/* * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) * * Copyright (C) 2002 - 2011 Paul Mundt * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). * * based off of the old drivers/char/sh-sci.c by: * * Copyright (C) 1999, 2000 Niibe Yutaka * Copyright (C) 2000 Sugioka Toshinobu * Modified to support multiple serial ports. Stuart Menefy (May 2000). * Modified to support SecureEdge. David McCullough (2002) * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). * Removed SH7300 support (Jul 2007). * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SUPERH #include #endif #include "sh-sci.h" /* Offsets into the sci_port->irqs array */ enum { SCIx_ERI_IRQ, SCIx_RXI_IRQ, SCIx_TXI_IRQ, SCIx_BRI_IRQ, SCIx_NR_IRQS, SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */ }; #define SCIx_IRQ_IS_MUXED(port) \ ((port)->irqs[SCIx_ERI_IRQ] == \ (port)->irqs[SCIx_RXI_IRQ]) || \ ((port)->irqs[SCIx_ERI_IRQ] && \ ((port)->irqs[SCIx_RXI_IRQ] < 0)) struct sci_port { struct uart_port port; /* Platform configuration */ struct plat_sci_port *cfg; unsigned int overrun_reg; unsigned int overrun_mask; unsigned int error_mask; unsigned int error_clear; unsigned int sampling_rate; resource_size_t reg_size; /* Break timer */ struct timer_list break_timer; int break_flag; /* Function clock */ struct clk *fclk; int irqs[SCIx_NR_IRQS]; char *irqstr[SCIx_NR_IRQS]; struct dma_chan *chan_tx; struct dma_chan *chan_rx; #ifdef CONFIG_SERIAL_SH_SCI_DMA dma_cookie_t cookie_tx; dma_cookie_t cookie_rx[2]; dma_cookie_t active_rx; dma_addr_t tx_dma_addr; unsigned int tx_dma_len; struct scatterlist sg_rx[2]; void *rx_buf[2]; size_t buf_len_rx; struct work_struct work_tx; struct timer_list rx_timer; unsigned int rx_timeout; #endif struct notifier_block freq_transition; }; #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS static struct sci_port sci_ports[SCI_NPORTS]; static struct uart_driver sci_uart_driver; static inline struct sci_port * to_sci_port(struct uart_port *uart) { return container_of(uart, struct sci_port, port); } struct plat_sci_reg { u8 offset, size; }; /* Helper for invalidating specific entries of an inherited map. */ #define sci_reg_invalid { .offset = 0, .size = 0 } static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = { [SCIx_PROBE_REGTYPE] = { [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid, }, /* * Common SCI definitions, dependent on the port's regshift * value. */ [SCIx_SCI_REGTYPE] = { [SCSMR] = { 0x00, 8 }, [SCBRR] = { 0x01, 8 }, [SCSCR] = { 0x02, 8 }, [SCxTDR] = { 0x03, 8 }, [SCxSR] = { 0x04, 8 }, [SCxRDR] = { 0x05, 8 }, [SCFCR] = sci_reg_invalid, [SCFDR] = sci_reg_invalid, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = sci_reg_invalid, [SCLSR] = sci_reg_invalid, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * Common definitions for legacy IrDA ports, dependent on * regshift value. */ [SCIx_IRDA_REGTYPE] = { [SCSMR] = { 0x00, 8 }, [SCBRR] = { 0x01, 8 }, [SCSCR] = { 0x02, 8 }, [SCxTDR] = { 0x03, 8 }, [SCxSR] = { 0x04, 8 }, [SCxRDR] = { 0x05, 8 }, [SCFCR] = { 0x06, 8 }, [SCFDR] = { 0x07, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = sci_reg_invalid, [SCLSR] = sci_reg_invalid, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * Common SCIFA definitions. */ [SCIx_SCIFA_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x20, 8 }, [SCxSR] = { 0x14, 16 }, [SCxRDR] = { 0x24, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = sci_reg_invalid, [SCLSR] = sci_reg_invalid, [HSSRR] = sci_reg_invalid, [SCPCR] = { 0x30, 16 }, [SCPDR] = { 0x34, 16 }, }, /* * Common SCIFB definitions. */ [SCIx_SCIFB_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x40, 8 }, [SCxSR] = { 0x14, 16 }, [SCxRDR] = { 0x60, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = sci_reg_invalid, [SCTFDR] = { 0x38, 16 }, [SCRFDR] = { 0x3c, 16 }, [SCSPTR] = sci_reg_invalid, [SCLSR] = sci_reg_invalid, [HSSRR] = sci_reg_invalid, [SCPCR] = { 0x30, 16 }, [SCPDR] = { 0x34, 16 }, }, /* * Common SH-2(A) SCIF definitions for ports with FIFO data * count registers. */ [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = { 0x20, 16 }, [SCLSR] = { 0x24, 16 }, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * Common SH-3 SCIF definitions. */ [SCIx_SH3_SCIF_REGTYPE] = { [SCSMR] = { 0x00, 8 }, [SCBRR] = { 0x02, 8 }, [SCSCR] = { 0x04, 8 }, [SCxTDR] = { 0x06, 8 }, [SCxSR] = { 0x08, 16 }, [SCxRDR] = { 0x0a, 8 }, [SCFCR] = { 0x0c, 8 }, [SCFDR] = { 0x0e, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = sci_reg_invalid, [SCLSR] = sci_reg_invalid, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * Common SH-4(A) SCIF(B) definitions. */ [SCIx_SH4_SCIF_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = { 0x20, 16 }, [SCLSR] = { 0x24, 16 }, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * Common HSCIF definitions. */ [SCIx_HSCIF_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = { 0x20, 16 }, [SCLSR] = { 0x24, 16 }, [HSSRR] = { 0x40, 16 }, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR * register. */ [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = sci_reg_invalid, [SCLSR] = { 0x24, 16 }, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * Common SH-4(A) SCIF(B) definitions for ports with FIFO data * count registers. */ [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ [SCRFDR] = { 0x20, 16 }, [SCSPTR] = { 0x24, 16 }, [SCLSR] = { 0x28, 16 }, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, /* * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR * registers. */ [SCIx_SH7705_SCIF_REGTYPE] = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x20, 8 }, [SCxSR] = { 0x14, 16 }, [SCxRDR] = { 0x24, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = sci_reg_invalid, [SCRFDR] = sci_reg_invalid, [SCSPTR] = sci_reg_invalid, [SCLSR] = sci_reg_invalid, [HSSRR] = sci_reg_invalid, [SCPCR] = sci_reg_invalid, [SCPDR] = sci_reg_invalid, }, }; #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset) /* * The "offset" here is rather misleading, in that it refers to an enum * value relative to the port mapping rather than the fixed offset * itself, which needs to be manually retrieved from the platform's * register map for the given port. */ static unsigned int sci_serial_in(struct uart_port *p, int offset) { const struct plat_sci_reg *reg = sci_getreg(p, offset); if (reg->size == 8) return ioread8(p->membase + (reg->offset << p->regshift)); else if (reg->size == 16) return ioread16(p->membase + (reg->offset << p->regshift)); else WARN(1, "Invalid register access\n"); return 0; } static void sci_serial_out(struct uart_port *p, int offset, int value) { const struct plat_sci_reg *reg = sci_getreg(p, offset); if (reg->size == 8) iowrite8(value, p->membase + (reg->offset << p->regshift)); else if (reg->size == 16) iowrite16(value, p->membase + (reg->offset << p->regshift)); else WARN(1, "Invalid register access\n"); } static int sci_probe_regmap(struct plat_sci_port *cfg) { switch (cfg->type) { case PORT_SCI: cfg->regtype = SCIx_SCI_REGTYPE; break; case PORT_IRDA: cfg->regtype = SCIx_IRDA_REGTYPE; break; case PORT_SCIFA: cfg->regtype = SCIx_SCIFA_REGTYPE; break; case PORT_SCIFB: cfg->regtype = SCIx_SCIFB_REGTYPE; break; case PORT_SCIF: /* * The SH-4 is a bit of a misnomer here, although that's * where this particular port layout originated. This * configuration (or some slight variation thereof) * remains the dominant model for all SCIFs. */ cfg->regtype = SCIx_SH4_SCIF_REGTYPE; break; case