// SPDX-License-Identifier: GPL-2.0-only /* * SCSI Zoned Block commands * * Copyright (C) 2014-2015 SUSE Linux GmbH * Written by: Hannes Reinecke * Modified by: Damien Le Moal * Modified by: Shaun Tancheff */ #include #include #include #include #include #include #include #include "sd.h" static unsigned int sd_zbc_get_zone_wp_offset(struct blk_zone *zone) { if (zone->type == ZBC_ZONE_TYPE_CONV) return 0; switch (zone->cond) { case BLK_ZONE_COND_IMP_OPEN: case BLK_ZONE_COND_EXP_OPEN: case BLK_ZONE_COND_CLOSED: return zone->wp - zone->start; case BLK_ZONE_COND_FULL: return zone->len; case BLK_ZONE_COND_EMPTY: case BLK_ZONE_COND_OFFLINE: case BLK_ZONE_COND_READONLY: default: /* * Offline and read-only zones do not have a valid * write pointer. Use 0 as for an empty zone. */ return 0; } } static int sd_zbc_parse_report(struct scsi_disk *sdkp, u8 *buf, unsigned int idx, report_zones_cb cb, void *data) { struct scsi_device *sdp = sdkp->device; struct blk_zone zone = { 0 }; int ret; zone.type = buf[0] & 0x0f; zone.cond = (buf[1] >> 4) & 0xf; if (buf[1] & 0x01) zone.reset = 1; if (buf[1] & 0x02) zone.non_seq = 1; zone.len = logical_to_sectors(sdp, get_unaligned_be64(&buf[8])); zone.start = logical_to_sectors(sdp, get_unaligned_be64(&buf[16])); zone.wp = logical_to_sectors(sdp, get_unaligned_be64(&buf[24])); if (zone.type != ZBC_ZONE_TYPE_CONV && zone.cond == ZBC_ZONE_COND_FULL) zone.wp = zone.start + zone.len; ret = cb(&zone, idx, data); if (ret) return ret; if (sdkp->rev_wp_offset) sdkp->rev_wp_offset[idx] = sd_zbc_get_zone_wp_offset(&zone); return 0; } /** * sd_zbc_do_report_zones - Issue a REPORT ZONES scsi command. * @sdkp: The target disk * @buf: vmalloc-ed buffer to use for the reply * @buflen: the buffer size * @lba: Start LBA of the report * @partial: Do partial report * * For internal use during device validation. * Using partial=true can significantly speed up execution of a report zones * command because the disk does not have to count all possible report matching * zones and will only report the count of zones fitting in the command reply * buffer. */ static int sd_zbc_do_report_zones(struct scsi_disk *sdkp, unsigned char *buf, unsigned int buflen, sector_t lba, bool partial) { struct scsi_device *sdp = sdkp->device; const int timeout = sdp->request_queue->rq_timeout; struct scsi_sense_hdr sshdr; unsigned char cmd[16]; unsigned int rep_len; int result; memset(cmd, 0, 16); cmd[0] = ZBC_IN; cmd[1] = ZI_REPORT_ZONES; put_unaligned_be64(lba, &cmd[2]); put_unaligned_be32(buflen, &cmd[10]); if (partial) cmd[14] = ZBC_REPORT_ZONE_PARTIAL; result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, buf, buflen, &sshdr, timeout, SD_MAX_RETRIES, NULL); if (result) { sd_printk(KERN_ERR, sdkp, "REPORT ZONES start lba %llu failed\n", lba); sd_print_result(sdkp, "REPORT ZONES", result); if (driver_byte(result) == DRIVER_SENSE && scsi_sense_valid(&sshdr)) sd_print_sense_hdr(sdkp, &sshdr); return -EIO; } rep_len = get_unaligned_be32(&buf[0]); if (rep_len < 64) { sd_printk(KERN_ERR, sdkp, "REPORT ZONES report invalid length %u\n", rep_len); return -EIO; } return 0; } /** * Allocate a buffer for report zones reply. * @sdkp: The target disk * @nr_zones: Maximum number of zones to report * @buflen: Size of the buffer allocated * * Try to allocate a reply buffer for the number of requested zones. * The size of the buffer allocated may be smaller than requested to * satify the device constraint (max_hw_sectors, max_segments, etc). * * Return the address of the allocated buffer and update @buflen with * the size of the allocated buffer. */ static void *sd_zbc_alloc_report_buffer(struct scsi_disk *sdkp, unsigned int nr_zones, size_t *buflen) { struct request_queue *q = sdkp->disk->queue; size_t bufsize; void *buf; /* * Report zone buffer size should be at most 64B times the number of * zones requested plus the 