/* * HID driver for Sony / PS2 / PS3 / PS4 BD devices. * * Copyright (c) 1999 Andreas Gal * Copyright (c) 2000-2005 Vojtech Pavlik * Copyright (c) 2005 Michael Haboustak for Concept2, Inc * Copyright (c) 2008 Jiri Slaby * Copyright (c) 2012 David Dillow * Copyright (c) 2006-2013 Jiri Kosina * Copyright (c) 2013 Colin Leitner * Copyright (c) 2014-2016 Frank Praznik */ /* * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ /* * NOTE: in order for the Sony PS3 BD Remote Control to be found by * a Bluetooth host, the key combination Start+Enter has to be kept pressed * for about 7 seconds with the Bluetooth Host Controller in discovering mode. * * There will be no PIN request from the device. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "hid-ids.h" #define VAIO_RDESC_CONSTANT BIT(0) #define SIXAXIS_CONTROLLER_USB BIT(1) #define SIXAXIS_CONTROLLER_BT BIT(2) #define BUZZ_CONTROLLER BIT(3) #define PS3REMOTE BIT(4) #define DUALSHOCK4_CONTROLLER_USB BIT(5) #define DUALSHOCK4_CONTROLLER_BT BIT(6) #define DUALSHOCK4_DONGLE BIT(7) #define MOTION_CONTROLLER_USB BIT(8) #define MOTION_CONTROLLER_BT BIT(9) #define NAVIGATION_CONTROLLER_USB BIT(10) #define NAVIGATION_CONTROLLER_BT BIT(11) #define SINO_LITE_CONTROLLER BIT(12) #define FUTUREMAX_DANCE_MAT BIT(13) #define SIXAXIS_CONTROLLER (SIXAXIS_CONTROLLER_USB | SIXAXIS_CONTROLLER_BT) #define MOTION_CONTROLLER (MOTION_CONTROLLER_USB | MOTION_CONTROLLER_BT) #define NAVIGATION_CONTROLLER (NAVIGATION_CONTROLLER_USB |\ NAVIGATION_CONTROLLER_BT) #define DUALSHOCK4_CONTROLLER (DUALSHOCK4_CONTROLLER_USB |\ DUALSHOCK4_CONTROLLER_BT | \ DUALSHOCK4_DONGLE) #define SONY_LED_SUPPORT (SIXAXIS_CONTROLLER | BUZZ_CONTROLLER |\ DUALSHOCK4_CONTROLLER | MOTION_CONTROLLER |\ NAVIGATION_CONTROLLER) #define SONY_BATTERY_SUPPORT (SIXAXIS_CONTROLLER | DUALSHOCK4_CONTROLLER |\ MOTION_CONTROLLER_BT | NAVIGATION_CONTROLLER) #define SONY_FF_SUPPORT (SIXAXIS_CONTROLLER | DUALSHOCK4_CONTROLLER |\ MOTION_CONTROLLER) #define SONY_BT_DEVICE (SIXAXIS_CONTROLLER_BT | DUALSHOCK4_CONTROLLER_BT |\ MOTION_CONTROLLER_BT | NAVIGATION_CONTROLLER_BT) #define MAX_LEDS 4 /* PS/3 Motion controller */ static u8 motion_rdesc[] = { 0x05, 0x01, /* Usage Page (Desktop), */ 0x09, 0x04, /* Usage (Joystick), */ 0xA1, 0x01, /* Collection (Application), */ 0xA1, 0x02, /* Collection (Logical), */ 0x85, 0x01, /* Report ID (1), */ 0x75, 0x01, /* Report Size (1), */ 0x95, 0x15, /* Report Count (21), */ 0x15, 0x00, /* Logical Minimum (0), */ 0x25, 0x01, /* Logical Maximum (1), */ 0x35, 0x00, /* Physical Minimum (0), */ 0x45, 0x01, /* Physical Maximum (1), */ 0x05, 0x09, /* Usage Page (Button), */ 0x19, 0x01, /* Usage Minimum (01h), */ 0x29, 0x15, /* Usage Maximum (15h), */ 0x81, 0x02, /* Input (Variable), * Buttons */ 0x95, 0x0B, /* Report Count (11), */ 0x06, 0x00, 0xFF, /* Usage Page (FF00h), */ 0x81, 0x03, /* Input (Constant, Variable), * Padding */ 0x15, 0x00, /* Logical Minimum (0), */ 0x26, 0xFF, 0x00, /* Logical Maximum (255), */ 0x05, 0x01, /* Usage Page (Desktop), */ 0xA1, 0x00, /* Collection (Physical), */ 0x75, 0x08, /* Report Size (8), */ 0x95, 0x01, /* Report Count (1), */ 0x35, 0x00, /* Physical Minimum (0), */ 0x46, 0xFF, 0x00, /* Physical Maximum (255), */ 0x09, 0x30, /* Usage (X), */ 0x81, 0x02, /* Input (Variable), * Trigger */ 0xC0, /* End Collection, */ 0x06, 0x00, 0xFF, /* Usage Page (FF00h), */ 0x75, 0x08, /* Report Size (8), */ 0x95, 0x07, /* Report Count (7), * skip 7 bytes */ 0x81, 0x02, /* Input (Variable), */ 0x05, 0x01, /* Usage Page (Desktop), */ 0x75, 0x10, /* Report Size (16), */ 0x46, 0xFF, 0xFF, /* Physical Maximum (65535), */ 0x27, 0xFF, 0xFF, 0x00, 0x00, /* Logical Maximum (65535), */ 0x95, 0x03, /* Report Count (3), * 3x Accels */ 0x09, 0x33, /* Usage (rX), */ 0x09, 0x34, /* Usage (rY), */ 0x09, 0x35, /* Usage (rZ), */ 0x81, 0x02, /* Input (Variable), */ 0x06, 0x00, 0xFF, /* Usage Page (FF00h), */ 0x95, 0x03, /* Report Count (3), * Skip Accels 2nd frame */ 0x81, 0x02, /* Input (Variable), */ 0x05, 0x01, /* Usage Page (Desktop), */ 0x09, 0x01, /* Usage (Pointer), */ 0x95, 0x03, /* Report Count (3), * 3x Gyros */ 0x81, 0x02, /* Input (Variable), */ 0x06, 0x00, 0xFF, /* Usage Page (FF00h), */ 0x95, 0x03, /* Report Count (3), * Skip Gyros 2nd frame */ 0x81, 0x02, /* Input (Variable), */ 0x75, 0x0C, /* Report Size (12), */ 0x46, 0xFF, 0x0F, /* Physical Maximum (4095), */ 0x26, 0xFF, 0x0F, /* Logical Maximum (4095), */ 0x95, 0x04, /* Report Count (4), * Skip Temp and Magnetometers */ 0x81, 0x02, /* Input (Variable), */ 0x75, 0x08, /* Report Size (8), */ 0x46, 0xFF, 0x00, /* Physical Maximum (255), */ 0x26, 0xFF, 0x00, /* Logical Maximum (255), */ 0x95, 0x06, /* Report Count (6), * Skip Timestamp and Extension Bytes */ 0x81, 0x02, /* Input (Variable), */ 0x75, 0x08, /* Report Size (8), */ 0x95, 0x30, /* Report Count (48), */ 0x09, 0x01, /* Usage (Pointer), */ 0x91, 0x02, /* Output (Variable), */ 0x75, 0x08, /* Report Size (8), */ 0x95, 0x30, /* Report Count (48), */ 0x09, 0x01, /* Usage (Pointer), */ 0xB1, 0x02, /* Feature (Variable), */ 0xC0, /* End Collection, */ 0xA1, 0x02, /* Collection (Logical), */ 0x85, 0x02, /* Report ID (2), */ 0x75, 0x08, /* Report Size (8), */ 0x95, 0x30, /* Report Count (48), */ 0x09, 0x01, /* Usage (Pointer), */ 0xB1, 0x02, /* Feature (Variable), */ 0xC0, /* End Collection, */ 0xA1, 0x02, /* Collection (Logical), */ 0x85, 0xEE, /* Report ID (238), */ 0x75, 0x08, /* Report Size (8), */ 0x95, 0x30, /* Report Count (48), */ 0x09, 0x01, /* Usage (Pointer), */ 0xB1, 0x02, /* Feature (Variable), */ 0xC0, /* End Collection, */ 0xA1, 0x02, /* Collection (Logical), */ 0x85, 0xEF, /* Report ID (239), */ 0x75, 0x08, /* Report Size (8), */ 0x95, 0x30, /* Report Count (48), */ 0x09, 0x01, /* Usage (Pointer), */ 0xB1, 0x02, /* Feature (Variable), */ 0xC0, /* End Collection, */ 0xC0 /* End Collection */ }; static u8 ps3remote_rdesc[] = { 0x05, 0x01, /* GUsagePage Generic Desktop */ 0x09, 0x05, /* LUsage 0x05 [Game Pad] */ 0xA1, 0x01, /* MCollection Application (mouse, keyboard) */ /* Use collection 1 for joypad buttons */ 0xA1, 0x02, /* MCollection Logical (interrelated data) */ /* * Ignore the 1st byte, maybe it is used for a controller * number but it's not needed for correct operation */ 0x75, 0x08, /* GReportSize 0x08 [8] */ 0x95, 0x01, /* GReportCount 0x01 [1] */ 0x81, 0x01, /* MInput 0x01 (Const[0] Arr[1] Abs[2]) */ /* * Bytes from 2nd to 4th are a bitmap for joypad buttons, for these * buttons multiple keypresses are allowed */ 0x05, 0x09, /* GUsagePage Button */ 0x19, 0x01, /* LUsageMinimum 0x01 [Button 1 (primary/trigger)] */ 0x29, 0x18, /* LUsageMaximum 0x18 [Button 24] */ 0x14, /* GLogicalMinimum [0] */ 0x25, 0x01, /* GLogicalMaximum 0x01 [1] */ 0x75, 0x01, /* GReportSize 0x01 [1] */ 0x95, 0x18, /* GReportCount 0x18 [24] */ 0x81, 0x02, /* MInput 0x02 (Data[0] Var[1] Abs[2]) */ 0xC0, /* MEndCollection */ /* Use collection 2 for remote control buttons */ 0xA1, 0x02, /* MCollection Logical (interrelated data) */ /* 5th byte is used for remote control buttons */ 0x05, 0x09, /* GUsagePage Button */ 0x18, /* LUsageMinimum [No button pressed] */ 0x29, 0xFE, /* LUsageMaximum 0xFE [Button 254] */ 0x14, /* GLogicalMinimum [0] */ 0x26, 0xFE, 0x00, /* GLogicalMaximum 0x00FE [254] */ 0x75, 0x08, /* GReportSize 0x08 [8] */ 0x95, 0x01, /* GReportCount 0x01 [1] */ 0x80, /* MInput */ /* * Ignore bytes from 6th to 11th, 6th to 10th are always constant at * 0xff and 11th is for press indication */ 0x75, 0x08, /* GReportSize 0x08 [8] */ 0x95, 0x06, /* GReportCount 0x06 [6] */ 0x81, 0x01, /* MInput 0x01 (Const[0] Arr[1] Abs[2]) */ /* 12th byte is for battery strength */ 0x05, 0x06, /* GUsagePage Generic Device Controls */ 0x09, 0x20, /* LUsage 0x20 [Battery Strength] */ 0x14, /* GLogicalMinimum [0] */ 0x25, 0x05, /* GLogicalMaximum 0x05 [5] */ 0x75, 0x08, /* GReportSize 0x08 [8] */ 0x95, 0x01, /* GReportCount 0x01 [1] */ 0x81, 0x02, /* MInput 0x02 (Data[0] Var[1] Abs[2]) */ 0xC0, /* MEndCollection */ 0xC0 /* MEndCollection [Game Pad] */ }; static const unsigned int ps3remote_keymap_joypad_buttons[] = { [0x01] = KEY_SELECT, [0x02] = BTN_THUMBL, /* L3 */ [0x03] = BTN_THUMBR, /* R3 */ [0x04] = BTN_START, [0x05] = KEY_UP, [0x06] = KEY_RIGHT, [0x07] = KEY_DOWN, [0x08] = KEY_LEFT, [0x09] = BTN_TL2, /* L2 */ [0x0a] = BTN_TR2, /* R2 */ [0x0b] = BTN_TL, /* L1 */ [0x0c] = BTN_TR, /* R1 */ [0x0d] = KEY_OPTION, /* options/triangle */ [0x0e] = KEY_BACK, /* back/circle */ [0x0f] = BTN_0, /* cross */ [0x10] = KEY_SCREEN, /* view/square */ [0x11] = KEY_HOMEPAGE, /* PS button */ [0x14] = KEY_ENTER, }; static const unsigned int ps3remote_keymap_remote_buttons[] = { [0x00] = KEY_1, [0x01] = KEY_2, [0x02] = KEY_3, [0x03] = KEY_4, [0x04] = KEY_5, [0x05] = KEY_6, [0x06] = KEY_7, [0x07] = KEY_8, [0x08] = KEY_9, [0x09] = KEY_0, [0x0e] = KEY_ESC, /* return */ [0x0f] = KEY_CLEAR, [0x16] = KEY_EJECTCD, [0x1a] = KEY_MENU, /* top menu */ [0x28] = KEY_TIME, [0x30] = KEY_PREVIOUS, [0x31] = KEY_NEXT, [0x32] = KEY_PLAY, [0x33] = KEY_REWIND, /* scan back */ [0x34] = KEY_FORWARD, /* scan forward */ [0x38] = KEY_STOP, [0x39] = KEY_PAUSE, [0x40] = KEY_CONTEXT_MENU, /* pop up/menu */ [0x60] = KEY_FRAMEBACK, /* slow/step back */ [0x61] = KEY_FRAMEFORWARD, /* slow/step forward */ [0x63] = KEY_SUBTITLE, [0x64] = KEY_AUDIO, [0x65] = KEY_ANGLE, [0x70] = KEY_INFO, /* display */ [0x80] = KEY_BLUE, [0x81] = KEY_RED, [0x82] = KEY_GREEN, [0x83] = KEY_YELLOW, }; static const unsigned int buzz_keymap[] = { /* * The controller has 4 remote buzzers, each with one LED and 5 * buttons. * * We use the mapping chosen by the controller, which is: * * Key Offset * ------------------- * Buzz 1 * Blue 5 * Orange 4 * Green 3 * Yellow 2 * * So, for example, the orange button on the third buzzer is mapped to * BTN_TRIGGER_HAPPY14 */ [1] = BTN_TRIGGER_HAPPY1, [2] = BTN_TRIGGER_HAPPY2, [3] = BTN_TRIGGER_HAPPY3, [4] = BTN_TRIGGER_HAPPY4, [5] = BTN_TRIGGER_HAPPY5, [6] = BTN_TRIGGER_HAPPY6, [7] = BTN_TRIGGER_HAPPY7, [8] = BTN_TRIGGER_HAPPY8, [9] = BTN_TRIGGER_HAPPY9, [10] = BTN_TRIGGER_HAPPY10, [11] = BTN_TRIGGER_HAPPY11, [12] = BTN_TRIGGER_HAPPY12, [13] = BTN_TRIGGER_HAPPY13, [14] = BTN_TRIGGER_HAPPY14, [15] = BTN_TRIGGER_HAPPY15, [16] = BTN_TRIGGER_HAPPY16, [17] = BTN_TRIGGER_HAPPY17, [18] = BTN_TRIGGER_HAPPY18, [19] = BTN_TRIGGER_HAPPY19, [20] = BTN_TRIGGER_HAPPY20, }; /* The Navigation controller is a partial DS3 and uses the same HID report * and hence the same keymap indices, however not not all axes/buttons * are physically present. We use the same axis and button mapping as * the DS3, which uses the Linux gamepad spec. */ static const unsigned int navigation_absmap[] = { [0x30] = ABS_X, [0x31] = ABS_Y, [0x33] = ABS_Z, /* L2 */ }; /* Buttons not physically available on the device, but still available * in the reports are explicitly set to 0 for documentation purposes. */ static const unsigned int navigation_keymap[] = { [0x01] = 0, /* Select */ [0x02] = BTN_THUMBL, /* L3 */ [0x03] = 0, /* R3 */ [0x04] = 0, /* Start */ [0x05] = BTN_DPAD_UP, /* Up */ [0x06] = BTN_DPAD_RIGHT, /* Right */ [0x07] = BTN_DPAD_DOWN, /* Down */ [0x08] = BTN_DPAD_LEFT, /* Left */ [0x09] = BTN_TL2, /* L2 */ [0x0a] = 0, /* R2 */ [0x0b] = BTN_TL, /* L1 */ [0x0c] = 0, /* R1 */ [0x0d] = BTN_NORTH, /* Triangle */ [0x0e] = BTN_EAST, /* Circle */ [0x0f] = BTN_SOUTH, /* Cross */ [0x10] = BTN_WEST, /* Square */ [0x11] = BTN_MODE, /* PS */ }; static const unsigned int sixaxis_absmap[] = { [0x30] = ABS_X, [0x31] = ABS_Y, [0x32] = ABS_RX, /* right stick X */ [0x35] = ABS_RY, /* right stick Y */ }; static const unsigned int sixaxis_keymap[] = { [0x01] = BTN_SELECT, /* Select */ [0x02] = BTN_THUMBL, /* L3 */ [0x03] = BTN_THUMBR, /* R3 */ [0x04] = BTN_START, /* Start */ [0x05] = BTN_DPAD_UP, /* Up */ [0x06] = BTN_DPAD_RIGHT, /* Right */ [0x07] = BTN_DPAD_DOWN, /* Down */ [0x08] = BTN_DPAD_LEFT, /* Left */ [0x09] = BTN_TL2, /* L2 */ [0x0a] = BTN_TR2, /* R2 */ [0x0b] = BTN_TL, /* L1 */ [0x0c] = BTN_TR, /* R1 */ [0x0d] = BTN_NORTH, /* Triangle */ [0x0e] = BTN_EAST, /* Circle */ [0x0f] = BTN_SOUTH, /* Cross */ [0x10] = BTN_WEST, /* Square */ [0x11] = BTN_MODE, /* PS */ }; static const unsigned int ds4_absmap[] = { [0x30] = ABS_X, [0x31] = ABS_Y, [0x32] = ABS_RX, /* right stick X */ [0x33] = ABS_Z, /* L2 */ [0x34] = ABS_RZ, /* R2 */ [0x35] = ABS_RY, /* right stick Y */ }; static const unsigned int ds4_keymap[] = { [0x1] = BTN_WEST, /* Square */ [0x2] = BTN_SOUTH, /* Cross */ [0x3] = BTN_EAST, /* Circle */ [0x4] = BTN_NORTH, /* Triangle */ [0x5] = BTN_TL, /* L1 */ [0x6] = BTN_TR, /* R1 */ [0x7] = BTN_TL2, /* L2 */ [0x8] = BTN_TR2, /* R2 */ [0x9] = BTN_SELECT, /* Share */ [0xa] = BTN_START, /* Options */ [0xb] = BTN_THUMBL, /* L3 */ [0xc] = BTN_THUMBR, /* R3 */ [0xd] = BTN_MODE, /* PS */ }; static const struct {int x; int y; } ds4_hat_mapping[] = { {0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, 0} }; static enum power_supply_property sony_battery_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_SCOPE, POWER_SUPPLY_PROP_STATUS, }; struct sixaxis_led { u8 time_enabled; /* the total time the led is active (0xff means forever) */ u8 duty_length; /* how long a cycle is in deciseconds (0 means "really fast") */ u8 enabled; u8 duty_off; /* % of duty_length the led is off (0xff means 100%) */ u8 duty_on; /* % of duty_length the led is on (0xff mean 100%) */ } __packed; struct sixaxis_rumble { u8 padding; u8 right_duration; /* Right motor duration (0xff means forever) */ u8 right_motor_on; /* Right (small) motor on/off, only supports values of 0 or 1 (off/on) */ u8 left_duration; /* Left motor duration (0xff means forever) */ u8 left_motor_force; /* left (large) motor, supports force values from 0 to 255 */ } __packed; struct sixaxis_output_report { u8 report_id; struct sixaxis_rumble rumble; u8 padding[4]; u8 leds_bitmap; /* bitmap of enabled LEDs: LED_1 = 0x02, LED_2 = 0x04, ... */ struct sixaxis_led led[4]; /* LEDx at (4 - x) */ struct sixaxis_led _reserved; /* LED5, not actually soldered */ } __packed; union sixaxis_output_report_01 { struct sixaxis_output_report data; u8 buf[36]; }; struct motion_output_report_02 { u8 type, zero; u8 r, g, b; u8 zero2; u8 rumble; }; #define DS4_FEATURE_REPORT_0x02_SIZE 37 #define DS4_FEATURE_REPORT_0x05_SIZE 41 #define DS4_FEATURE_REPORT_0x81_SIZE 7 #define DS4_INPUT_REPORT_0x11_SIZE 78 #define DS4_OUTPUT_REPORT_0x05_SIZE 32 #define DS4_OUTPUT_REPORT_0x11_SIZE 78 #define SIXAXIS_REPORT_0xF2_SIZE 17 #define SIXAXIS_REPORT_0xF5_SIZE 8 #define MOTION_REPORT_0x02_SIZE 49 /* Offsets relative to USB input report (0x1). Bluetooth (0x11) requires an * additional +2. */ #define DS4_INPUT_REPORT_AXIS_OFFSET 1 #define DS4_INPUT_REPORT_BUTTON_OFFSET 5 #define DS4_INPUT_REPORT_TIMESTAMP_OFFSET 10 #define DS4_INPUT_REPORT_GYRO_X_OFFSET 13 #define DS4_INPUT_REPORT_BATTERY_OFFSET 30 #define DS4_INPUT_REPORT_TOUCHPAD_OFFSET 33 #define SENSOR_SUFFIX " Motion Sensors" #define DS4_TOUCHPAD_SUFFIX " Touchpad" /* Default to 4ms poll interval, which is same as USB (not adjustable). */ #define DS4_BT_DEFAULT_POLL_INTERVAL_MS 4 #define DS4_BT_MAX_POLL_INTERVAL_MS 62 #define DS4_GYRO_RES_PER_DEG_S 1024 #define DS4_ACC_RES_PER_G 8192 #define SIXAXIS_INPUT_REPORT_ACC_X_OFFSET 41 #define SIXAXIS_ACC_RES_PER_G 113 static DEFINE_SPINLOCK(sony_dev_list_lock); static LIST_HEAD(sony_device_list); static DEFINE_IDA(sony_device_id_allocator); /* Used for calibration of DS4 accelerometer and gyro. */ struct ds4_calibration_data { int abs_code; short bias; /* Calibration requires scaling against a sensitivity value, which is a * float. Store sensitivity as a fraction to limit floating point * calculations until final calibration. */ int sens_numer; int sens_denom; }; enum ds4_dongle_state { DONGLE_DISCONNECTED, DONGLE_CALIBRATING, DONGLE_CONNECTED, DONGLE_DISABLED }; enum sony_worker { SONY_WORKER_STATE, SONY_WORKER_HOTPLUG }; struct sony_sc { spinlock_t lock; struct list_head list_node; struct hid_device *hdev; struct input_dev *touchpad; struct input_dev *sensor_dev; struct led_classdev *leds[MAX_LEDS]; unsigned long quirks; struct work_struct hotplug_worker; struct work_struct state_worker; void (*send_output_report)(struct sony_sc *); struct power_supply *battery; struct power_supply_desc battery_desc; int device_id; u8 *output_report_dmabuf; #ifdef CONFIG_SONY_FF u8 left; u8 right; #endif u8 mac_address[6]; u8 hotplug_worker_initialized; u8 state_worker_initialized; u8 defer_initialization; u8 cable_state; u8 battery_charging; u8 battery_capacity; u8 led_state[MAX_LEDS]; u8 led_delay_on[MAX_LEDS]; u8 led_delay_off[MAX_LEDS]; u8 led_count; bool timestamp_initialized; u16 prev_timestamp; unsigned int timestamp_us; u8 ds4_bt_poll_interval; enum ds4_dongle_state ds4_dongle_state; /* DS4 calibration data */ struct ds4_calibration_data ds4_calib_data[6]; }; static void sony_set_leds(struct sony_sc *sc); static inline void sony_schedule_work(struct sony_sc *sc, enum sony_worker which) { switch (which) { case SONY_WORKER_STATE: if (!sc->defer_initialization) schedule_work(&sc->state_worker); break; case SONY_WORKER_HOTPLUG: if (sc->hotplug_worker_initialized) schedule_work(&sc->hotplug_worker); break; } } static ssize_t ds4_show_poll_interval(struct device *dev, struct device_attribute *attr, char *buf) { struct hid_device *hdev = to_hid_device(dev); struct sony_sc *sc = hid_get_drvdata(hdev); return snprintf(buf, PAGE_SIZE, "%i\n", sc->ds4_bt_poll_interval); } static ssize_t ds4_store_poll_interval(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct hid_device *hdev = to_hid_device(dev); struct sony_sc *sc = hid_get_drvdata(hdev); unsigned long flags; u8 interval; if (kstrtou8(buf, 0, &interval)) return -EINVAL; if (interval > DS4_BT_MAX_POLL_INTERVAL_MS) return -EINVAL; spin_lock_irqsave(&sc->lock, flags); sc->ds4_bt_poll_interval = interval; spin_unlock_irqrestore(&sc->lock, flags); sony_schedule_work(sc, SONY_WORKER_STATE); return count; } static DEVICE_ATTR(bt_poll_interval, 0644, ds4_show_poll_interval, ds4_store_poll_interval); static u8 *motion_fixup(struct hid_device *hdev, u8 *rdesc, unsigned int *rsize) { *rsize = sizeof(motion_rdesc); return motion_rdesc; } static u8 *ps3remote_fixup(struct hid_device *hdev, u8 *rdesc, unsigned int *rsize) { *rsize = sizeof(ps3remote_rdesc); return ps3remote_rdesc; } static int ps3remote_mapping(struct hid_device *hdev, struct hid_input *hi, struct hid_field *field, struct hid_usage *usage, unsigned long **bit, int *max) { unsigned int key = usage->hid & HID_USAGE; if ((usage->hid & HID_USAGE_PAGE) != HID_UP_BUTTON) return -1; switch (usage->collection_index) { case 1: if (key >= ARRAY_SIZE(ps3remote_keymap_joypad_buttons)) return -1; key = ps3remote_keymap_joypad_buttons[key]; if (!key) return -1; break; case 2: if (key >= ARRAY_SIZE(ps3remote_keymap_remote_buttons)) return -1; key = ps3remote_keymap_remote_buttons[key]; if (!key) return -1; break; default: return -1; } hid_map_usage_clear(hi, usage, bit, max, EV_KEY, key); return 1; } static int navigation_mapping(struct hid_device *hdev, struct hid_input *hi, struct hid_field *field, struct hid_usage *usage, unsigned long **bit, int *max) { if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON) { unsigned int key = usage->hid & HID_USAGE; if (key >= ARRAY_SIZE(sixaxis_keymap)) return -1; key = navigation_keymap[key]; if (!key) return -1; hid_map_usage_clear(hi, usage, bit, max, EV_KEY, key); return 1; } else if (usage->hid == HID_GD_POINTER) { /* See comment in sixaxis_mapping, basically the L2 (and R2) * triggers are reported through GD Pointer. * In addition we ignore any analog button 'axes' and only * support digital buttons. */ switch (usage->usage_index) { case 8: /* L2 */ usage->hid = HID_GD_Z; break; default: return -1; } hid_map_usage_clear(hi, usage, bit, max, EV_ABS, usage->hid & 0xf); return 1; } else if ((usage->hid & HID_USAGE_PAGE) == HID_UP_GENDESK) { unsigned int abs = usage->hid & HID_USAGE; if (abs >= ARRAY_SIZE(navigation_absmap)) return -1; abs = navigation_absmap[abs]; hid_map_usage_clear(hi, usage, bit, max, EV_ABS, abs); return 1; } return -1; } static int sixaxis_mapping(struct hid_device *hdev, struct hid_input *hi, struct hid_field *field, struct hid_usage *usage, unsigned long **bit, int *max) { if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON) { unsigned int key = usage->hid & HID_USAGE; if (key >= ARRAY_SIZE(sixaxis_keymap)) return -1; key = sixaxis_keymap[key]; hid_map_usage_clear(hi, usage, bit, max, EV_KEY, key); return 1; } else if (usage->hid == HID_GD_POINTER) { /* The DS3 provides analog values for most buttons and even * for HAT axes through GD Pointer. L2 and R2 are reported * among these as well instead of as GD Z / RZ. Remap L2 * and R2 and ignore other analog 'button axes' as there is * no good way for reporting them. */ switch (usage->usage_index) { case 8: /* L2 */ usage->hid = HID_GD_Z; break; case 9: /* R2 */ usage->hid = HID_GD_RZ; break; default: return -1; } hid_map_usage_clear(hi, usage, bit, max, EV_ABS, usage->hid & 0xf); return 1; } else if ((usage->hid & HID_USAGE_PAGE) == HID_UP_GENDESK) { unsigned int abs = usage->hid & HID_USAGE; if (abs >= ARRAY_SIZE(sixaxis_absmap)) return -1; abs = sixaxis_absmap[abs]; hid_map_usage_clear(hi, usage, bit, max, EV_ABS, abs); return 1; } return -1; } static int ds4_mapping(struct hid_device *hdev, struct hid_input *hi, struct hid_field *field, struct hid_usage *usage, unsigned long **bit, int *max) { if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON) { unsigned int key = usage->hid & HID_USAGE; if (key >= ARRAY_SIZE(ds4_keymap)) return -1; key = ds4_keymap[key]; hid_map_usage_clear(hi, usage, bit, max, EV_KEY, key); return 1; } else if ((usage->hid & HID_USAGE_PAGE) == HID_UP_GENDESK) { unsigned int abs = usage->hid & HID_USAGE; /* Let the HID parser deal with the HAT. */ if (usage->hid == HID_GD_HATSWITCH) return 0; if (abs >= ARRAY_SIZE(ds4_absmap)) return -1; abs = ds4_absmap[abs]; hid_map_usage_clear(hi, usage, bit, max, EV_ABS, abs); return 1; } return 0; } static u8 *sony_report_fixup(struct hid_device *hdev, u8 *rdesc, unsigned int *rsize) { struct sony_sc *sc = hid_get_drvdata(hdev); if (sc->quirks & (SINO_LITE_CONTROLLER | FUTUREMAX_DANCE_MAT)) return rdesc; /* * Some Sony RF receivers wrongly declare the mouse pointer as a * a constant non-data variable. */ if ((sc->quirks & VAIO_RDESC_CONSTANT) && *rsize >= 56 && /* usage page: generic desktop controls */ /* rdesc[0] == 0x05 && rdesc[1] == 0x01 && */ /* usage: mouse */ rdesc[2] == 0x09 && rdesc[3] == 0x02 && /* input (usage page for x,y axes): constant, variable, relative */ rdesc[54] == 0x81 && rdesc[55] == 0x07) { hid_info(hdev, "Fixing up Sony RF Receiver report descriptor\n"); /* input: data, variable, relative */ rdesc[55] = 0x06; } if (sc->quirks & MOTION_CONTROLLER) return motion_fixup(hdev, rdesc, rsize); if (sc->quirks & PS3REMOTE) return ps3remote_fixup(hdev, rdesc, rsize); return rdesc; } static void sixaxis_parse_report(struct sony_sc *sc, u8 *rd, int size) { static const u8 sixaxis_battery_capacity[] = { 0, 1, 25, 50, 75, 100 }; unsigned long flags; int offset; u8 cable_state, battery_capacity, battery_charging; /* * The sixaxis is charging if the battery value is 0xee * and it is fully charged if the value is 0xef. * It does not report the actual level while charging so it * is set to 100% while charging is in progress. */ offset = (sc->quirks & MOTION_CONTROLLER) ? 12 : 30; if (rd[offset] >= 0xee) { battery_capacity = 100; battery_charging = !(rd[offset] & 0x01); cable_state = 1; } else { u8 index = rd[offset] <= 5 ? rd[offset] : 5; battery_capacity = sixaxis_battery_capacity[index]; battery_charging = 0; cable_state = 0; } spin_lock_irqsave(&sc->lock, flags); sc->cable_state = cable_state; sc->battery_capacity = battery_capacity; sc->battery_charging = battery_charging; spin_unlock_irqrestore(&sc->lock, flags); if (sc->quirks & SIXAXIS_CONTROLLER) { int val; offset = SIXAXIS_INPUT_REPORT_ACC_X_OFFSET; val = ((rd[offset+1] << 8) | rd[offset]) - 511; input_report_abs(sc->sensor_dev, ABS_X, val); /* Y and Z are swapped and inversed */ val = 511 - ((rd[offset+5] << 8) | rd[offset+4]); input_report_abs(sc->sensor_dev, ABS_Y, val); val = 511 - ((rd[offset+3] << 8) | rd[offset+2]); input_report_abs(sc->sensor_dev, ABS_Z, val); input_sync(sc->sensor_dev); } } static void dualshock4_parse_report(struct sony_sc *sc, u8 *rd, int size) { struct hid_input *hidinput = list_entry(sc->hdev->inputs.next, struct hid_input, list); struct input_dev *input_dev = hidinput->input; unsigned long flags; int n, m, offset, num_touch_data, max_touch_data; u8 cable_state, battery_capacity, battery_charging; u16 timestamp; /* When using Bluetooth the header is 2 bytes longer, so skip these. */ int data_offset = (sc->quirks & DUALSHOCK4_CONTROLLER_BT) ? 2 : 0; /* Second bit of third button byte is for the touchpad button. */ offset = data_offset + DS4_INPUT_REPORT_BUTTON_OFFSET; input_report_key(sc->touchpad, BTN_LEFT, rd[offset+2] & 0x2); /* * The default behavior of the Dualshock 4 is to send reports using * report type 1 when running over Bluetooth. However, when feature * report 2 is requested during the controller initialization it starts * sending input reports in report 17. Since report 17 is undefined * in the default HID descriptor, the HID layer won't generate events. * While it is possible (and this was done before) to fixup the HID * descriptor to add this mapping, it was better to do this manually. * The reason is there were various pieces software both open and closed * source, relying on the descriptors to be the same across various * operating systems. If the descriptors wouldn't match some * applications e.g. games on Wine would not be able to function due * to different descriptors, which such applications are not parsing. */ if (rd[0] == 17) { int value; offset = data_offset + DS4_INPUT_REPORT_AXIS_OFFSET; input_report_abs(input_dev, ABS_X, rd[offset]); input_report_abs(input_dev, ABS_Y, rd[offset+1]); input_report_abs(input_dev, ABS_RX, rd[offset+2]); input_report_abs(input_dev, ABS_RY, rd[offset+3]); value = rd[offset+4] & 0xf; if (value > 7) value = 8; /* Center 0, 0 */ input_report_abs(input_dev, ABS_HAT0X, ds4_hat_mapping[value].x); input_report_abs(input_dev, ABS_HAT0Y, ds4_hat_mapping[value].y); input_report_key(input_dev, BTN_WEST, rd[offset+4] & 0x10); input_report_key(input_dev, BTN_SOUTH, rd[offset+4] & 0x20); input_report_key(input_dev, BTN_EAST, rd[offset+4] & 0x40); input_report_key(input_dev, BTN_NORTH, rd[offset+4] & 0x80); input_report_key(input_dev, BTN_TL, rd[offset+5] & 0x1); input_report_key(input_dev, BTN_TR, rd[offset+5] & 0x2); input_report_key(input_dev, BTN_TL2, rd[offset+5] & 0x4); input_report_key(input_dev, BTN_TR2, rd[offset+5] & 0x8); input_report_key(input_dev, BTN_SELECT, rd[offset+5] & 0x10); input_report_key(input_dev, BTN_START, rd[offset+5] & 0x20); input_report_key(input_dev, BTN_THUMBL, rd[offset+5] & 0x40); input_report_key(input_dev, BTN_THUMBR, rd[offset+5] & 0x80); input_report_key(input_dev, BTN_MODE, rd[offset+6] & 0x1); input_report_abs(input_dev, ABS_Z, rd[offset+7]); input_report_abs(input_dev, ABS_RZ, rd[offset+8]); input_sync(input_dev); } /* Convert timestamp (in 5.33us unit) to timestamp_us */ offset = data_offset + DS4_INPUT_REPORT_TIMESTAMP_OFFSET; timestamp = get_unaligned_le16(&rd[offset]); if (!sc->timestamp_initialized) { sc->timestamp_us = ((unsigned int)timestamp * 16) / 3; sc->timestamp_initialized = true; } else { u16 delta; if (sc->prev_timestamp > timestamp) delta = (U16_MAX - sc->prev_timestamp + timestamp + 1); else delta = timestamp - sc->prev_timestamp; sc->timestamp_us += (delta * 16) / 3; } sc->prev_timestamp = timestamp; input_event(sc->sensor_dev, EV_MSC, MSC_TIMESTAMP, sc->timestamp_us); offset = data_offset + DS4_INPUT_REPORT_GYRO_X_OFFSET; for (n = 0; n < 6; n++) { /* Store data in int for more precision during mult_frac. */ int raw_data = (short)((rd[offset+1] << 8) | rd[offset]); struct ds4_calibration_data *calib = &sc->ds4_calib_data[n]; /* High precision is needed during calibration, but the * calibrated values are within 32-bit. * Note: we swap numerator 'x' and 'numer' in mult_frac for * precision reasons so we don't need 64-bit. */ int calib_data = mult_frac(calib->sens_numer, raw_data - calib->bias, calib->sens_denom); input_report_abs(sc->sensor_dev, calib->abs_code, calib_data); offset += 2; } input_sync(sc->sensor_dev); /* * The lower 4 bits of byte 30 (or 32 for BT) contain the battery level * and the 5th bit contains the USB cable state. */ offset = data_offset + DS4_INPUT_REPORT_BATTERY_OFFSET; cable_state = (rd[offset] >> 4) & 0x01; battery_capacity = rd[offset] & 0x0F; /* * When a USB power source is connected the battery level ranges from * 0 to 10, and when running on battery power it ranges from 0 to 9. * A battery level above 10 when plugged in means charge completed. */ if (!cable_state || battery_capacity > 10) battery_charging = 0; else battery_charging = 1; if (!cable_state) battery_capacity++; if (battery_capacity > 10) battery_capacity = 10; battery_capacity *= 10; spin_lock_irqsave(&sc->lock, flags); sc->cable_state = cable_state; sc->battery_capacity = battery_capacity; sc->battery_charging = battery_charging; spin_unlock_irqrestore(&sc->lock, flags); /* * The Dualshock 4 multi-touch trackpad data starts at offset 33 on USB * and 35 on Bluetooth. * The first byte indicates the number of touch data in the report. * Trackpad data starts 2 bytes later (e.g. 35 for USB). */ offset = data_offset + DS4_INPUT_REPORT_TOUCHPAD_OFFSET; max_touch_data = (sc->quirks & DUALSHOCK4_CONTROLLER_BT) ? 