PORT_HSCIF: cfg->regtype = SCIx_HSCIF_REGTYPE; break; default: pr_err("Can't probe register map for given port\n"); return -EINVAL; } return 0; } static void sci_port_enable(struct sci_port *sci_port) { if (!sci_port->port.dev) return; pm_runtime_get_sync(sci_port->port.dev); clk_prepare_enable(sci_port->fclk); sci_port->port.uartclk = clk_get_rate(sci_port->fclk); } static void sci_port_disable(struct sci_port *sci_port) { if (!sci_port->port.dev) return; /* Cancel the break timer to ensure that the timer handler will not try * to access the hardware with clocks and power disabled. Reset the * break flag to make the break debouncing state machine ready for the * next break. */ del_timer_sync(&sci_port->break_timer); sci_port->break_flag = 0; clk_disable_unprepare(sci_port->fclk); pm_runtime_put_sync(sci_port->port.dev); } static inline unsigned long port_rx_irq_mask(struct uart_port *port) { /* * Not all ports (such as SCIFA) will support REIE. Rather than * special-casing the port type, we check the port initialization * IRQ enable mask to see whether the IRQ is desired at all. If * it's unset, it's logically inferred that there's no point in * testing for it. */ return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); } static void sci_start_tx(struct uart_port *port) { struct sci_port *s = to_sci_port(port); unsigned short ctrl; #ifdef CONFIG_SERIAL_SH_SCI_DMA if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { u16 new, scr = serial_port_in(port, SCSCR); if (s->chan_tx) new = scr | SCSCR_TDRQE; else new = scr & ~SCSCR_TDRQE; if (new != scr) serial_port_out(port, SCSCR, new); } if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && dma_submit_error(s->cookie_tx)) { s->cookie_tx = 0; schedule_work(&s->work_tx); } #endif if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = serial_port_in(port, SCSCR); serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); } } static void sci_stop_tx(struct uart_port *port) { unsigned short ctrl; /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = serial_port_in(port, SCSCR); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) ctrl &= ~SCSCR_TDRQE; ctrl &= ~SCSCR_TIE; serial_port_out(port, SCSCR, ctrl); } static void sci_start_rx(struct uart_port *port) { unsigned short ctrl; ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) ctrl &= ~SCSCR_RDRQE; serial_port_out(port, SCSCR, ctrl); } static void sci_stop_rx(struct uart_port *port) { unsigned short ctrl; ctrl = serial_port_in(port, SCSCR); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) ctrl &= ~SCSCR_RDRQE; ctrl &= ~port_rx_irq_mask(port); serial_port_out(port, SCSCR, ctrl); } static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask) { if (port->type == PORT_SCI) { /* Just store the mask */ serial_port_out(port, SCxSR, mask); } else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) { /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */ /* Only clear the status bits we want to clear */ serial_port_out(port, SCxSR, serial_port_in(port, SCxSR) & mask); } else { /* Store the mask, clear parity/framing errors */ serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC)); } } #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) #ifdef CONFIG_CONSOLE_POLL static int sci_poll_get_char(struct uart_port *port) { unsigned short status; int c; do { status = serial_port_in(port, SCxSR); if (status & SCxSR_ERRORS(port)) { sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); continue; } break; } while (1); if (!(status & SCxSR_RDxF(port))) return NO_POLL_CHAR; c = serial_port_in(port, SCxRDR); /* Dummy read */ serial_port_in(port, SCxSR); sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); return c; } #endif static void sci_poll_put_char(struct uart_port *port, unsigned char c) { unsigned short status; do { status = serial_port_in(port, SCxSR); } while (!(status & SCxSR_TDxE(port))); serial_port_out(port, SCxTDR, c); sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); } #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */ static void sci_init_pins(struct uart_port *port, unsigned int cflag) { struct sci_port *s = to_sci_port(port); const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; /* * Use port-specific handler if provided. */ if (s->cfg->ops && s->cfg->ops->init_pins) { s->cfg->ops->init_pins(port, cflag); return; } /* * For the generic path SCSPTR is necessary. Bail out if that's * unavailable, too. */ if (!reg->size) return; if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) && ((!(cflag & CRTSCTS)))) { unsigned short status; status = serial_port_in(port, SCSPTR); status &= ~SCSPTR_CTSIO; status |= SCSPTR_RTSIO; serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */ } } static int sci_txfill(struct uart_port *port) { const struct plat_sci_reg *reg; reg = sci_getreg(port, SCTFDR); if (reg->size) return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1); reg = sci_getreg(port, SCFDR); if (reg->size) return serial_port_in(port, SCFDR) >> 8; return !(serial_port_in(port, SCxSR) & SCI_TDRE); } static int sci_txroom(struct uart_port *port) { return port->fifosize - sci_txfill(port); } static int sci_rxfill(struct uart_port *port) { const struct plat_sci_reg *reg; reg = sci_getreg(port, SCRFDR); if (reg->size) return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1); reg = sci_getreg(port, SCFDR); if (reg->size) return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1); return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; } /* * SCI helper for checking the state of the muxed port/RXD pins. */ static inline int sci_rxd_in(struct uart_port *port) { struct sci_port *s = to_sci_port(port); if (s->cfg->port_reg <= 0) return 1; /* Cast for ARM damage */ return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg); } /* ********************************************************************** * * the interrupt related routines * * ********************************************************************** */ static void sci_transmit_chars(struct uart_port *port) { struct circ_buf *xmit = &port->state->xmit; unsigned int stopped = uart_tx_stopped(port); unsigned short status; unsigned short ctrl; int count; status = serial_port_in(port, SCxSR); if (!(status & SCxSR_TDxE(port))) { ctrl = serial_port_in(port, SCSCR); if (uart_circ_empty(xmit)) ctrl &= ~SCSCR_TIE; else ctrl |= SCSCR_TIE; serial_port_out(port, SCSCR, ctrl); return; } count = sci_txroom(port); do { unsigned char c; if (port->x_char) { c = port->x_char; port->x_char = 0; } else if (!uart_circ_empty(xmit) && !stopped) { c = xmit->buf[xmit->tail]; xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); } else { break; } serial_port_out(port, SCxTDR, c); port->icount.tx++; } while (--count > 0); sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (uart_circ_empty(xmit)) { sci_stop_tx(port); } else { ctrl = serial_port_in(port, SCSCR); if (port->type != PORT_SCI) { serial_port_in(port, SCxSR); /* Dummy read */ sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); } ctrl |= SCSCR_TIE; serial_port_out(port, SCSCR, ctrl); } } /* On SH3, SCIF may read end-of-break as a space->mark char */ #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) static void sci_receive_chars(struct uart_port *port) { struct sci_port *sci_port = to_sci_port(port); struct tty_port *tport = &port->state->port; int i, count, copied = 0; unsigned short status; unsigned char flag; status = serial_port_in(port, SCxSR); if (!