); if (tgt_device) btrfs_destroy_dev_replace_tgtdev(fs_info, tgt_device); leave: mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return result; } void btrfs_dev_replace_suspend_for_unmount(struct btrfs_fs_info *fs_info) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; mutex_lock(&dev_replace->lock_finishing_cancel_unmount); btrfs_dev_replace_lock(dev_replace); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED; dev_replace->time_stopped = get_seconds(); dev_replace->item_needs_writeback = 1; btrfs_info(fs_info, "suspending dev_replace for unmount"); break; } btrfs_dev_replace_unlock(dev_replace); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); } /* resume dev_replace procedure that was interrupted by unmount */ int btrfs_resume_dev_replace_async(struct btrfs_fs_info *fs_info) { struct task_struct *task; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; btrfs_dev_replace_lock(dev_replace); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: btrfs_dev_replace_unlock(dev_replace); return 0; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: break; case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED; break; } if (!dev_replace->tgtdev || !dev_replace->tgtdev->bdev) { btrfs_info(fs_info, "cannot continue dev_replace, tgtdev is missing"); btrfs_info(fs_info, "you may cancel the operation after 'mount -o degraded'"); btrfs_dev_replace_unlock(dev_replace); return 0; } btrfs_dev_replace_unlock(dev_replace); WARN_ON(atomic_xchg( &fs_info->mutually_exclusive_operation_running, 1)); task = kthread_run(btrfs_dev_replace_kthread, fs_info, "btrfs-devrepl"); return PTR_ERR_OR_ZERO(task); } static int btrfs_dev_replace_kthread(void *data) { struct btrfs_fs_info *fs_info = data; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct btrfs_ioctl_dev_replace_args *status_args; u64 progress; status_args = kzalloc(sizeof(*status_args), GFP_KERNEL); if (status_args) { btrfs_dev_replace_status(fs_info, status_args); progress = status_args->status.progress_1000; kfree(status_args); progress = div_u64(progress, 10); btrfs_info_in_rcu(fs_info, "continuing dev_replace from %s (devid %llu) to %s @%u%%", dev_replace->srcdev->missing ? "" : rcu_str_deref(dev_replace->srcdev->name), dev_replace->srcdev->devid, dev_replace->tgtdev ? rcu_str_deref(dev_replace->tgtdev->name) : "", (unsigned int)progress); } btrfs_dev_replace_continue_on_mount(fs_info); atomic_set(&fs_info->mutually_exclusive_operation_running, 0); return 0; } static int btrfs_dev_replace_continue_on_mount(struct btrfs_fs_info *fs_info) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; int ret; ret = btrfs_scrub_dev(fs_info, dev_replace->srcdev->devid, dev_replace->committed_cursor_left, btrfs_device_get_total_bytes(dev_replace->srcdev), &dev_replace->scrub_progress, 0, 1); ret = btrfs_dev_replace_finishing(fs_info, ret); WARN_ON(ret); return 0; } int btrfs_dev_replace_is_ongoing(struct btrfs_dev_replace *dev_replace) { if (!dev_replace->is_valid) return 0; switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: return 0; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: /* * return true even if tgtdev is missing (this is * something that can happen if the dev_replace * procedure is suspended by an umount and then * the tgtdev is missing (or "btrfs dev scan") was * not called and the the filesystem is remounted * in degraded state. This does not stop the * dev_replace procedure. It needs to be canceled * manually if the cancelation is wanted. */ break; } return 1; } void btrfs_dev_replace_lock(struct btrfs_dev_replace *dev_replace) { /* the beginning is just an optimization for the typical case */ if (atomic_read(&dev_replace->nesting_level) == 0) { acquire_lock: /* this is not a nested case where the same thread * is trying to acqurire the same lock twice */ mutex_lock(&dev_replace->lock); mutex_lock(&dev_replace->lock_management_lock); dev_replace->lock_owner = current->pid; atomic_inc(&dev_replace->nesting_level); mutex_unlock(&dev_replace->lock_management_lock); return; } mutex_lock(&dev_replace->lock_management_lock); if (atomic_read(&dev_replace->nesting_level) > 0 && dev_replace->lock_owner == current->pid) { WARN_ON(!mutex_is_locked(&dev_replace->lock)); atomic_inc(&dev_replace->nesting_level); mutex_unlock(&dev_replace->lock_management_lock); return; } mutex_unlock(&dev_replace->lock_management_lock); goto acquire_lock; } void btrfs_dev_replace_unlock(struct btrfs_dev_replace *dev_replace) { WARN_ON(!mutex_is_locked(&dev_replace->lock)); mutex_lock(&dev_replace->lock_management_lock); WARN_ON(atomic_read(&dev_replace->nesting_level) < 1); WARN_ON(dev_replace->lock_owner != current->pid); atomic_dec(&dev_replace->nesting_level); if (atomic_read(&dev_replace->nesting_level) == 0) { dev_replace->lock_owner = 0; mutex_unlock(&dev_replace->lock_management_lock); mutex_unlock(&dev_replace->lock); } else { mutex_unlock(&dev_replace->lock_management_lock); } } void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info) { percpu_counter_inc(&fs_info->bio_counter); } void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount) { percpu_counter_sub(&fs_info->bio_counter, amount); if (waitqueue_active(&fs_info->replace_wait)) wake_up(&fs_info->replace_wait); } void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info) { while (1) { percpu_counter_inc(&fs_info->bio_counter); if (likely(!test_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state))) break; btrfs_bio_counter_dec(fs_info); wait_event(fs_info->replace_wait, !test_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state)); } }