4 : 3; if (rd[offset] > 0 && rd[offset] <= max_touch_data) num_touch_data = rd[offset]; else num_touch_data = 1; offset += 1; for (m = 0; m < num_touch_data; m++) { /* Skip past timestamp */ offset += 1; /* * The first 7 bits of the first byte is a counter and bit 8 is * a touch indicator that is 0 when pressed and 1 when not * pressed. * The next 3 bytes are two 12 bit touch coordinates, X and Y. * The data for the second touch is in the same format and * immediately follows the data for the first. */ for (n = 0; n < 2; n++) { u16 x, y; bool active; x = rd[offset+1] | ((rd[offset+2] & 0xF) << 8); y = ((rd[offset+2] & 0xF0) >> 4) | (rd[offset+3] << 4); active = !(rd[offset] >> 7); input_mt_slot(sc->touchpad, n); input_mt_report_slot_state(sc->touchpad, MT_TOOL_FINGER, active); if (active) { input_report_abs(sc->touchpad, ABS_MT_POSITION_X, x); input_report_abs(sc->touchpad, ABS_MT_POSITION_Y, y); } offset += 4; } input_mt_sync_frame(sc->touchpad); input_sync(sc->touchpad); } } static int sony_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *rd, int size) { struct sony_sc *sc = hid_get_drvdata(hdev); /* * Sixaxis HID report has acclerometers/gyro with MSByte first, this * has to be BYTE_SWAPPED before passing up to joystick interface */ if ((sc->quirks & SIXAXIS_CONTROLLER) && rd[0] == 0x01 && size == 49) { /* * When connected via Bluetooth the Sixaxis occasionally sends * a report with the second byte 0xff and the rest zeroed. * * This report does not reflect the actual state of the * controller must be ignored to avoid generating false input * events. */ if (rd[1] == 0xff) return -EINVAL; swap(rd[41], rd[42]); swap(rd[43], rd[44]); swap(rd[45], rd[46]); swap(rd[47], rd[48]); sixaxis_parse_report(sc, rd, size); } else if ((sc->quirks & MOTION_CONTROLLER_BT) && rd[0] == 0x01 && size == 49) { sixaxis_parse_report(sc, rd, size); } else if ((sc->quirks & NAVIGATION_CONTROLLER) && rd[0] == 0x01 && size == 49) { sixaxis_parse_report(sc, rd, size); } else if ((sc->quirks & DUALSHOCK4_CONTROLLER_USB) && rd[0] == 0x01 && size == 64) { dualshock4_parse_report(sc, rd, size); } else if (((sc->quirks & DUALSHOCK4_CONTROLLER_BT) && rd[0] == 0x11 && size == 78)) { /* CRC check */ u8 bthdr = 0xA1; u32 crc; u32 report_crc; crc = crc32_le(0xFFFFFFFF, &bthdr, 1); crc = ~crc32_le(crc, rd, DS4_INPUT_REPORT_0x11_SIZE-4); report_crc = get_unaligned_le32(&rd[DS4_INPUT_REPORT_0x11_SIZE-4]); if (crc != report_crc) { hid_dbg(sc->hdev, "DualShock 4 input report's CRC check failed, received crc 0x%0x != 0x%0x\n", report_crc, crc); return -EILSEQ; } dualshock4_parse_report(sc, rd, size); } else if ((sc->quirks & DUALSHOCK4_DONGLE) && rd[0] == 0x01 && size == 64) { unsigned long flags; enum ds4_dongle_state dongle_state; /* * In the case of a DS4 USB dongle, bit[2] of byte 31 indicates * if a DS4 is actually connected (indicated by '0'). * For non-dongle, this bit is always 0 (connected). */ bool connected = (rd[31] & 0x04) ? false : true; spin_lock_irqsave(&sc->lock, flags); dongle_state = sc->ds4_dongle_state; spin_unlock_irqrestore(&sc->lock, flags); /* * The dongle always sends input reports even when no * DS4 is attached. When a DS4 is connected, we need to * obtain calibration data before we can use it. * The code below tracks dongle state and kicks of * calibration when needed and only allows us to process * input if a DS4 is actually connected. */ if (dongle_state == DONGLE_DISCONNECTED && connected) { hid_info(sc->hdev, "DualShock 4 USB dongle: controller connected\n"); sony_set_leds(sc); spin_lock_irqsave(&sc->lock, flags); sc->ds4_dongle_state = DONGLE_CALIBRATING; spin_unlock_irqrestore(&sc->lock, flags); sony_schedule_work(sc, SONY_WORKER_HOTPLUG); /* Don't process the report since we don't have * calibration data, but let hidraw have it anyway. */ return 0; } else if ((dongle_state == DONGLE_CONNECTED || dongle_state == DONGLE_DISABLED) && !connected) { hid_info(sc->hdev, "DualShock 4 USB dongle: controller disconnected\n"); spin_lock_irqsave(&sc->lock, flags); sc->ds4_dongle_state = DONGLE_DISCONNECTED; spin_unlock_irqrestore(&sc->lock, flags); /* Return 0, so hidraw can get the report. */ return 0; } else if (dongle_state == DONGLE_CALIBRATING || dongle_state == DONGLE_DISABLED || dongle_state == DONGLE_DISCONNECTED) { /* Return 0, so hidraw can get the report. */ return 0; } dualshock4_parse_report(sc, rd, size); } if (sc->defer_initialization) { sc->defer_initialization = 0; sony_schedule_work(sc, SONY_WORKER_STATE); } return 0; } static int sony_mapping(struct hid_device *hdev, struct hid_input *hi, struct hid_field *field, struct hid_usage *usage, unsigned long **bit, int *max) { struct sony_sc *sc = hid_get_drvdata(hdev); if (sc->quirks & BUZZ_CONTROLLER) { unsigned int key = usage->hid & HID_USAGE; if ((usage->hid & HID_USAGE_PAGE) != HID_UP_BUTTON) return -1; switch (usage->collection_index) { case 1: if (key >= ARRAY_SIZE(buzz_keymap)) return -1; key = buzz_keymap[key]; if (!key) return -1; break; default: return -1; } hid_map_usage_clear(hi, usage, bit, max, EV_KEY, key); return 1; } if (sc->quirks & PS3REMOTE) return ps3remote_mapping(hdev, hi, field, usage, bit, max); if (sc->quirks & NAVIGATION_CONTROLLER) return navigation_mapping(hdev, hi, field, usage, bit, max); if (sc->quirks & SIXAXIS_CONTROLLER) return sixaxis_mapping(hdev, hi, field, usage, bit, max); if (sc->quirks & DUALSHOCK4_CONTROLLER) return ds4_mapping(hdev, hi, field, usage, bit, max); /* Let hid-core decide for the others */ return 0; } static int sony_register_touchpad(struct sony_sc *sc, int touch_count, int w, int h) { size_t name_sz; char *name; int ret; sc->touchpad = input_allocate_device(); if (!sc->touchpad) return -ENOMEM; input_set_drvdata(sc->touchpad, sc); sc->touchpad->dev.parent = &sc->hdev->dev; sc->touchpad->phys = sc->hdev->phys; sc->touchpad->uniq = sc->hdev->uniq; sc->touchpad->id.bustype = sc->hdev->bus; sc->touchpad->id.vendor = sc->hdev->vendor; sc->touchpad->id.product = sc->hdev->product; sc->touchpad->id.version = sc->hdev->version; /* Append a suffix to the controller name as there are various * DS4 compatible non-Sony devices with different names. */ name_sz = strlen(sc->hdev->name) + sizeof(DS4_TOUCHPAD_SUFFIX); name = kzalloc(name_sz, GFP_KERNEL); if (!name) { ret = -ENOMEM; goto err; } snprintf(name, name_sz, "%s" DS4_TOUCHPAD_SUFFIX, sc->hdev->name); sc->touchpad->name = name; ret = input_mt_init_slots(sc->touchpad, touch_count, INPUT_MT_POINTER); if (ret < 0) goto err; /* We map the button underneath the touchpad to BTN_LEFT. */ __set_bit(EV_KEY, sc->touchpad->evbit); __set_bit(BTN_LEFT, sc->touchpad->keybit); __set_bit(INPUT_PROP_BUTTONPAD, sc->touchpad->propbit); input_set_abs_params(sc->touchpad, ABS_MT_POSITION_X, 0, w, 0, 0); input_set_abs_params(sc->touchpad, ABS_MT_POSITION_Y, 0, h, 0, 0); ret = input_register_device(sc->touchpad); if (ret < 0) goto err; return 0; err: kfree(sc->touchpad->name); sc->touchpad->name = NULL; input_free_device(sc->touchpad); sc->touchpad = NULL; return ret; } static void sony_unregister_touchpad(struct sony_sc *sc) { if (!sc->touchpad) return; kfree(sc->touchpad->name); sc->touchpad->name = NULL; input_unregister_device(sc->touchpad); sc->touchpad = NULL; } static int sony_register_sensors(struct sony_sc *sc) { size_t name_sz; char *name; int ret; int range; sc->sensor_dev = input_allocate_device(); if (!sc->sensor_dev) return -ENOMEM; input_set_drvdata(sc->sensor_dev, sc); sc->sensor_dev->dev.parent = &sc->hdev->dev; sc->sensor_dev->phys = sc->hdev->phys; sc->sensor_dev->uniq = sc->hdev->uniq; sc->sensor_dev->id.bustype = sc->hdev->bus; sc->sensor_dev->id.vendor = sc->hdev->vendor; sc->sensor_dev->id.product = sc->hdev->product; sc->sensor_dev->id.version = sc->hdev->version; /* Append a suffix to the controller name as there are various * DS4 compatible non-Sony devices with different names. */ name_sz = strlen(sc->hdev->name) + sizeof(SENSOR_SUFFIX); name = kzalloc(name_sz, GFP_KERNEL); if (!name) { ret = -ENOMEM; goto err; } snprintf(name, name_sz, "%s" SENSOR_SUFFIX, sc->hdev->name); sc->sensor_dev->name = name; if (sc->quirks & SIXAXIS_CONTROLLER) { /* For the DS3 we only support the accelerometer, which works * quite well even without calibration. The device also has * a 1-axis gyro, but it is very difficult to manage from within * the driver even to get data, the sensor is inaccurate and * the behavior is very different between hardware revisions. */ input_set_abs_params(sc->sensor_dev, ABS_X, -512, 511, 4, 0); input_set_abs_params(sc->sensor_dev, ABS_Y, -512, 511, 4, 0); input_set_abs_params(sc->sensor_dev, ABS_Z, -512, 511, 4, 0); input_abs_set_res(sc->sensor_dev, ABS_X, SIXAXIS_ACC_RES_PER_G); input_abs_set_res(sc->sensor_dev, ABS_Y, SIXAXIS_ACC_RES_PER_G); input_abs_set_res(sc->sensor_dev, ABS_Z, SIXAXIS_ACC_RES_PER_G); } else if (sc->quirks & DUALSHOCK4_CONTROLLER) { range = DS4_ACC_RES_PER_G*4; input_set_abs_params(sc->sensor_dev, ABS_X, -range, range, 16, 0); input_set_abs_params(sc->sensor_dev, ABS_Y, -range, range, 16, 0); input_set_abs_params(sc->sensor_dev, ABS_Z, -range, range, 16, 0); input_abs_set_res(sc->sensor_dev, ABS_X, DS4_ACC_RES_PER_G); input_abs_set_res(sc->sensor_dev, ABS_Y, DS4_ACC_RES_PER_G); input_abs_set_res(sc->sensor_dev, ABS_Z, DS4_ACC_RES_PER_G); range = DS4_GYRO_RES_PER_DEG_S*2048; input_set_abs_params(sc->sensor_dev, ABS_RX, -range, range, 16, 0); input_set_abs_params(sc->sensor_dev, ABS_RY, -range, range, 16, 0); input_set_abs_params(sc->sensor_dev, ABS_RZ, -range, range, 16, 0); input_abs_set_res(sc->sensor_dev, ABS_RX, DS4_GYRO_RES_PER_DEG_S); input_abs_set_res(sc->sensor_dev, ABS_RY, DS4_GYRO_RES_PER_DEG_S); input_abs_set_res(sc->sensor_dev, ABS_RZ, DS4_GYRO_RES_PER_DEG_S); __set_bit(EV_MSC, sc->sensor_dev->evbit); __set_bit(MSC_TIMESTAMP, sc->sensor_dev->mscbit); } __set_bit(INPUT_PROP_ACCELEROMETER, sc->sensor_dev->propbit); ret = input_register_device(sc->sensor_dev); if (ret < 0) goto err; return 0; err: kfree(sc->sensor_dev->name); sc->sensor_dev->name = NULL; input_free_device(sc->sensor_dev); sc->sensor_dev = NULL; return ret; } static void