(status & SCxSR_RDxF(port))) return; while (1) { /* Don't copy more bytes than there is room for in the buffer */ count = tty_buffer_request_room(tport, sci_rxfill(port)); /* If for any reason we can't copy more data, we're done! */ if (count == 0) break; if (port->type == PORT_SCI) { char c = serial_port_in(port, SCxRDR); if (uart_handle_sysrq_char(port, c) || sci_port->break_flag) count = 0; else tty_insert_flip_char(tport, c, TTY_NORMAL); } else { for (i = 0; i < count; i++) { char c = serial_port_in(port, SCxRDR); status = serial_port_in(port, SCxSR); #if defined(CONFIG_CPU_SH3) /* Skip "chars" during break */ if (sci_port->break_flag) { if ((c == 0) && (status & SCxSR_FER(port))) { count--; i--; continue; } /* Nonzero => end-of-break */ dev_dbg(port->dev, "debounce<%02x>\n", c); sci_port->break_flag = 0; if (STEPFN(c)) { count--; i--; continue; } } #endif /* CONFIG_CPU_SH3 */ if (uart_handle_sysrq_char(port, c)) { count--; i--; continue; } /* Store data and status */ if (status & SCxSR_FER(port)) { flag = TTY_FRAME; port->icount.frame++; dev_notice(port->dev, "frame error\n"); } else if (status & SCxSR_PER(port)) { flag = TTY_PARITY; port->icount.parity++; dev_notice(port->dev, "parity error\n"); } else flag = TTY_NORMAL; tty_insert_flip_char(tport, c, flag); } } serial_port_in(port, SCxSR); /* dummy read */ sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); copied += count; port->icount.rx += count; } if (copied) { /* Tell the rest of the system the news. New characters! */ tty_flip_buffer_push(tport); } else { serial_port_in(port, SCxSR); /* dummy read */ sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); } } #define SCI_BREAK_JIFFIES (HZ/20) /* * The sci generates interrupts during the break, * 1 per millisecond or so during the break period, for 9600 baud. * So dont bother disabling interrupts. * But dont want more than 1 break event. * Use a kernel timer to periodically poll the rx line until * the break is finished. */ static inline void sci_schedule_break_timer(struct sci_port *port) { mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES); } /* Ensure that two consecutive samples find the break over. */ static void sci_break_timer(unsigned long data) { struct sci_port *port = (struct sci_port *)data; if (sci_rxd_in(&port->port) == 0) { port->break_flag = 1; sci_schedule_break_timer(port); } else if (port->break_flag == 1) { /* break is over. */ port->break_flag = 2; sci_schedule_break_timer(port); } else port->break_flag = 0; } static int sci_handle_errors(struct uart_port *port) { int copied = 0; unsigned short status = serial_port_in(port, SCxSR); struct tty_port *tport = &port->state->port; struct sci_port *s = to_sci_port(port); /* Handle overruns */ if (status & s->overrun_mask) { port->icount.overrun++; /* overrun error */ if (tty_insert_flip_char(tport, 0, TTY_OVERRUN)) copied++; dev_notice(port->dev, "overrun error\n"); } if (status & SCxSR_FER(port)) { if (sci_rxd_in(port) == 0) { /* Notify of BREAK */ struct sci_port *sci_port = to_sci_port(port); if (!sci_port->break_flag) { port->icount.brk++; sci_port->break_flag = 1; sci_schedule_break_timer(sci_port); /* Do sysrq handling. */ if (uart_handle_break(port)) return 0; dev_dbg(port->dev, "BREAK detected\n"); if (tty_insert_flip_char(tport, 0, TTY_BREAK)) copied++; } } else { /* frame error */ port->icount.frame++; if (tty_insert_flip_char(tport, 0, TTY_FRAME)) copied++; dev_notice(port->dev, "frame error\n"); } } if (status & SCxSR_PER(port)) { /* parity error */ port->icount.parity++; if (tty_insert_flip_char(tport, 0, TTY_PARITY)) copied++; dev_notice(port->dev, "parity error\n"); } if (copied) tty_flip_buffer_push(tport); return copied; } static int sci_handle_fifo_overrun(struct uart_port *port) { struct tty_port *tport = &port->state->port; struct sci_port *s = to_sci_port(port); const struct plat_sci_reg *reg; int copied = 0; u16 status; reg = sci_getreg(port, s->overrun_reg); if (!reg->size) return 0; status = serial_port_in(port, s->overrun_reg); if (status & s->overrun_mask) { status &= ~s->overrun_mask; serial_port_out(port, s->overrun_reg, status); port->icount.overrun++; tty_insert_flip_char(tport, 0, TTY_OVERRUN); tty_flip_buffer_push(tport); dev_dbg(port->dev, "overrun error\n"); copied++; } return copied; } static int sci_handle_breaks(struct uart_port *port) { int copied = 0; unsigned short status = serial_port_in(port, SCxSR); struct tty_port *tport = &port->state->port; struct sci_port *s = to_sci_port(port); if (uart_handle_break(port)) return 0; if (!s->break_flag && status & SCxSR_BRK(port)) { #if defined(CONFIG_CPU_SH3) /* Debounce break */ s->break_flag = 1; #endif port->icount.brk++; /* Notify of BREAK */ if (tty_insert_flip_char(tport, 0, TTY_BREAK)) copied++; dev_dbg(port->dev, "BREAK detected\n"); } if (copied) tty_flip_buffer_push(tport); copied += sci_handle_fifo_overrun(port); return copied; } #ifdef CONFIG_SERIAL_SH_SCI_DMA static void sci_dma_tx_complete(void *arg) { struct sci_port *s = arg; struct uart_port *port = &s->port; struct circ_buf *xmit = &port->state->xmit; unsigned long flags; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); spin_lock_irqsave(&port->lock, flags); xmit->tail += s->tx_dma_len; xmit->tail &= UART_XMIT_SIZE - 1; port->icount.tx += s->tx_dma_len; if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (!uart_circ_empty(xmit)) { s->cookie_tx = 0; schedule_work(&s->work_tx); } else { s->cookie_tx = -EINVAL; if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { u16 ctrl = serial_port_in(port, SCSCR); serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); } } spin_unlock_irqrestore(&port->lock, flags); } /* Locking: called with port lock held */ static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count) { struct uart_port *port = &s->port; struct tty_port *tport = &port->state->port; int copied; copied = tty_insert_flip_string(tport, buf, count); if (copied < count) { dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n", count - copied); port->icount.buf_overrun++; } port->icount.rx += copied; return copied; } static int sci_dma_rx_find_active(struct sci_port *s) { unsigned int i; for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++) if (s->active_rx == s->cookie_rx[i]) return i; dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__, s->active_rx); return -1; } static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) { struct dma_chan *chan = s->chan_rx; struct uart_port *port = &s->port; unsigned long flags; spin_lock_irqsave(&port->lock, flags); s->chan_rx = NULL; s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; spin_unlock_irqrestore(&port->lock, flags); dmaengine_terminate_all(chan); dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0], sg_dma_address(&s->sg_rx[0])); dma_release_channel(chan); if (enable_pio) sci_start_rx(port); } static void sci_dma_rx_complete(void *arg) { struct sci_port *s = arg; struct dma_chan *chan = s->chan_rx; struct uart_port *port = &s->port; struct dma_async_tx_descriptor *desc; unsigned long flags; int active, count = 0; dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line, s->active_rx); spin_lock_irqsave(&port->lock, flags); active = sci_dma_rx_find_active(s); if (active >= 0) count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx); mod_timer(&s->rx_timer, jiffies + s->rx_timeout); if (count) tty_flip_buffer_push(&port->state->port); desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) goto