64B reply header, but should be at least * SECTOR_SIZE for ATA devices. * Make sure that this size does not exceed the hardware capabilities. * Furthermore, since the report zone command cannot be split, make * sure that the allocated buffer can always be mapped by limiting the * number of pages allocated to the HBA max segments limit. */ nr_zones = min(nr_zones, sdkp->nr_zones); bufsize = roundup((nr_zones + 1) * 64, SECTOR_SIZE); bufsize = min_t(size_t, bufsize, queue_max_hw_sectors(q) << SECTOR_SHIFT); bufsize = min_t(size_t, bufsize, queue_max_segments(q) << PAGE_SHIFT); while (bufsize >= SECTOR_SIZE) { buf = __vmalloc(bufsize, GFP_KERNEL | __GFP_ZERO | __GFP_NORETRY); if (buf) { *buflen = bufsize; return buf; } bufsize >>= 1; } return NULL; } /** * sd_zbc_zone_sectors - Get the device zone size in number of 512B sectors. * @sdkp: The target disk */ static inline sector_t sd_zbc_zone_sectors(struct scsi_disk *sdkp) { return logical_to_sectors(sdkp->device, sdkp->zone_blocks); } int sd_zbc_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data) { struct scsi_disk *sdkp = scsi_disk(disk); sector_t capacity = logical_to_sectors(sdkp->device, sdkp->capacity); unsigned int nr, i; unsigned char *buf; size_t offset, buflen = 0; int zone_idx = 0; int ret; if (!sd_is_zoned(sdkp)) /* Not a zoned device */ return -EOPNOTSUPP; if (!capacity) /* Device gone or invalid */ return -ENODEV; buf = sd_zbc_alloc_report_buffer(sdkp, nr_zones, &buflen); if (!buf) return -ENOMEM; while (zone_idx < nr_zones && sector < capacity) { ret = sd_zbc_do_report_zones(sdkp, buf, buflen, sectors_to_logical(sdkp->device, sector), true); if (ret) goto out; offset = 0; nr = min(nr_zones, get_unaligned_be32(&buf[0]) / 64); if (!nr) break; for (i = 0; i < nr && zone_idx < nr_zones; i++) { offset += 64; ret = sd_zbc_parse_report(sdkp, buf + offset, zone_idx, cb, data); if (ret) goto out; zone_idx++; } sector += sd_zbc_zone_sectors(sdkp) * i; } ret = zone_idx; out: kvfree(buf); return ret; } static blk_status_t sd_zbc_cmnd_checks(struct scsi_cmnd *cmd) { struct request *rq = cmd->request; struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); sector_t sector = blk_rq_pos(rq); if (!sd_is_zoned(sdkp)) /* Not a zoned device */ return BLK_STS_IOERR; if (sdkp->device->changed) return BLK_STS_IOERR; if (sector & (sd_zbc_zone_sectors(sdkp) - 1)) /* Unaligned request */ return BLK_STS_IOERR; return BLK_STS_OK; } #define SD_ZBC_INVALID_WP_OFST (~0u) #define SD_ZBC_UPDATING_WP_OFST (SD_ZBC_INVALID_WP_OFST - 1) static int sd_zbc_update_wp_offset_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct scsi_disk *sdkp = data; lockdep_assert_held(&sdkp->zones_wp_offset_lock); sdkp->zones_wp_offset[idx] = sd_zbc_get_zone_wp_offset(zone); return 0; } static void sd_zbc_update_wp_offset_workfn(struct work_struct *work) { struct scsi_disk *sdkp; unsigned int zno; int ret; sdkp = container_of(work, struct scsi_disk, zone_wp_offset_work); spin_lock_bh(&sdkp->zones_wp_offset_lock); for (zno = 0; zno < sdkp->nr_zones; zno++) { if (sdkp->zones_wp_offset[zno] != SD_ZBC_UPDATING_WP_OFST) continue; spin_unlock_bh(&sdkp->zones_wp_offset_lock); ret = sd_zbc_do_report_zones(sdkp, sdkp->zone_wp_update_buf, SD_BUF_SIZE, zno * sdkp->zone_blocks, true); spin_lock_bh(&sdkp->zones_wp_offset_lock); if (!ret) sd_zbc_parse_report(sdkp, sdkp->zone_wp_update_buf + 64, zno, sd_zbc_update_wp_offset_cb, sdkp); } spin_unlock_bh(&sdkp->zones_wp_offset_lock); scsi_device_put(sdkp->device); } /** * sd_zbc_prepare_zone_append() - Prepare an emulated ZONE_APPEND command. * @cmd: the command to setup * @lba: the LBA to patch * @nr_blocks: the number of LBAs to be written * * Called from sd_setup_read_write_cmnd() for REQ_OP_ZONE_APPEND. * @sd_zbc_prepare_zone_append() handles the necessary zone wrote locking and * patching of the lba for an emulated ZONE_APPEND command. * * In