sony_unregister_sensors(struct sony_sc *sc) { if (!sc->sensor_dev) return; kfree(sc->sensor_dev->name); sc->sensor_dev->name = NULL; input_unregister_device(sc->sensor_dev); sc->sensor_dev = NULL; } /* * Sending HID_REQ_GET_REPORT changes the operation mode of the ps3 controller * to "operational". Without this, the ps3 controller will not report any * events. */ static int sixaxis_set_operational_usb(struct hid_device *hdev) { const int buf_size = max(SIXAXIS_REPORT_0xF2_SIZE, SIXAXIS_REPORT_0xF5_SIZE); u8 *buf; int ret; buf = kmalloc(buf_size, GFP_KERNEL); if (!buf) return -ENOMEM; ret = hid_hw_raw_request(hdev, 0xf2, buf, SIXAXIS_REPORT_0xF2_SIZE, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret < 0) { hid_err(hdev, "can't set operational mode: step 1\n"); goto out; } /* * Some compatible controllers like the Speedlink Strike FX and * Gasia need another query plus an USB interrupt to get operational. */ ret = hid_hw_raw_request(hdev, 0xf5, buf, SIXAXIS_REPORT_0xF5_SIZE, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret < 0) { hid_err(hdev, "can't set operational mode: step 2\n"); goto out; } ret = hid_hw_output_report(hdev, buf, 1); if (ret < 0) { hid_info(hdev, "can't set operational mode: step 3, ignoring\n"); ret = 0; } out: kfree(buf); return ret; } static int sixaxis_set_operational_bt(struct hid_device *hdev) { static const u8 report[] = { 0xf4, 0x42, 0x03, 0x00, 0x00 }; u8 *buf; int ret; buf = kmemdup(report, sizeof(report), GFP_KERNEL); if (!buf) return -ENOMEM; ret = hid_hw_raw_request(hdev, buf[0], buf, sizeof(report), HID_FEATURE_REPORT, HID_REQ_SET_REPORT); kfree(buf); return ret; } /* * Request DS4 calibration data for the motion sensors. * For Bluetooth this also affects the operating mode (see below). */ static int dualshock4_get_calibration_data(struct sony_sc *sc) { u8 *buf; int ret; short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; short gyro_speed_plus, gyro_speed_minus; short acc_x_plus, acc_x_minus; short acc_y_plus, acc_y_minus; short acc_z_plus, acc_z_minus; int speed_2x; int range_2g; /* For Bluetooth we use a different request, which supports CRC. * Note: in Bluetooth mode feature report 0x02 also changes the state * of the controller, so that it sends input reports of type 0x11. */ if (sc->quirks & (DUALSHOCK4_CONTROLLER_USB | DUALSHOCK4_DONGLE)) { buf = kmalloc(DS4_FEATURE_REPORT_0x02_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; ret = hid_hw_raw_request(sc->hdev, 0x02, buf, DS4_FEATURE_REPORT_0x02_SIZE, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret < 0) goto err_stop; } else { u8 bthdr = 0xA3; u32 crc; u32 report_crc; int retries; buf = kmalloc(DS4_FEATURE_REPORT_0x05_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; for (retries = 0; retries < 3; retries++) { ret = hid_hw_raw_request(sc->hdev, 0x05, buf, DS4_FEATURE_REPORT_0x05_SIZE, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret < 0) goto err_stop; /* CRC check */ crc = crc32_le(0xFFFFFFFF, &bthdr, 1); crc = ~crc32_le(crc, buf, DS4_FEATURE_REPORT_0x05_SIZE-4); report_crc = get_unaligned_le32(&buf[DS4_FEATURE_REPORT_0x05_SIZE-4]); if (crc != report_crc) { hid_warn(sc->hdev, "DualShock 4 calibration report's CRC check failed, received crc 0x%0x != 0x%0x\n", report_crc, crc); if (retries < 2) { hid_warn(sc->hdev, "Retrying DualShock 4 get calibration report request\n"); continue; } else { ret = -EILSEQ; goto err_stop; } } else { break; } } } gyro_pitch_bias = get_unaligned_le16(&buf[1]); gyro_yaw_bias = get_unaligned_le16(&buf[3]); gyro_roll_bias = get_unaligned_le16(&buf[5]); if (sc->quirks & DUALSHOCK4_CONTROLLER_USB) { gyro_pitch_plus = get_unaligned_le16(&buf[7]); gyro_pitch_minus = get_unaligned_le16(&buf[9]); gyro_yaw_plus = get_unaligned_le16(&buf[11]); gyro_yaw_minus = get_unaligned_le16(&buf[13]); gyro_roll_plus = get_unaligned_le16(&buf[15]); gyro_roll_minus = get_unaligned_le16(&buf[17]); } else { /* BT + Dongle */ gyro_pitch_plus = get_unaligned_le16(&buf[7]); gyro_yaw_plus = get_unaligned_le16(&buf[9]); gyro_roll_plus = get_unaligned_le16(&buf[11]); gyro_pitch_minus = get_unaligned_le16(&buf[13]); gyro_yaw_minus = get_unaligned_le16(&buf[15]); gyro_roll_minus = get_unaligned_le16(&buf[17]); } gyro_speed_plus = get_unaligned_le16(&buf[19]); gyro_speed_minus = get_unaligned_le16(&buf[21]); acc_x_plus = get_unaligned_le16(&buf[23]); acc_x_minus = get_unaligned_le16(&buf[25]); acc_y_plus = get_unaligned_le16(&buf[27]); acc_y_minus = get_unaligned_le16(&buf[29]); acc_z_plus = get_unaligned_le16(&buf[31]); acc_z_minus = get_unaligned_le16(&buf[33]); /* Set gyroscope calibration and normalization parameters. * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s. */ speed_2x = (gyro_speed_plus + gyro_speed_minus); sc->ds4_calib_data[0].abs_code = ABS_RX; sc->ds4_calib_data[0].bias = gyro_pitch_bias; sc->ds4_calib_data[0].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S; sc->ds4_calib_data[0].sens_denom = gyro_pitch_plus - gyro_pitch_minus; sc->ds4_calib_data[1].abs_code = ABS_RY; sc->ds4_calib_data[1].bias = gyro_yaw_bias; sc->ds4_calib_data[1].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S; sc->ds4_calib_data[1].sens_denom = gyro_yaw_plus - gyro_yaw_minus; sc->ds4_calib_data[2].abs_code = ABS_RZ; sc->ds4_calib_data[2].bias = gyro_roll_bias; sc->ds4_calib_data[2].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S; sc->ds4_calib_data[2].sens_denom = gyro_roll_plus - gyro_roll_minus; /* Set accelerometer calibration and normalization parameters. * Data values will be normalized to 1/DS4_ACC_RES_PER_G G. */ range_2g = acc_x_plus - acc_x_minus; sc->ds4_calib_data[3].abs_code = ABS_X; sc->ds4_calib_data[3].bias = acc_x_plus - range_2g / 2; sc->ds4_calib_data[3].sens_numer = 2*DS4_ACC_RES_PER_G; sc->ds4_calib_data[3].sens_denom = range_2g; range_2g = acc_y_plus - acc_y_minus; sc->ds4_calib_data[4].abs_code = ABS_Y; sc->ds4_calib_data[4].bias = acc_y_plus - range_2g / 2; sc->ds4_calib_data[4].sens_numer = 2*DS4_ACC_RES_PER_G; sc->ds4_calib_data[4].sens_denom = range_2g; range_2g = acc_z_plus - acc_z_minus; sc->ds4_calib_data[5].abs_code = ABS_Z; sc->ds4_calib_data[5].bias = acc_z_plus - range_2g / 2; sc->ds4_calib_data[5].sens_numer = 2*DS4_ACC_RES_PER_G; sc->ds4_calib_data[5].sens_denom = range_2g; err_stop: kfree(buf); return ret; } static void dualshock4_calibration_work(struct work_struct *work) { struct sony_sc *sc = container_of(work, struct sony_sc, hotplug_worker); unsigned long flags; enum ds4_dongle_state dongle_state; int ret; ret = dualshock4_get_calibration_data(sc); if (ret < 0) { /* This call is very unlikely to fail for the dongle. When it * fails we are probably in a very bad state, so mark the * dongle as disabled. We will re-enable the dongle if a new * DS4 hotplug is detect from sony_raw_event as any issues * are likely resolved then (the dongle is quite stupid). */ hid_err(sc->hdev, "DualShock 4 USB dongle: calibration failed, disabling device\n"); dongle_state = DONGLE_DISABLED; } else { hid_info(sc->hdev, "DualShock 4 USB dongle: calibration completed\n"); dongle_state = DONGLE_CONNECTED; } spin_lock_irqsave(&sc->lock, flags); sc->ds4_dongle_state = dongle_state; spin_unlock_irqrestore(&sc->lock, flags); } static void sixaxis_set_leds_from_id(struct sony_sc *sc) { static const u8 sixaxis_leds[10][4] = { { 0x01, 0x00, 0x00, 0x00 }, { 0x00, 0x01, 0x00, 0x00 }, { 0x00, 0x00, 0x01, 0x00 }, { 0x00, 0x00, 0x00, 0x01 }, { 0x01, 0x00, 0x00, 0x01 }, { 0x00, 0x01, 0x00, 0x01 }, { 0x00, 0x00, 0x01, 0x01 }, { 0x01, 0x00, 0x01, 0x01 }, { 0x00, 0x01, 0x01, 0x01 }, { 0x01, 0x01, 0x01, 0x01 } }; int id = sc->device_id; BUILD_BUG_ON(MAX_LEDS < ARRAY_SIZE(sixaxis_leds[0])); if (id < 0) return; id %= 10; memcpy(sc->led_state, sixaxis_leds[id], sizeof(sixaxis_leds[id])); } static void dualshock4_set_leds_from_id(struct sony_sc *sc) { /* The first 4 color/index entries match what the PS4 assigns */ static const u8 color_code[7][3] = { /* Blue */ { 0x00, 0x00, 0x40 }, /* Red */ { 0x40, 0x00, 0x00 }, /* Green */ { 0x00, 0x40, 0x00 }, /* Pink */ { 0x20, 0x00, 0x20 }, /* Orange */ { 0x02, 0x01, 0x00 }, /* Teal */ { 0x00, 0x01, 0x01 }, /* White */ { 0x01, 0x01, 0x01 } }; int id = sc->device_id; BUILD_BUG_ON(MAX_LEDS < ARRAY_SIZE(color_code[0])); if (id < 0) return; id %= 7; memcpy(sc->led_state, color_code[id], sizeof(color_code[id])); } static void buzz_set_leds(struct sony_sc *sc) { struct hid_device *hdev = sc->hdev; struct list_head *report_list = &hdev->report_enum[HID_OUTPUT_REPORT].report_list; struct hid_report *report = list_entry(report_list->next, struct hid_report, list); s32 *value = report->field[0]->value; BUILD_BUG_ON(MAX_LEDS < 4); value[0] = 0x00; value[1] = sc->led_state[0] ? 0xff : 0x00; value[2] = sc->led_state[1] ? 0xff : 0x00; value[3] = sc->led_state[2] ? 0xff : 0x00; value[4] = sc->led_state[3] ? 0xff : 0x00; value[5] = 0x00; value[6] = 0x00; hid_hw_request(hdev, report, HID_REQ_SET_REPORT); } static void sony_set_leds(struct sony_sc *sc) { if (!(sc->quirks & BUZZ_CONTROLLER)) sony_schedule_work(sc, SONY_WORKER_STATE); else buzz_set_leds(sc); } static void sony_led_set_brightness(struct led_classdev *led, enum led_brightness value) { struct device *dev = led->dev->parent; struct hid_device *hdev = to_hid_device(dev); struct sony_sc *drv_data; int n; int force_update; drv_data = hid_get_drvdata(hdev); if (!drv_data) { hid_err(hdev, "No device data\n"); return; } /* * The Sixaxis on USB will override any LED settings sent to it * and keep flashing all of the LEDs until the PS button is pressed. * Updates, even if redundant, must be always be sent to the * controller to avoid having to toggle the state of an LED just to * stop the flashing later on. */ force_update = !!