fail; desc->callback = sci_dma_rx_complete; desc->callback_param = s; s->cookie_rx[active] = dmaengine_submit(desc); if (dma_submit_error(s->cookie_rx[active])) goto fail; s->active_rx = s->cookie_rx[!active]; dma_async_issue_pending(chan); dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n", __func__, s->cookie_rx[active], active, s->active_rx); spin_unlock_irqrestore(&port->lock, flags); return; fail: spin_unlock_irqrestore(&port->lock, flags); dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); sci_rx_dma_release(s, true); } static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) { struct dma_chan *chan = s->chan_tx; struct uart_port *port = &s->port; unsigned long flags; spin_lock_irqsave(&port->lock, flags); s->chan_tx = NULL; s->cookie_tx = -EINVAL; spin_unlock_irqrestore(&port->lock, flags); dmaengine_terminate_all(chan); dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE, DMA_TO_DEVICE); dma_release_channel(chan); if (enable_pio) sci_start_tx(port); } static void sci_submit_rx(struct sci_port *s) { struct dma_chan *chan = s->chan_rx; int i; for (i = 0; i < 2; i++) { struct scatterlist *sg = &s->sg_rx[i]; struct dma_async_tx_descriptor *desc; desc = dmaengine_prep_slave_sg(chan, sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) goto fail; desc->callback = sci_dma_rx_complete; desc->callback_param = s; s->cookie_rx[i] = dmaengine_submit(desc); if (dma_submit_error(s->cookie_rx[i])) goto fail; dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__, s->cookie_rx[i], i); } s->active_rx = s->cookie_rx[0]; dma_async_issue_pending(chan); return; fail: if (i) dmaengine_terminate_all(chan); for (i = 0; i < 2; i++) s->cookie_rx[i] = -EINVAL; s->active_rx = -EINVAL; dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n"); sci_rx_dma_release(s, true); } static void work_fn_tx(struct work_struct *work) { struct sci_port *s = container_of(work, struct sci_port, work_tx); struct dma_async_tx_descriptor *desc; struct dma_chan *chan = s->chan_tx; struct uart_port *port = &s->port; struct circ_buf *xmit = &port->state->xmit; dma_addr_t buf; /* * DMA is idle now. * Port xmit buffer is already mapped, and it is one page... Just adjust * offsets and lengths. Since it is a circular buffer, we have to * transmit till the end, and then the rest. Take the port lock to get a * consistent xmit buffer state. */ spin_lock_irq(&port->lock); buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1)); s->tx_dma_len = min_t(unsigned int, CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); spin_unlock_irq(&port->lock); desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n"); /* switch to PIO */ sci_tx_dma_release(s, true); return; } dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len, DMA_TO_DEVICE); spin_lock_irq(&port->lock); desc->callback = sci_dma_tx_complete; desc->callback_param = s; spin_unlock_irq(&port->lock); s->cookie_tx = dmaengine_submit(desc); if (dma_submit_error(s->cookie_tx)) { dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); /* switch to PIO */ sci_tx_dma_release(s, true); return; } dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx); dma_async_issue_pending(chan); } static void rx_timer_fn(unsigned long arg) { struct sci_port *s = (struct sci_port *)arg; struct dma_chan *chan = s->chan_rx; struct uart_port *port = &s->port; struct dma_tx_state state; enum dma_status status; unsigned long flags; unsigned int read; int active, count; u16 scr; spin_lock_irqsave(&port->lock, flags); dev_dbg(port->dev, "DMA Rx timed out\n"); active = sci_dma_rx_find_active(s); if (active < 0) { spin_unlock_irqrestore(&port->lock, flags); return; } status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); if (status == DMA_COMPLETE) { dev_dbg(port->dev, "Cookie %d #%d has already completed\n", s->active_rx, active); spin_unlock_irqrestore(&port->lock, flags); /* Let packet complete handler take care of the packet */ return; } dmaengine_pause(chan); /* * sometimes DMA transfer doesn't stop even if it is stopped and * data keeps on coming until transaction is complete so check * for DMA_COMPLETE again * Let packet complete handler take care of the packet */ status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); if (status == DMA_COMPLETE) { spin_unlock_irqrestore(&port->lock, flags); dev_dbg(port->dev, "Transaction complete after DMA engine was stopped"); return; } /* Handle incomplete DMA receive */ dmaengine_terminate_all(s->chan_rx); read = sg_dma_len(&s->sg_rx[active]) - state.residue; dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read, s->active_rx); if (read) { count = sci_dma_rx_push(s, s->rx_buf[active], read); if (count) tty_flip_buffer_push(&port->state->port); } if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) sci_submit_rx(s); /* Direct new serial port interrupts back to CPU */ scr = serial_port_in(port, SCSCR); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { scr &= ~SCSCR_RDRQE; enable_irq(s->irqs[SCIx_RXI_IRQ]); } serial_port_out(port, SCSCR, scr | SCSCR_RIE); spin_unlock_irqrestore(&port->lock, flags); } static struct dma_chan *sci_request_dma_chan(struct uart_port *port, enum dma_transfer_direction dir, unsigned int id) { dma_cap_mask_t mask; struct dma_chan *chan; struct dma_slave_config cfg; int ret; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, (void *)(unsigned long)id, port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx"); if (!chan) { dev_warn(port->dev, "dma_request_slave_channel_compat failed\n"); return NULL; } memset(&cfg, 0, sizeof(cfg)); cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) { cfg.dst_addr = port->mapbase + (sci_getreg(port, SCxTDR)->offset << port->regshift); cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; } else { cfg.src_addr = port->mapbase + (sci_getreg(port, SCxRDR)->offset << port->regshift); cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; } ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret); dma_release_channel(chan); return NULL; } return chan; } static void sci_request_dma(struct uart_port *port) { struct sci_port *s = to_sci_port(port); struct dma_chan *chan; dev_dbg(port->dev, "%s: port %d\n", __func__, port->line); if (!port->dev->of_node && (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)) return; s->cookie_tx = -EINVAL; chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx); dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); if (chan) { s->chan_tx = chan; /* UART circular tx buffer is an aligned page. */ s->tx_dma_addr = dma_map_single(chan->device->dev, port->state->xmit.buf, UART_XMIT_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) { dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n"); dma_release_channel(chan); s->chan_tx = NULL; } else { dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n", __func__, UART_XMIT_SIZE, port->state->xmit.buf, &s->tx_dma_addr); } INIT_WORK(&s->work_tx, work_fn_tx); } chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx); dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); if (chan) { unsigned int i; dma_addr_t dma; void *buf; s->chan_rx = chan; s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize); buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2, &dma, GFP_KERNEL); if (!buf) { dev_warn(port->dev, "Failed to allocate Rx dma buffer, using PIO\n"); dma_release_channel(chan); s->chan_rx = NULL; return; } for (i = 0; i < 2; i++) { struct scatterlist *sg = &s->sg_rx[i]; sg_init_table(sg, 1); s->rx_buf[i] = buf; sg_dma_address(sg) = dma; sg->length = s->buf_len_rx; buf += s->buf_len_rx; dma += s->buf_len_rx; } setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) sci_submit_rx(s); } } static void sci_free_dma(struct uart_port *port) { struct sci_port *s = to_sci_port(port); if (s->chan_tx) sci_tx_dma_release(s, false); if (s->chan_rx) sci_rx_dma_release(s, false); } #else static inline void sci_request_dma(struct uart_port *port) { } static inline void sci_free_dma(struct uart_port *port) { } #endif static irqreturn_t sci_rx_interrupt(int irq, void *ptr) { #ifdef CONFIG_SERIAL_SH_SCI_DMA struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); if (s->chan_rx) { u16 scr = serial_port_in(port, SCSCR); u16 ssr = serial_port_in(port, SCxSR); /* Disable future Rx interrupts */ if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { disable_irq_nosync(irq); scr |= SCSCR_RDRQE; } else { scr &= ~SCSCR_RIE; sci_submit_rx(s); } serial_port_out(port, SCSCR, scr); /* Clear current interrupt */ serial_port_out(port, SCxSR, ssr & ~(SCIF_DR | SCxSR_RDxF(port))); dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n", jiffies, s->rx_timeout); mod_timer(&s->rx_timer, jiffies + s->rx_timeout); return IRQ_HANDLED; } #endif /* I think sci_receive_chars has to be called irrespective * of whether the I_IXOFF is set, otherwise, how is the interrupt * to be disabled? */ sci_receive_chars(ptr); return IRQ_HANDLED; } static irqreturn_t sci_tx_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; unsigned long flags; spin_lock_irqsave(&port->lock, flags); sci_transmit_chars(port); spin_unlock_irqrestore(&port->lock, flags); return IRQ_HANDLED; } static irqreturn_t sci_er_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); /* Handle errors */ if (port->type == PORT_SCI) { if (sci_handle_errors(port)) { /* discard character in rx buffer */ serial_port_in(port, SCxSR); sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); } } else { sci_handle_fifo_overrun(port); if (!s->chan_rx) sci_receive_chars(ptr); } sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); /* Kick the transmission */ if (!s->chan_tx) sci_tx_interrupt(irq, ptr); return IRQ_HANDLED; } static irqreturn_t sci_br_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; /* Handle BREAKs */ sci_handle_breaks(port); sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port)); return IRQ_HANDLED; } static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) { unsigned short ssr_status, scr_status, err_enabled, orer_status = 0; struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); irqreturn_t ret = IRQ_NONE; ssr_status = serial_port_in(port, SCxSR); scr_status = serial_port_in(port, SCSCR); if (s->overrun_reg == SCxSR) orer_status = ssr_status; else { if (sci_getreg(port, s->overrun_reg)->size) orer_status = serial_port_in(port, s->overrun_reg); } err_enabled = scr_status & port_rx_irq_mask(port); /* Tx Interrupt */ if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && !s->chan_tx) ret = sci_tx_interrupt(irq, ptr); /* * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / * DR flags */ if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && (scr_status & SCSCR_RIE)) ret = sci_rx_interrupt(irq, ptr); /* Error Interrupt */ if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) ret = sci_er_interrupt(irq, ptr); /* Break Interrupt */ if ((ssr_status & SCxSR_BRK(port)) && err_enabled) ret = sci_br_interrupt(irq, ptr); /* Overrun Interrupt */ if (orer_status & s->overrun_mask) { sci_handle_fifo_overrun(port); ret = IRQ_HANDLED; } return ret; } /* * Here we define a transition notifier so that we can update all of our * ports' baud rate when the peripheral clock changes. */ static int sci_notifier(struct notifier_block *self, unsigned long phase, void *p) { struct sci_port *sci_port; unsigned long flags; sci_port = container_of(self, struct sci_port, freq_transition); if (phase == CPUFREQ_POSTCHANGE) { struct uart_port *port = &sci_port->port; spin_lock_irqsave(&port->lock, flags); port->uartclk = clk_get_rate(sci_port->fclk); spin_unlock_irqrestore(&port->lock, flags); } return NOTIFY_OK; } static const struct sci_irq_desc { const char *desc; irq_handler_t handler; } sci_irq_desc[] = { /* * Split out handlers, the default case. */ [SCIx_ERI_IRQ] = { .desc = "rx err", .handler = sci_er_interrupt, }, [SCIx_RXI_IRQ] = { .desc = "rx full", .handler = sci_rx_interrupt, }, [SCIx_TXI_IRQ] = { .desc = "tx empty", .handler = sci_tx_interrupt, }, [SCIx_BRI_IRQ] = { .desc = "break", .handler = sci_br_interrupt, }, /* * Special muxed handler. */ [SCIx_MUX_IRQ] = { .desc = "mux", .handler = sci_mpxed_interrupt, }, }; static int sci_request_irq(struct sci_port *port) { struct uart_port *up = &port->port; int i, j, ret = 0; for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { const struct sci_irq_desc *desc; int irq; if (SCIx_IRQ_IS_MUXED(port)) { i = SCIx_MUX_IRQ; irq = up->irq; } else { irq = port->irqs[i]; /* * Certain port types won't support all of the * available interrupt sources. */ if (unlikely(irq < 0)) continue; } desc = sci_irq_desc + i; port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", dev_name(up->dev), desc->desc); if (!port->irqstr[j]) goto out_nomem; ret = request_irq(irq, desc->handler, up->irqflags, port->irqstr[j], port); if (unlikely(ret)) { dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); goto out_noirq; } } return 0; out_noirq: while (--i >= 0) free_irq(port->irqs[i], port); out_nomem: while (--j >= 0) kfree(port->irqstr[j]); return ret; } static void sci_free_irq(struct sci_port *port) { int i; /* * Intentionally in reverse order so we iterate over the muxed * IRQ first. */ for (i = 0; i < SCIx_NR_IRQS; i++) { int irq = port->irqs[i]; /* * Certain port types won't support all of the available * interrupt sources. */ if (unlikely(irq < 0)) continue; free_irq(port->irqs[i], port); kfree(port->irqstr[i]); if (SCIx_IRQ_IS_MUXED(port)) { /* If there's only one IRQ, we're done. */ return; } } } static unsigned int sci_tx_empty(struct uart_port *port) { unsigned short status = serial_port_in(port, SCxSR); unsigned short in_tx_fifo = sci_txfill(port); return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; } /* * Modem control is a bit of a mixed bag for SCI(F) ports. Generally * CTS/RTS is supported in hardware by at least one port and controlled * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently * handled via the ->init_pins() op, which is a bit of a one-way street, * lacking any ability to defer pin control -- this will later be * converted over to the GPIO framework). * * Other modes (such as loopback) are supported generically on certain * port types, but not others. For these it's sufficient to test for the * existence of the support register and simply ignore the port type. */ static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) { if (mctrl & TIOCM_LOOP) { const struct plat_sci_reg *reg; /* * Standard loopback mode for SCFCR ports. */ reg = sci_getreg(port, SCFCR); if (reg->size) serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | SCFCR_LOOP); } } static unsigned int sci_get_mctrl(struct uart_port *port) { /* * CTS/RTS is handled in hardware when supported, while nothing * else is wired up. Keep it simple and simply assert DSR/CAR. */ return TIOCM_DSR | TIOCM_CAR; } static void sci_break_ctl(struct