(drv_data->quirks & SIXAXIS_CONTROLLER_USB); for (n = 0; n < drv_data->led_count; n++) { if (led == drv_data->leds[n] && (force_update || (value != drv_data->led_state[n] || drv_data->led_delay_on[n] || drv_data->led_delay_off[n]))) { drv_data->led_state[n] = value; /* Setting the brightness stops the blinking */ drv_data->led_delay_on[n] = 0; drv_data->led_delay_off[n] = 0; sony_set_leds(drv_data); break; } } } static enum led_brightness sony_led_get_brightness(struct led_classdev *led) { struct device *dev = led->dev->parent; struct hid_device *hdev = to_hid_device(dev); struct sony_sc *drv_data; int n; drv_data = hid_get_drvdata(hdev); if (!drv_data) { hid_err(hdev, "No device data\n"); return LED_OFF; } for (n = 0; n < drv_data->led_count; n++) { if (led == drv_data->leds[n]) return drv_data->led_state[n]; } return LED_OFF; } static int sony_led_blink_set(struct led_classdev *led, unsigned long *delay_on, unsigned long *delay_off) { struct device *dev = led->dev->parent; struct hid_device *hdev = to_hid_device(dev); struct sony_sc *drv_data = hid_get_drvdata(hdev); int n; u8 new_on, new_off; if (!drv_data) { hid_err(hdev, "No device data\n"); return -EINVAL; } /* Max delay is 255 deciseconds or 2550 milliseconds */ if (*delay_on > 2550) *delay_on = 2550; if (*delay_off > 2550) *delay_off = 2550; /* Blink at 1 Hz if both values are zero */ if (!*delay_on && !*delay_off) *delay_on = *delay_off = 500; new_on = *delay_on / 10; new_off = *delay_off / 10; for (n = 0; n < drv_data->led_count; n++) { if (led == drv_data->leds[n]) break; } /* This LED is not registered on this device */ if (n >= drv_data->led_count) return -EINVAL; /* Don't schedule work if the values didn't change */ if (new_on != drv_data->led_delay_on[n] || new_off != drv_data->led_delay_off[n]) { drv_data->led_delay_on[n] = new_on; drv_data->led_delay_off[n] = new_off; sony_schedule_work(drv_data, SONY_WORKER_STATE); } return 0; } static void sony_leds_remove(struct sony_sc *sc) { struct led_classdev *led; int n; BUG_ON(!(sc->quirks & SONY_LED_SUPPORT)); for (n = 0; n < sc->led_count; n++) { led = sc->leds[n]; sc->leds[n] = NULL; if (!led) continue; led_classdev_unregister(led); kfree(led); } sc->led_count = 0; } static int sony_leds_init(struct sony_sc *sc) { struct hid_device *hdev = sc->hdev; int n, ret = 0; int use_ds4_names; struct led_classdev *led; size_t name_sz; char *name; size_t name_len; const char *name_fmt; static const char * const ds4_name_str[] = { "red", "green", "blue", "global" }; u8 max_brightness[MAX_LEDS] = { [0 ... (MAX_LEDS - 1)] = 1 }; u8 use_hw_blink[MAX_LEDS] = { 0 }; BUG_ON(!(sc->quirks & SONY_LED_SUPPORT)); if (sc->quirks & BUZZ_CONTROLLER) { sc->led_count = 4; use_ds4_names = 0; name_len = strlen("::buzz#"); name_fmt = "%s::buzz%d"; /* Validate expected report characteristics. */ if (!hid_validate_values(hdev, HID_OUTPUT_REPORT, 0, 0, 7)) return -ENODEV; } else if (sc->quirks & DUALSHOCK4_CONTROLLER) { dualshock4_set_leds_from_id(sc); sc->led_state[3] = 1; sc->led_count = 4; memset(max_brightness, 255, 3); use_hw_blink[3] = 1; use_ds4_names = 1; name_len = 0; name_fmt = "%s:%s"; } else if (sc->quirks & MOTION_CONTROLLER) { sc->led_count = 3; memset(max_brightness, 255, 3); use_ds4_names = 1; name_len = 0; name_fmt = "%s:%s"; } else if (sc->quirks & NAVIGATION_CONTROLLER) { static const u8 navigation_leds[4] = {0x01, 0x00, 0x00, 0x00}; memcpy(sc->led_state, navigation_leds, sizeof(navigation_leds)); sc->led_count = 1; memset(use_hw_blink, 1, 4); use_ds4_names = 0; name_len = strlen("::sony#"); name_fmt = "%s::sony%d"; } else { sixaxis_set_leds_from_id(sc); sc->led_count = 4; memset(use_hw_blink, 1, 4); use_ds4_names = 0; name_len = strlen("::sony#"); name_fmt = "%s::sony%d"; } /* * Clear LEDs as we have no way of reading their initial state. This is * only relevant if the driver is loaded after somebody actively set the * LEDs to on */ sony_set_leds(sc); name_sz = strlen(dev_name(&hdev->dev)) + name_len + 1; for (n = 0; n < sc->led_count; n++) { if (use_ds4_names) name_sz = strlen(dev_name(&hdev->dev)) + strlen(ds4_name_str[n]) + 2; led = kzalloc(sizeof(struct led_classdev) + name_sz, GFP_KERNEL); if (!led) { hid_err(hdev, "Couldn't allocate memory for LED %d\n", n); ret = -ENOMEM; goto error_leds; } name = (void *)(&led[1]); if (use_ds4_names) snprintf(name, name_sz, name_fmt, dev_name(&hdev->dev), ds4_name_str[n]); else snprintf(name, name_sz, name_fmt, dev_name(&hdev->dev), n + 1); led->name = name; led->brightness = sc->led_state[n]; led->max_brightness = max_brightness[n]; led->flags = LED_CORE_SUSPENDRESUME; led->brightness_get = sony_led_get_brightness; led->brightness_set = sony_led_set_brightness; if (use_hw_blink[n]) led->blink_set = sony_led_blink_set; sc->leds[n] = led; ret = led_classdev_register(&hdev->dev, led); if (ret) { hid_err(hdev, "Failed to register LED %d\n", n); sc->leds[n] = NULL; kfree(led); goto error_leds; } } return ret; error_leds: sony_leds_remove(sc); return ret; } static void sixaxis_send_output_report(struct sony_sc *sc) { static const union sixaxis_output_report_01 default_report = { .buf = { 0x01, 0x01, 0xff, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x27, 0x10, 0x00, 0x32, 0xff, 0x27, 0x10, 0x00, 0x32, 0xff, 0x27, 0x10, 0x00, 0x32, 0xff, 0x27, 0x10, 0x00, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00 } }; struct sixaxis_output_report *report = (struct sixaxis_output_report *)sc->output_report_dmabuf; int n; /* Initialize the report with default values */ memcpy(report, &default_report, sizeof(struct sixaxis_output_report)); #ifdef CONFIG_SONY_FF report->rumble.right_motor_on = sc->right ? 1 : 0; report->rumble.left_motor_force = sc->left; #endif report->leds_bitmap |= sc->led_state[0] << 1; report->leds_bitmap |= sc->led_state[1] << 2; report->leds_bitmap |= sc->led_state[2] << 3; report->leds_bitmap |= sc->led_state[3] << 4; /* Set flag for all leds off, required for 3rd party INTEC controller */ if ((report->leds_bitmap & 0x1E) == 0) report->leds_bitmap |= 0x20; /* * The LEDs in the report are indexed in reverse order to their * corresponding light on the controller. * Index 0 = LED 4, index 1 = LED 3, etc... * * In the case of both delay values being zero (blinking disabled) the * default report values should be used or the controller LED will be * always off. */ for (n = 0; n < 4; n++) { if (sc->led_delay_on[n] || sc->led_delay_off[n]) { report->led[3 - n].duty_off = sc->led_delay_off[n]; report->led[3 - n].duty_on = sc->led_delay_on[n]; } } hid_hw_raw_request(sc->hdev, report->report_id, (u8 *)report, sizeof(struct sixaxis_output_report), HID_OUTPUT_REPORT, HID_REQ_SET_REPORT); } static void dualshock4_send_output_report(struct sony_sc *sc) { struct hid_device *hdev = sc->hdev; u8 *buf = sc->output_report_dmabuf; int offset; /* * NOTE: The lower 6 bits of buf[1] field of the Bluetooth report * control the interval at which Dualshock 4 reports data: * 0x00 - 1ms * 0x01 - 1ms * 0x02 - 2ms * 0x3E - 62ms * 0x3F - disabled */ if (sc->quirks & (DUALSHOCK4_CONTROLLER_USB | DUALSHOCK4_DONGLE)) { memset(buf, 0, DS4_OUTPUT_REPORT_0x05_SIZE); buf[0] = 0x05; buf[1] = 0x07; /* blink + LEDs + motor */ offset = 4; } else { memset(buf, 0, DS4_OUTPUT_REPORT_0x11_SIZE); buf[0] = 0x11; buf[1] = 0xC0 /* HID + CRC */ | sc->ds4_bt_poll_interval; buf[3] = 0x07; /* blink + LEDs + motor */ offset = 6; } #ifdef CONFIG_SONY_FF buf[offset++] = sc->right; buf[offset++] = sc->left; #else offset += 2; #endif /* LED 3 is the global control */ if (sc->led_state[3]) { buf[offset++] = sc->led_state[0]; buf[offset++] = sc->led_state[1]; buf[offset++] = sc->led_state[2]; } else { offset += 3; } /* If both delay values are zero the DualShock 4 disables blinking. */ buf[offset++] = sc->led_delay_on[3]; buf[offset++] = sc->led_delay_off[3]; if (sc->quirks & (DUALSHOCK4_CONTROLLER_USB | DUALSHOCK4_DONGLE)) hid_hw_output_report(hdev, buf, DS4_OUTPUT_REPORT_0x05_SIZE); else { /* CRC generation */ u8 bthdr = 0xA2; u32 crc; crc = crc32_le(0xFFFFFFFF, &bthdr, 1); crc = ~crc32_le(crc, buf, DS4_OUTPUT_REPORT_0x11_SIZE-4); put_unaligned_le32(crc, &buf[74]); hid_hw_output_report(hdev, buf, DS4_OUTPUT_REPORT_0x11_SIZE); } } static void motion_send_output_report(struct sony_sc *sc) { struct hid_device *hdev = sc->hdev; struct motion_output_report_02 *report = (struct motion_output_report_02 *)sc->output_report_dmabuf; memset(report, 0, MOTION_REPORT_0x02_SIZE); report->type = 0x02; /* set leds */ report->r = sc->led_state[0]; report->g = sc->led_state[1]; report->b = sc->led_state[2]; #ifdef CONFIG_SONY_FF report->rumble = max(sc->right, sc->left); #endif hid_hw_output_report(hdev, (u8 *)report, MOTION_REPORT_0x02_SIZE); } static inline void sony_send_output_report(struct sony_sc *sc) { if (sc->send_output_report) sc->send_output_report(sc); } static void sony_state_worker(struct work_struct *work) { struct sony_sc *sc = container_of(work, struct sony_sc, state_worker); sc->send_output_report(sc); } static int sony_allocate_output_report(struct sony_sc *sc) { if ((sc->quirks & SIXAXIS_CONTROLLER) || (sc->quirks & NAVIGATION_CONTROLLER)) sc->output_report_dmabuf = kmalloc(sizeof(union sixaxis_output_report_01), GFP_KERNEL); else if (sc->quirks & DUALSHOCK4_CONTROLLER_BT) sc->output_report_dmabuf = kmalloc(DS4_OUTPUT_REPORT_0x11_SIZE, GFP_KERNEL); else if (sc->quirks & (DUALSHOCK4_CONTROLLER_USB | DUALSHOCK4_DONGLE)) sc->output_report_dmabuf = kmalloc(DS4_OUTPUT_REPORT_0x05_SIZE, GFP_KERNEL); else if (sc->quirks & MOTION_CONTROLLER) sc->output_report_dmabuf = kmalloc(MOTION_REPORT_0x02_SIZE, GFP_KERNEL); else return 0; if (!sc->output_report_dmabuf) return -ENOMEM; return 0; } #ifdef CONFIG_SONY_FF static int sony_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct hid_device *hid = input_get_drvdata(dev); struct sony_sc *sc = hid_get_drvdata(hid); if (effect->type != FF_RUMBLE) return 0; sc->left = effect->u.rumble.strong_magnitude / 256; sc->right = effect->u.rumble.weak_magnitude / 256; sony_schedule_work(sc, SONY_WORKER_STATE); return 0; } static int sony_init_ff(struct sony_sc *sc) { struct hid_input *hidinput = list_entry(sc->hdev->inputs.next, struct hid_input, list); struct input_dev *input_dev = hidinput->input; input_set_capability(input_dev, EV_FF, FF_RUMBLE); return input_ff_create_memless(input_dev, NULL, sony_play_effect); } #else static int sony_init_ff(struct sony_sc *sc) { return 0; } #endif static int sony_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct sony_sc *sc = power_supply_get_drvdata(psy); unsigned long flags; int ret = 0; u8 battery_charging, battery_capacity, cable_state; spin_lock_irqsave(&sc->lock, flags); battery_charging = sc->battery_charging; battery_capacity = sc->battery_capacity; cable_state = sc->cable_state; spin_unlock_irqrestore(&sc->lock, flags); switch (psp) { case POWER_SUPPLY_PROP_PRESENT: val->intval = 1; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_DEVICE; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = battery_capacity; break; case POWER_SUPPLY_PROP_STATUS: if (battery_charging) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (battery_capacity == 100 && cable_state) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; default: ret = -EINVAL; break; } return ret; } static int sony_battery_probe(struct sony_sc *sc, int append_dev_id) { const char *battery_str_fmt = append_dev_id ? "sony_controller_battery_%pMR_%i" : "sony_controller_battery_%pMR"; struct power_supply_config psy_cfg = { .drv_data = sc, }; struct hid_device *hdev = sc->hdev; int ret; /* * Set the default battery level to 100% to avoid low battery warnings * if the battery is polled before the first device report is received. */ sc->battery_capacity = 100; sc->battery_desc.properties = sony_battery_props; sc->battery_desc.num_properties = ARRAY_SIZE(sony_battery_props); sc->battery_desc.get_property = sony_battery_get_property; sc->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY; sc->battery_desc.use_for_apm = 0; sc->battery_desc.name = kasprintf(GFP_KERNEL, battery_str_fmt, sc->mac_address, sc->device_id); if (!sc->battery_desc.name) return -ENOMEM; sc->battery = power_supply_register(&hdev->dev, &sc->battery_desc, &psy_cfg); if (IS_ERR(sc->battery)) { ret = PTR_ERR(sc->battery); hid_err(hdev, "Unable to register battery device\n"); goto err_free; } power_supply_powers(sc->battery, &hdev->dev); return 0; err_free: kfree(sc->battery_desc.name); sc->battery_desc.name = NULL; return ret; } static void sony_battery_remove(struct sony_sc *sc) { if (!sc->battery_desc.name) return; power_supply_unregister(sc->battery); kfree(sc->battery_desc.name); sc->battery_desc.name = NULL; } /* * If a controller is plugged in via USB while already connected via Bluetooth * it will show up as two devices. A global list of connected controllers and * their MAC addresses is maintained to ensure that a device is only connected * once. * * Some USB-only devices masquerade as Sixaxis controllers and all have the * same dummy Bluetooth address, so a comparison of the connection type is * required. Devices are only rejected in the case where two devices have * matching Bluetooth addresses on different bus types. */ static inline int sony_compare_connection_type(struct sony_sc *sc0, struct sony_sc *sc1) { const int sc0_not_bt = !(sc0->quirks & SONY_BT_DEVICE); const int sc1_not_bt = !(sc1->quirks & SONY_BT_DEVICE); return sc0_not_bt == sc1_not_bt; } static int sony_check_add_dev_list(struct sony_sc *sc) { struct sony_sc *entry; unsigned long flags; int ret; spin_lock_irqsave(&sony_dev_list_lock, flags); list_for_each_entry(entry, &sony_device_list, list_node) { ret = memcmp(sc->mac_address, entry->mac_address, sizeof(sc->mac_address)); if (!ret) { if (sony_compare_connection_type(sc, entry)) { ret = 1; } else { ret = -EEXIST; hid_info(sc->hdev, "controller with MAC address %pMR already connected\n", sc->mac_address); } goto unlock; } } ret = 0; list_add(&(sc->list_node), &sony_device_list); unlock: spin_unlock_irqrestore(&sony_dev_list_lock, flags); return ret; } static void sony_remove_dev_list(struct sony_sc *sc) { unsigned long flags; if (sc->list_node.next) { spin_lock_irqsave(&sony_dev_list_lock, flags); list_del(&(sc->list_node)); spin_unlock_irqrestore(&sony_dev_list_lock, flags); } } static int sony_get_bt_devaddr(struct sony_sc *sc) { int ret; /* HIDP stores the device MAC address as a string in the uniq field. */ ret = strlen(sc->hdev->uniq); if (ret != 17) return -EINVAL; ret = sscanf(sc->hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", &sc->mac_address[5], &sc->mac_address[4], &sc->mac_address[3], &sc->mac_address[2], &sc->mac_address[1], &sc->mac_address[0]); if (ret != 6) return -EINVAL; return 0; } static int sony_check_add(struct sony_sc *sc) { u8 *buf = NULL; int n, ret; if ((sc->quirks & DUALSHOCK4_CONTROLLER_BT) || (sc->quirks & MOTION_CONTROLLER_BT) || (sc->quirks & NAVIGATION_CONTROLLER_BT) || (sc->quirks & SIXAXIS_CONTROLLER_BT)) { /* * sony_get_bt_devaddr() attempts to parse the Bluetooth MAC * address from the uniq string where HIDP stores it. * As uniq cannot be guaranteed to be a MAC address in all cases * a failure of this function should not prevent the connection. */ if (sony_get_bt_devaddr(sc) < 0) { hid_warn(sc->hdev, "UNIQ does not contain a MAC address; duplicate check skipped\n"); return 0; } } else if (sc->quirks & (DUALSHOCK4_CONTROLLER_USB | DUALSHOCK4_DONGLE)) { buf = kmalloc(DS4_FEATURE_REPORT_0x81_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; /* * The MAC address of a DS4 controller connected via USB can be * retrieved with feature report 0x81. The address begins at * offset 1. */ ret = hid_hw_raw_request(sc->hdev, 0x81, buf, DS4_FEATURE_REPORT_0x81_SIZE, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret != DS4_FEATURE_REPORT_0x81_SIZE) { hid_err(sc->hdev, "failed to retrieve feature report 0x81 with the DualShock 4 MAC address\n"); ret = ret < 0 ? ret : -EINVAL; goto out_free; } memcpy(sc->mac_address, &buf[1], sizeof(sc->mac_address)); snprintf(sc->hdev->uniq, sizeof(sc->hdev->uniq), "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", sc->mac_address[5], sc->mac_address[4], sc->mac_address[3], sc->mac_address[2], sc->mac_address[1], sc->mac_address[0]); } else if ((sc->quirks & SIXAXIS_CONTROLLER_USB) || (sc->quirks & NAVIGATION_CONTROLLER_USB)) { buf = kmalloc(SIXAXIS_REPORT_0xF2_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; /* * The MAC address of a Sixaxis controller connected via USB can * be retrieved with feature report 0xf2. The address begins at * offset 4. */ ret = hid_hw_raw_request(sc->hdev, 0xf2, buf, SIXAXIS_REPORT_0xF2_SIZE, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret != SIXAXIS_REPORT_0xF2_SIZE) { hid_err(sc->hdev, "failed to retrieve feature report 0xf2 with the Sixaxis MAC address\n"); ret = ret < 0 ? ret : -EINVAL; goto out_free; } /* * The Sixaxis device MAC in the report is big-endian and must * be byte-swapped. */ for (n = 0; n < 6; n++) sc->mac_address[5-n] = buf[4+n]; snprintf(sc->hdev->uniq, sizeof(sc->hdev->uniq), "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", sc->mac_address[5], sc->mac_address[4], sc->mac_address[3], sc->mac_address[2], sc->mac_address[1], sc->mac_address[0]); } else { return 0; } ret = sony_check_add_dev_list(sc); out_free: kfree(buf); return ret; } static int sony_set_device_id(struct sony_sc *sc) { int ret; /* * Only DualShock 4 or Sixaxis controllers get an id. * All others are set to -1. */ if ((sc->quirks & SIXAXIS_CONTROLLER) || (sc->quirks & DUALSHOCK4_CONTROLLER)) { ret = ida_simple_get(&sony_device_id_allocator, 0, 0, GFP_KERNEL); if (ret < 0) { sc->device_id = -1; return ret; } sc->device_id = ret; } else { sc->device_id = -1; } return 0; } static void sony_release_device_id(struct sony_sc *sc) { if (sc->device_id >= 0) { ida_simple_remove(&sony_device_id_allocator, sc->device_id); sc->device_id = -1; } } static inline void sony_init_output_report(struct sony_sc *sc, void (*send_output_report)(struct sony_sc *)) { sc->send_output_report = send_output_report; if (!sc->state_worker_initialized) INIT_WORK(&sc->state_worker, sony_state_worker); sc->state_worker_initialized = 1; } static inline void sony_cancel_work_sync(struct sony_sc *sc) { if (sc->hotplug_worker_initialized) cancel_work_sync(&sc->hotplug_worker); if (sc->state_worker_initialized) cancel_work_sync(&sc->state_worker); } static int sony_input_configured(struct hid_device *hdev, struct hid_input *hidinput) { struct sony_sc *sc = hid_get_drvdata(hdev); int append_dev_id; int ret; ret = sony_set_device_id(sc); if (ret < 0) { hid_err(hdev, "failed to allocate the device id\n"); goto err_stop; } ret = append_dev_id = sony_check_add(sc); if (ret < 0) goto err_stop; ret = sony_allocate_output_report(sc); if (ret < 0) { hid_err(hdev, "failed to allocate the output report buffer\n"); goto err_stop; } if (sc->quirks & NAVIGATION_CONTROLLER_USB) { /* * The Sony Sixaxis does not handle HID Output Reports on the * Interrupt EP like it could, so we need to force HID Output * Reports to use HID_REQ_SET_REPORT on the Control EP. * * There is also another issue about HID Output Reports via USB, * the Sixaxis does not want the report_id as part of the data * packet, so we have to discard buf[0] when sending the actual * control message, even for numbered reports, humpf! * * Additionally, the Sixaxis on USB isn't properly initialized * until the PS logo button is pressed and as such won't retain * any state set by an output report, so the initial * configuration report is deferred until the first input * report arrives. */ hdev->quirks |= HID_QUIRK_NO_OUTPUT_REPORTS_ON_INTR_EP; hdev->quirks |= HID_QUIRK_SKIP_OUTPUT_REPORT_ID; sc->defer_initialization = 1; ret = sixaxis_set_operational_usb(hdev); if (ret < 0) { hid_err(hdev, "Failed to set controller into operational mode\n"); goto err_stop; } sony_init_output_report(sc, sixaxis_send_output_report); } else if (sc->quirks & NAVIGATION_CONTROLLER_BT) { /* * The Navigation controller wants output reports sent on the ctrl * endpoint when connected via