uart_port *port, int break_state) { struct sci_port *s = to_sci_port(port); const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR; unsigned short scscr, scsptr; /* check wheter the port has SCSPTR */ if (!reg->size) { /* * Not supported by hardware. Most parts couple break and rx * interrupts together, with break detection always enabled. */ return; } scsptr = serial_port_in(port, SCSPTR); scscr = serial_port_in(port, SCSCR); if (break_state == -1) { scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; scscr &= ~SCSCR_TE; } else { scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; scscr |= SCSCR_TE; } serial_port_out(port, SCSPTR, scsptr); serial_port_out(port, SCSCR, scscr); } static int sci_startup(struct uart_port *port) { struct sci_port *s = to_sci_port(port); unsigned long flags; int ret; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); ret = sci_request_irq(s); if (unlikely(ret < 0)) return ret; sci_request_dma(port); spin_lock_irqsave(&port->lock, flags); sci_start_tx(port); sci_start_rx(port); spin_unlock_irqrestore(&port->lock, flags); return 0; } static void sci_shutdown(struct uart_port *port) { struct sci_port *s = to_sci_port(port); unsigned long flags; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); spin_lock_irqsave(&port->lock, flags); sci_stop_rx(port); sci_stop_tx(port); spin_unlock_irqrestore(&port->lock, flags); #ifdef CONFIG_SERIAL_SH_SCI_DMA if (s->chan_rx) { dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__, port->line); del_timer_sync(&s->rx_timer); } #endif sci_free_dma(port); sci_free_irq(s); } static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps, unsigned long freq) { return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1; } /* calculate sample rate, BRR, and clock select for HSCIF */ static void sci_baud_calc_hscif(struct sci_port *s, unsigned int bps, unsigned long freq, int *brr, unsigned int *srr, unsigned int *cks) { unsigned int sr, br, prediv, scrate, c; int err, min_err = INT_MAX; /* * Find the combination of sample rate and clock select with the * smallest deviation from the desired baud rate. * Prefer high sample rates to maximise the receive margin. * * M: Receive margin (%) * N: Ratio of bit rate to clock (N = sampling rate) * D: Clock duty (D = 0 to 1.0) * L: Frame length (L = 9 to 12) * F: Absolute value of clock frequency deviation * * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) - * (|D - 0.5| / N * (1 + F))| * NOTE: Usually, treat D for 0.5, F is 0 by this calculation. */ for (sr = 32; sr >= 8; sr--) { for (c = 0; c <= 3; c++) { /* integerized formulas from HSCIF documentation */ prediv = sr * (1 << (2 * c + 1)); /* * We need to calculate: * * br = freq / (prediv * bps) clamped to [1..256] * err = freq / (br * prediv) - bps * * Watch out for overflow when calculating the desired * sampling clock rate! */ if (bps > UINT_MAX / prediv) break; scrate = prediv * bps; br = DIV_ROUND_CLOSEST(freq, scrate); br = clamp(br, 1U, 256U); err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps; if (abs(err) >= abs(min_err)) continue; min_err = err; *brr = br - 1; *srr = sr - 1; *cks = c; if (!err) goto found; } } found: dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps, min_err, *brr, *srr + 1, *cks); } static void sci_reset(struct uart_port *port) { const struct plat_sci_reg *reg; unsigned int status; do { status = serial_port_in(port, SCxSR); } while (!(status & SCxSR_TEND(port))); serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ reg = sci_getreg(port, SCFCR); if (reg->size) serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); } static void sci_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct sci_port *s = to_sci_port(port); const struct plat_sci_reg *reg; unsigned int baud, smr_val = 0, max_baud, cks = 0; int t = -1; unsigned int srr = 15; if ((termios->c_cflag & CSIZE) == CS7) smr_val |= SCSMR_CHR; if (termios->c_cflag & PARENB) smr_val |= SCSMR_PE; if (termios->c_cflag & PARODD) smr_val |= SCSMR_PE | SCSMR_ODD; if (termios->c_cflag & CSTOPB) smr_val |= SCSMR_STOP; /* * earlyprintk comes here early on with port->uartclk set to zero. * the clock framework is not up and running at this point so here * we assume that 115200 is the maximum baud rate. please note that * the baud rate is not programmed during earlyprintk - it is assumed * that the previous boot loader has enabled required clocks and * setup the baud rate generator hardware for us already. */ max_baud = port->uartclk ? port->uartclk / 16 : 115200; baud = uart_get_baud_rate(port, termios, old, 0, max_baud); if (likely(baud && port->uartclk)) { if (s->cfg->type == PORT_HSCIF) { sci_baud_calc_hscif(s, baud, port->uartclk, &t, &srr, &cks); } else { t = sci_scbrr_calc(s, baud, port->uartclk); for (cks = 0; t >= 256 && cks <= 3; cks++) t >>= 2; } } sci_port_enable(s); sci_reset(port); smr_val |= serial_port_in(port, SCSMR) & SCSMR_CKS; uart_update_timeout(port, termios->c_cflag, baud); dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n", __func__, smr_val, cks, t, s->cfg->scscr); if (t >= 0) { serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks); serial_port_out(port, SCBRR, t); reg = sci_getreg(port, HSSRR); if (reg->size) serial_port_out(port, HSSRR, srr | HSCIF_SRE); udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ } else serial_port_out(port, SCSMR, smr_val); sci_init_pins(port, termios->c_cflag); reg = sci_getreg(port, SCFCR); if (reg->size) { unsigned short ctrl = serial_port_in(port, SCFCR); if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) { if (termios->c_cflag & CRTSCTS) ctrl |= SCFCR_MCE; else ctrl &= ~SCFCR_MCE; } /* * As we've done a sci_reset() above, ensure we don't * interfere with the FIFOs while toggling MCE. As the * reset values could still be set, simply mask them out. */ ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); serial_port_out(port, SCFCR, ctrl); } serial_port_out(port, SCSCR, s->cfg->scscr); #ifdef CONFIG_SERIAL_SH_SCI_DMA /* * Calculate delay for 2 DMA buffers (4 FIFO). * See serial_core.c::uart_update_timeout(). * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above * function calculates 1 jiffie for the data plus 5 jiffies for the * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA * buffers (4 FIFO sizes), but when performing a faster transfer, the * value obtained by this formula is too small. Therefore, if the value * is smaller than 20ms, use 20ms as the timeout value for DMA. */ if (s->chan_rx) { unsigned int bits; /* byte size and parity */ switch (termios->c_cflag & CSIZE) { case CS5: bits = 7; break; case CS6: bits = 8; break; case CS7: bits = 9; break; default: bits = 10; break; } if (termios->c_cflag & CSTOPB) bits++; if (termios->c_cflag & PARENB) bits++; s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) / (baud / 10), 10); dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n", s->rx_timeout * 1000 / HZ, port->timeout); if (s->rx_timeout < msecs_to_jiffies(20)) s->rx_timeout = msecs_to_jiffies(20); } #endif if ((termios->c_cflag & CREAD) != 0) sci_start_rx(port); sci_port_disable(s); } static void sci_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { struct sci_port *sci_port = to_sci_port(port); switch (state) { case UART_PM_STATE_OFF: sci_port_disable(sci_port); break; default: sci_port_enable(sci_port); break; } } static const char *sci_type(struct uart_port *port) { switch (port->type) { case PORT_IRDA: return "irda"; case PORT_SCI: return "sci"; case PORT_SCIF: return "scif"; case PORT_SCIFA: return "scifa"; case PORT_SCIFB: return "scifb"; case PORT_HSCIF: return "hscif"; } return NULL; } static int sci_remap_port(struct uart_port *port) { struct sci_port *sport = to_sci_port(port); /* * Nothing to do if there's already an established membase. */ if (port->membase) return 0; if (port->flags & UPF_IOREMAP) { port->membase = ioremap_nocache(port->mapbase, sport->reg_size); if (unlikely(!port->membase)) { dev_err(port->dev, "can't remap port#%d\n", port->line); return -ENXIO; } } else { /* * For the simple (and majority of) cases where we don't * need to do any remapping, just cast the cookie * directly. */ port->membase = (void __iomem *)(uintptr_t)port->mapbase; } return 0; } static void sci_release_port(struct uart_port *port) { struct sci_port *sport = to_sci_port(port); if (port->flags & UPF_IOREMAP) { iounmap(port->membase); port->membase = NULL; } release_mem_region(port->mapbase, sport->reg_size); } static int sci_request_port(struct uart_port *port) { struct resource *res; struct sci_port *sport = to_sci_port(port); int ret; res = request_mem_region(port->mapbase, sport->reg_size, dev_name(port->dev)); if (unlikely(res == NULL)) { dev_err(port->dev, "request_mem_region failed."); return -EBUSY; } ret = sci_remap_port(port); if (unlikely(ret != 0)) { release_resource(res); return ret; } return 0; } static void sci_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) { struct sci_port *sport = to_sci_port(port); port->type = sport->cfg->type; sci_request_port(port); } } static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) { if (ser->baud_base < 2400) /* No paper tape reader for Mitch.. */ return -EINVAL; return 0; } static struct uart_ops sci_uart_ops = { .tx_empty = sci_tx_empty, .set_mctrl = sci_set_mctrl, .get_mctrl = sci_get_mctrl, .start_tx = sci_start_tx, .stop_tx = sci_stop_tx, .stop_rx = sci_stop_rx, .break_ctl = sci_break_ctl, .startup = sci_startup, .shutdown = sci_shutdown, .set_termios = sci_set_termios, .pm = sci_pm, .type = sci_type, .release_port = sci_release_port, .request_port = sci_request_port, .config_port = sci_config_port, .verify_port = sci_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = sci_poll_get_char, .poll_put_char = sci_poll_put_char, #endif }; static int sci_init_clocks(struct sci_port *sci_port, struct device *dev) { /* Get the SCI functional clock. It's called "fck" on ARM. */ sci_port->fclk = devm_clk_get(dev, "fck"); if (PTR_ERR(sci_port->fclk) == -EPROBE_DEFER) return -EPROBE_DEFER; if (!IS_ERR(sci_port->fclk)) return 0; /* * But it used to be called "sci_ick", and we need to maintain DT * backward compatibility. */ sci_port->fclk = devm_clk_get(dev, "sci_ick"); if (PTR_ERR(sci_port->fclk) == -EPROBE_DEFER) return -EPROBE_DEFER; if (!IS_ERR(sci_port->fclk)) return 0; /* SH has historically named the clock "sci_fck". */ sci_port->fclk = devm_clk_get(dev, "sci_fck"); if (!IS_ERR(sci_port->fclk)) return 0; /* * Not all SH platforms declare a clock lookup entry for SCI devices, * in which case we need to get the global "peripheral_clk" clock. */ sci_port->fclk = devm_clk_get(dev, "peripheral_clk"); if (!IS_ERR(sci_port->fclk)) return 0; dev_err(dev, "failed to get functional clock\n"); return PTR_ERR(sci_port->fclk); } static int sci_init_single(struct platform_device *dev, struct sci_port *sci_port, unsigned int index, struct plat_sci_port *p, bool early) { struct uart_port *port = &sci_port->port; const struct resource *res; unsigned int i; int ret; sci_port->cfg = p; port->ops = &sci_uart_ops; port->iotype = UPIO_MEM; port->line = index; res = platform_get_resource(dev, IORESOURCE_MEM, 0); if (res == NULL) return -ENOMEM; port->mapbase = res->start; sci_port->reg_size = resource_size(res); for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) sci_port->irqs[i] = platform_get_irq(dev, i); /* The SCI generates several interrupts. They can be muxed together or * connected to different interrupt lines. In the muxed case only one * interrupt resource is specified. In the non-muxed case three or four * interrupt resources are specified, as the BRI interrupt is optional. */ if (sci_port->irqs[0] < 0) return -ENXIO; if (sci_port->irqs[1] < 0) { sci_port->irqs[1] = sci_port->irqs[0]; sci_port->irqs[2] = sci_port->irqs[0]; sci_port->irqs[3] = sci_port->irqs[0]; } if (p->regtype == SCIx_PROBE_REGTYPE) { ret = sci_probe_regmap(p); if (unlikely(ret)) return ret; } switch (p->type) { case PORT_SCIFB: port->fifosize = 256; sci_port->overrun_reg = SCxSR; sci_port->overrun_mask = SCIFA_ORER; sci_port->sampling_rate = 16; break; case PORT_HSCIF: port->fifosize = 128; sci_port->overrun_reg = SCLSR; sci_port->overrun_mask = SCLSR_ORER; sci_port->sampling_rate = 0; break; case PORT_SCIFA: port->fifosize = 64; sci_port->overrun_reg = SCxSR; sci_port->overrun_mask = SCIFA_ORER; sci_port->sampling_rate = 16; break; case PORT_SCIF: port->fifosize = 16; if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) { sci_port->overrun_reg = SCxSR; sci_port->overrun_mask = SCIFA_ORER; sci_port->sampling_rate = 16; } else { sci_port->overrun_reg = SCLSR; sci_port->overrun_mask = SCLSR_ORER; sci_port->sampling_rate = 32; } break; default: port->fifosize = 1; sci_port->overrun_reg = SCxSR; sci_port->overrun_mask = SCI_ORER; sci_port->sampling_rate = 32; break; } /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't * match the SoC datasheet, this should be investigated. Let platform * data override the sampling rate for now. */ if (p->sampling_rate) sci_port->sampling_rate = p->sampling_rate; if (!early) { ret = sci_init_clocks(sci_port, &dev->dev); if (ret < 0) return ret; port->dev = &dev->dev; pm_runtime_enable(&dev->dev); } sci_port->break_timer.data = (unsigned long)sci_port; sci_port->break_timer.function = sci_break_timer; init_timer(&sci_port->break_timer); /* * Establish some sensible defaults for the error detection. */ if (p->type == PORT_SCI) { sci_port->error_mask = SCI_DEFAULT_ERROR_MASK; sci_port->error_clear = SCI_ERROR_CLEAR; } else { sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK; sci_port->error_clear = SCIF_ERROR_CLEAR; } /* * Make the error mask inclusive of overrun detection, if * supported. */ if (sci_port->overrun_reg == SCxSR) { sci_port->error_mask |= sci_port->overrun_mask; sci_port->error_clear &= ~sci_port->overrun_mask; } port->type = p->type; port->flags = UPF_FIXED_PORT | p->flags; port->regshift = p->regshift; /* * The UART port needs an IRQ value, so we peg this to the RX IRQ * for the multi-IRQ ports, which is where we are primarily * concerned with the shutdown path synchronization. * * For the muxed case there's nothing more to do. */ port->irq = sci_port->irqs[SCIx_RXI_IRQ]; port->irqflags = 0; port->serial_in = sci_serial_in; port->serial_out = sci_serial_out; if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0) dev_dbg(port->dev, "DMA tx %d, rx %d\n", p->dma_slave_tx, p->dma_slave_rx); return 0; } static void sci_cleanup_single(struct sci_port *port) { pm_runtime_disable(port->port.dev); } #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE static void serial_console_putchar(struct uart_port *port, int ch) { sci_poll_put_char(port, ch); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { struct sci_port *sci_port = &sci_ports[co->index]; struct uart_port *port = &sci_port->port; unsigned short bits, ctrl, ctrl_temp; unsigned long flags; int locked = 1; local_irq_save(flags); if (port->sysrq) locked = 0; else if (oops_in_progress) locked = spin_trylock(&port->lock); else spin_lock(&port->lock); /* first save SCSCR then disable interrupts, keep clock source */ ctrl = serial_port_in(port, SCSCR); ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) | (ctrl & (SCSCR_CKE1 | SCSCR_CKE0)); serial_port_out(port, SCSCR, ctrl_temp); uart_console_write(port, s, count, serial_console_putchar); /* wait until fifo is empty and last bit has been transmitted */ bits = SCxSR_TDxE(port) | SCxSR_TEND(port); while ((serial_port_in(port, SCxSR) & bits) != bits) cpu_relax(); /* restore the SCSCR */ serial_port_out(port, SCSCR, ctrl); if (locked) spin_unlock(&port->lock); local_irq_restore(flags); } static int serial_console_setup(struct console *co, char *options) { struct sci_port *sci_port; struct uart_port *port; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; int ret; /* * Refuse to handle any bogus ports. */ if (co->index < 0 || co->index >= SCI_NPORTS) return -ENODEV; sci_port = &sci_ports[co->index]; port = &sci_port->port; /* * Refuse to handle uninitialized ports. */ if (!port->ops) return -ENODEV; ret = sci_remap_port(port); if (unlikely(ret != 0)) return ret; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } static struct console serial_console = { .name = "ttySC", .device = uart_console_device, .write = serial_console_write, .setup = serial_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &sci_uart_driver, }; static struct console early_serial_console = { .name = "early_ttySC", .write = serial_console_write, .flags = CON_PRINTBUFFER, .index = -1, }; static char early_serial_buf[32]; static int sci_probe_earlyprintk(struct platform_device *pdev) { struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev); if (early_serial_console.data) return -EEXIST; early_serial_console.index = pdev->id; sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true); serial_console_setup(&early_serial_console, early_serial_buf); if (!strstr(early_serial_buf, "keep")) early_serial_console.flags |= CON_BOOT; register_console(&early_serial_console); return 0; } #define SCI_CONSOLE (&serial_console) #else static inline int sci_probe_earlyprintk(struct platform_device *pdev) { return -EINVAL; } #define SCI_CONSOLE NULL #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized"; static struct uart_driver sci_uart_driver = { .owner = THIS_MODULE, .driver_name = "sci", .dev_name = "ttySC", .major = SCI_MAJOR, .minor = SCI_MINOR_START, .nr = SCI_NPORTS, .cons = SCI_CONSOLE, }; static int sci_remove(struct platform_device *dev) { struct sci_port *port = platform_get_drvdata(dev); cpufreq_unregister_notifier(&port->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); uart_remove_one_port(&sci_uart_driver, &port->port); sci_cleanup_single(port); return 0; } struct sci_port_info { unsigned int type; unsigned int regtype; }; static const struct of_device_id of_sci_match[] = { { .compatible = "renesas,scif", .data = &(const struct sci_port_info) { .type = PORT_SCIF, .regtype = SCIx_SH4_SCIF_REGTYPE, }, }, { .compatible = "renesas,scifa", .data = &(const struct sci_port_info) { .type = PORT_SCIFA, .regtype = SCIx_SCIFA_REGTYPE, }, }, { .compatible = "renesas,scifb", .data = &(const struct sci_port_info) { .type = PORT_SCIFB, .regtype = SCIx_SCIFB_REGTYPE, }, }, { .compatible = "renesas,hscif", .data = &(const struct sci_port_info) { .type = PORT_HSCIF, .regtype = SCIx_HSCIF_REGTYPE, }, }, { .compatible = "renesas,sci", .data = &(const struct sci_port_info) { .type = PORT_SCI, .regtype = SCIx_SCI_REGTYPE, }, }, { /* Terminator */ }, }; MODULE_DEVICE_TABLE(of, of_sci_match); static struct plat_sci_port * sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id) { struct device_node *np = pdev->dev.of_node; const struct of_device_id *match; const struct sci_port_info *info; struct plat_sci_port *p; int id; if (!IS_ENABLED(CONFIG_OF) || !np) return NULL; match = of_match_node(of_sci_match, np); if (!match) return NULL; info = match->data; p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL); if (!p) return NULL; /* Get the line number from the aliases node. */ id = of_alias_get_id(np, "serial"); if (id < 0) { dev_err(&pdev->dev, "failed to get alias id (%d)\n", id); return NULL; } *dev_id = id; p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF; p->type = info->type; p->regtype = info->regtype; p->scscr = SCSCR_RE | SCSCR_TE; return p; } static int sci_probe_single(struct platform_device *dev, unsigned int index, struct plat_sci_port *p, struct sci_port *sciport) { int ret; /* Sanity check */ if (unlikely(index >= SCI_NPORTS)) { dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n", index+1, SCI_NPORTS); dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); return -EINVAL; } ret = sci_init_single(dev, sciport, index, p, false); if (ret) return ret; ret = uart_add_one_port(&sci_uart_driver, &sciport->port); if (ret) { sci_cleanup_single(sciport); return ret; } return 0; } static int sci_probe(struct platform_device *dev) { struct plat_sci_port *p; struct sci_port *sp; unsigned int dev_id; int ret; /* * If we've come here via earlyprintk initialization, head off to * the special early probe. We don't have sufficient device state * to make it beyond this yet. */ if (is_early_platform_device(dev)) return sci_probe_earlyprintk(dev); if (dev->dev.of_node) { p = sci_parse_dt(dev, &dev_id); if (p == NULL) return -EINVAL; } else { p = dev->dev.platform_data; if (p == NULL) { dev_err(&dev->dev, "no platform data supplied\n"); return -EINVAL; } dev_id = dev->id; } sp = &sci_ports[dev_id]; platform_set_drvdata(dev, sp); ret = sci_probe_single(dev, dev_id, p, sp); if (ret) return ret; sp->freq_transition.notifier_call = sci_notifier; ret = cpufreq_register_notifier(&sp->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); if (unlikely(ret < 0)) { uart_remove_one_port(&sci_uart_driver, &sp->port); sci_cleanup_single(sp); return ret; } #ifdef CONFIG_SH_STANDARD_BIOS sh_bios_gdb_detach(); #endif return 0; } static __maybe_unused int sci_suspend(struct device *dev) { struct sci_port *sport = dev_get_drvdata(dev); if (sport) uart_suspend_port(&sci_uart_driver, &sport->port); return 0; } static __maybe_unused int sci_resume(struct device *dev) { struct sci_port *sport = dev_get_drvdata(dev); if (sport) uart_resume_port(&sci_uart_driver, &sport->port); return 0; } static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume); static struct platform_driver sci_driver = { .probe = sci_probe, .remove = sci_remove, .driver = { .name = "sh-sci", .pm = &sci_dev_pm_ops, .of_match_table = of_match_ptr(of_sci_match), }, }; static int __init sci_init(void) { int ret; pr_info("%s\n", banner); ret = uart_register_driver(&sci_uart_driver); if (likely(ret == 0)) { ret = platform_driver_register(&sci_driver); if (unlikely(ret)) uart_unregister_driver(&sci_uart_driver); } return ret; } static void __exit sci_exit(void) { platform_driver_unregister(&sci_driver); uart_unregister_driver(&sci_uart_driver); } #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE early_platform_init_buffer("earlyprintk", &sci_driver, early_serial_buf, ARRAY_SIZE(early_serial_buf)); #endif module_init(sci_init); module_exit(sci_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:sh-sci"); MODULE_AUTHOR("Paul Mundt"); MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");