Bluetooth. */ hdev->quirks |= HID_QUIRK_NO_OUTPUT_REPORTS_ON_INTR_EP; ret = sixaxis_set_operational_bt(hdev); if (ret < 0) { hid_err(hdev, "Failed to set controller into operational mode\n"); goto err_stop; } sony_init_output_report(sc, sixaxis_send_output_report); } else if (sc->quirks & SIXAXIS_CONTROLLER_USB) { /* * The Sony Sixaxis does not handle HID Output Reports on the * Interrupt EP and the device only becomes active when the * PS button is pressed. See comment for Navigation controller * above for more details. */ hdev->quirks |= HID_QUIRK_NO_OUTPUT_REPORTS_ON_INTR_EP; hdev->quirks |= HID_QUIRK_SKIP_OUTPUT_REPORT_ID; sc->defer_initialization = 1; ret = sixaxis_set_operational_usb(hdev); if (ret < 0) { hid_err(hdev, "Failed to set controller into operational mode\n"); goto err_stop; } ret = sony_register_sensors(sc); if (ret) { hid_err(sc->hdev, "Unable to initialize motion sensors: %d\n", ret); goto err_stop; } sony_init_output_report(sc, sixaxis_send_output_report); } else if (sc->quirks & SIXAXIS_CONTROLLER_BT) { /* * The Sixaxis wants output reports sent on the ctrl endpoint * when connected via Bluetooth. */ hdev->quirks |= HID_QUIRK_NO_OUTPUT_REPORTS_ON_INTR_EP; ret = sixaxis_set_operational_bt(hdev); if (ret < 0) { hid_err(hdev, "Failed to set controller into operational mode\n"); goto err_stop; } ret = sony_register_sensors(sc); if (ret) { hid_err(sc->hdev, "Unable to initialize motion sensors: %d\n", ret); goto err_stop; } sony_init_output_report(sc, sixaxis_send_output_report); } else if (sc->quirks & DUALSHOCK4_CONTROLLER) { ret = dualshock4_get_calibration_data(sc); if (ret < 0) { hid_err(hdev, "Failed to get calibration data from Dualshock 4\n"); goto err_stop; } /* * The Dualshock 4 touchpad supports 2 touches and has a * resolution of 1920x942 (44.86 dots/mm). */ ret = sony_register_touchpad(sc, 2, 1920, 942); if (ret) { hid_err(sc->hdev, "Unable to initialize multi-touch slots: %d\n", ret); goto err_stop; } ret = sony_register_sensors(sc); if (ret) { hid_err(sc->hdev, "Unable to initialize motion sensors: %d\n", ret); goto err_stop; } if (sc->quirks & DUALSHOCK4_CONTROLLER_BT) { sc->ds4_bt_poll_interval = DS4_BT_DEFAULT_POLL_INTERVAL_MS; ret = device_create_file(&sc->hdev->dev, &dev_attr_bt_poll_interval); if (ret) hid_warn(sc->hdev, "can't create sysfs bt_poll_interval attribute err: %d\n", ret); } if (sc->quirks & DUALSHOCK4_DONGLE) { INIT_WORK(&sc->hotplug_worker, dualshock4_calibration_work); sc->hotplug_worker_initialized = 1; sc->ds4_dongle_state = DONGLE_DISCONNECTED; } sony_init_output_report(sc, dualshock4_send_output_report); } else if (sc->quirks & MOTION_CONTROLLER) { sony_init_output_report(sc, motion_send_output_report); } else { ret = 0; } if (ret < 0) goto err_stop; if (sc->quirks & SONY_LED_SUPPORT) { ret = sony_leds_init(sc); if (ret < 0) goto err_stop; } if (sc->quirks & SONY_BATTERY_SUPPORT) { ret = sony_battery_probe(sc, append_dev_id); if (ret < 0) goto err_stop; /* Open the device to receive reports with battery info */ ret = hid_hw_open(hdev); if (ret < 0) { hid_err(hdev, "hw open failed\n"); goto err_stop; } } if (sc->quirks & SONY_FF_SUPPORT) { ret = sony_init_ff(sc); if (ret < 0) goto err_close; } return 0; err_close: hid_hw_close(hdev); err_stop: /* Piggy back on the default ds4_bt_ poll_interval to determine * if we need to remove the file as we don't know for sure if we * executed that logic. */ if (sc->ds4_bt_poll_interval) device_remove_file(&sc->hdev->dev, &dev_attr_bt_poll_interval); if (sc->quirks & SONY_LED_SUPPORT) sony_leds_remove(sc); if (sc->quirks & SONY_BATTERY_SUPPORT) sony_battery_remove(sc); sony_cancel_work_sync(sc); kfree(sc->output_report_dmabuf); sony_remove_dev_list(sc); sony_release_device_id(sc); hid_hw_stop(hdev); return ret; } static int sony_probe(struct hid_device *hdev, const struct hid_device_id *id) { int ret; unsigned long quirks = id->driver_data; struct sony_sc *sc; unsigned int connect_mask = HID_CONNECT_DEFAULT; if (!strcmp(hdev->name, "FutureMax Dance Mat")) quirks |= FUTUREMAX_DANCE_MAT; sc = devm_kzalloc(&hdev->dev, sizeof(*sc), GFP_KERNEL); if (sc == NULL) { hid_err(hdev, "can't alloc sony descriptor\n"); return -ENOMEM; } spin_lock_init(&sc->lock); sc->quirks = quirks; hid_set_drvdata(hdev, sc); sc->hdev = hdev; ret = hid_parse(hdev); if (ret) { hid_err(hdev, "parse failed\n"); return ret; } if (sc->quirks & VAIO_RDESC_CONSTANT) connect_mask |= HID_CONNECT_HIDDEV_FORCE; else if (sc->quirks & SIXAXIS_CONTROLLER) connect_mask |= HID_CONNECT_HIDDEV_FORCE; /* Patch the hw version on DS3/4 compatible devices, so applications can * distinguish between the default HID mappings and the mappings defined * by the Linux game controller spec. This is important for the SDL2 * library, which has a game controller database, which uses device ids * in combination with version as a key. */ if (sc->quirks & (SIXAXIS_CONTROLLER | DUALSHOCK4_CONTROLLER)) hdev->version |= 0x8000; ret = hid_hw_start(hdev, connect_mask); if (ret) { hid_err(hdev, "hw start failed\n"); return ret; } /* sony_input_configured can fail, but this doesn't result * in hid_hw_start failures (intended). Check whether * the HID layer claimed the device else fail. * We don't know the actual reason for the failure, most * likely it is due to EEXIST in case of double connection * of USB and Bluetooth, but could have been due to ENOMEM * or other reasons as well. */ if (!(hdev->claimed & HID_CLAIMED_INPUT)) { hid_err(hdev, "failed to claim input\n"); return -ENODEV; } return ret; } static void sony_remove(struct hid_device *hdev) { struct sony_sc *sc = hid_get_drvdata(hdev); hid_hw_close(hdev); if (sc->quirks & SONY_LED_SUPPORT) sony_leds_remove(sc); if (sc->quirks & SONY_BATTERY_SUPPORT) sony_battery_remove(sc); if (sc->touchpad) sony_unregister_touchpad(sc); if (sc->sensor_dev) sony_unregister_sensors(sc); if (sc->sensor_dev) sony_unregister_sensors(sc); if (sc->quirks & DUALSHOCK4_CONTROLLER_BT) device_remove_file(&sc->hdev->dev, &dev_attr_bt_poll_interval); sony_cancel_work_sync(sc); kfree(sc->output_report_dmabuf); sony_remove_dev_list(sc); sony_release_device_id(sc); hid_hw_stop(hdev); } #ifdef CONFIG_PM static int sony_suspend(struct hid_device *hdev, pm_message_t message) { #ifdef CONFIG_SONY_FF /* On suspend stop any running force-feedback events */ if (SONY_FF_SUPPORT) { struct sony_sc *sc = hid_get_drvdata(hdev); sc->left = sc->right = 0; sony_send_output_report(sc); } #endif return 0; } static int sony_resume(struct hid_device *hdev) { struct sony_sc *sc = hid_get_drvdata(hdev); /* * The Sixaxis and navigation controllers on USB need to be * reinitialized on resume or they won't behave properly. */ if ((sc->quirks & SIXAXIS_CONTROLLER_USB) || (sc->quirks & NAVIGATION_CONTROLLER_USB)) { sixaxis_set_operational_usb(sc->hdev); sc->defer_initialization = 1; } return 0; } #endif static const struct hid_device_id sony_devices[] = { { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER), .driver_data = SIXAXIS_CONTROLLER_USB }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER), .driver_data = NAVIGATION_CONTROLLER_USB }, { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER), .driver_data = NAVIGATION_CONTROLLER_BT }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_MOTION_CONTROLLER), .driver_data = MOTION_CONTROLLER_USB }, { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_MOTION_CONTROLLER), .driver_data = MOTION_CONTROLLER_BT }, { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER), .driver_data = SIXAXIS_CONTROLLER_BT }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE), .driver_data = VAIO_RDESC_CONSTANT }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGP_MOUSE), .driver_data = VAIO_RDESC_CONSTANT }, /* * Wired Buzz Controller. Reported as Sony Hub from its USB ID and as * Logitech joystick from the device descriptor. */ { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_BUZZ_CONTROLLER), .driver_data = BUZZ_CONTROLLER }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_WIRELESS_BUZZ_CONTROLLER), .driver_data = BUZZ_CONTROLLER }, /* PS3 BD Remote Control */ { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_BDREMOTE), .driver_data = PS3REMOTE }, /* Logitech Harmony Adapter for PS3 */ { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_HARMONY_PS3), .driver_data = PS3REMOTE }, /* SMK-Link PS3 BD Remote Control */ { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SMK, USB_DEVICE_ID_SMK_PS3_BDREMOTE), .driver_data = PS3REMOTE }, /* Sony Dualshock 4 controllers for PS4 */ { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), .driver_data = DUALSHOCK4_CONTROLLER_USB }, { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), .driver_data = DUALSHOCK4_CONTROLLER_BT }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), .driver_data = DUALSHOCK4_CONTROLLER_USB }, { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), .driver_data = DUALSHOCK4_CONTROLLER_BT }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE), .driver_data = DUALSHOCK4_DONGLE }, /* Nyko Core Controller for PS3 */ { HID_USB_DEVICE(USB_VENDOR_ID_SINO_LITE, USB_DEVICE_ID_SINO_LITE_CONTROLLER), .driver_data = SIXAXIS_CONTROLLER_USB | SINO_LITE_CONTROLLER }, { } }; MODULE_DEVICE_TABLE(hid, sony_devices); static struct hid_driver sony_driver = { .name = "sony", .id_table = sony_devices, .input_mapping = sony_mapping, .input_configured = sony_input_configured, .probe = sony_probe, .remove = sony_remove, .report_fixup = sony_report_fixup, .raw_event = sony_raw_event, #ifdef CONFIG_PM .suspend = sony_suspend, .resume = sony_resume, .reset_resume = sony_resume, #endif }; static int __init sony_init(void) { dbg_hid("Sony:%s\n", __func__); return hid_register_driver(&sony_driver); } static void __exit sony_exit(void) { dbg_hid("Sony:%s\n", __func__); hid_unregister_driver(&sony_driver); ida_destroy(&sony_device_id_allocator); } module_init(sony_init); module_exit(sony_exit); MODULE_LICENSE("GPL");