case the cached write pointer offset is %SD_ZBC_INVALID_WP_OFST it will * schedule a REPORT ZONES command and return BLK_STS_IOERR. */ blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks) { struct request *rq = cmd->request; struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); unsigned int wp_offset, zno = blk_rq_zone_no(rq); blk_status_t ret; ret = sd_zbc_cmnd_checks(cmd); if (ret != BLK_STS_OK) return ret; if (!blk_rq_zone_is_seq(rq)) return BLK_STS_IOERR; /* Unlock of the write lock will happen in sd_zbc_complete() */ if (!blk_req_zone_write_trylock(rq)) return BLK_STS_ZONE_RESOURCE; spin_lock_bh(&sdkp->zones_wp_offset_lock); wp_offset = sdkp->zones_wp_offset[zno]; switch (wp_offset) { case SD_ZBC_INVALID_WP_OFST: /* * We are about to schedule work to update a zone write pointer * offset, which will cause the zone append command to be * requeued. So make sure that the scsi device does not go away * while the work is being processed. */ if (scsi_device_get(sdkp->device)) { ret = BLK_STS_IOERR; break; } sdkp->zones_wp_offset[zno] = SD_ZBC_UPDATING_WP_OFST; schedule_work(&sdkp->zone_wp_offset_work); fallthrough; case SD_ZBC_UPDATING_WP_OFST: ret = BLK_STS_DEV_RESOURCE; break; default: wp_offset = sectors_to_logical(sdkp->device, wp_offset); if (wp_offset + nr_blocks > sdkp->zone_blocks) { ret = BLK_STS_IOERR; break; } *lba += wp_offset; } spin_unlock_bh(&sdkp->zones_wp_offset_lock); if (ret) blk_req_zone_write_unlock(rq); return ret; } /** * sd_zbc_setup_zone_mgmt_cmnd - Prepare a zone ZBC_OUT command. The operations * can be RESET WRITE POINTER, OPEN, CLOSE or FINISH. * @cmd: the command to setup * @op: Operation to be performed * @all: All zones control * * Called from sd_init_command() for REQ_OP_ZONE_RESET, REQ_OP_ZONE_RESET_ALL, * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE or REQ_OP_ZONE_FINISH requests. */ blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all) { struct request *rq = cmd->request; sector_t sector = blk_rq_pos(rq); struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); sector_t block = sectors_to_logical(sdkp->device, sector); blk_status_t ret; ret = sd_zbc_cmnd_checks(cmd); if (ret != BLK_STS_OK) return ret; cmd->cmd_len = 16; memset(cmd->cmnd, 0, cmd->cmd_len); cmd->cmnd[0] = ZBC_OUT; cmd->cmnd[1] = op; if (all) cmd->cmnd[14] = 0x1; else put_unaligned_be64(block, &cmd->cmnd[2]); rq->timeout = SD_TIMEOUT; cmd->sc_data_direction = DMA_NONE; cmd->transfersize = 0; cmd->allowed = 0; return BLK_STS_OK; } static bool sd_zbc_need_zone_wp_update(struct request *rq) { switch (req_op(rq)) { case REQ_OP_ZONE_APPEND: case REQ_OP_ZONE_FINISH: case REQ_OP_ZONE_RESET: case REQ_OP_ZONE_RESET_ALL: return true; case REQ_OP_WRITE: case REQ_OP_WRITE_ZEROES: case REQ_OP_WRITE_SAME: return blk_rq_zone_is_seq(rq); default: return false; } } /** * sd_zbc_zone_wp_update - Update cached zone write pointer upon cmd completion * @cmd: Completed command * @good_bytes: Command reply bytes * * Called from sd_zbc_complete() to handle the update of the cached zone write * pointer value in case an update is needed. */ static unsigned int sd_zbc_zone_wp_update(struct scsi_cmnd *cmd, unsigned int good_bytes) { int result = cmd->result; struct request *rq = cmd->request; struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); unsigned int zno = blk_rq_zone_no(rq); enum req_opf op = req_op(rq); /* * If we got an error for a command that needs updating the write * pointer offset cache, we must mark the zone wp offset entry as * invalid to force an update from disk the next time a zone append * command is issued. */ spin_lock_bh(&sdkp->zones_wp_offset_lock); if (result && op != REQ_OP_ZONE_RESET_ALL) { if (op == REQ_OP_ZONE_APPEND) { /* Force complete completion (no retry) */ good_bytes = 0; scsi_set_resid(cmd, blk_rq_bytes(rq)); } /* * Force an update of the zone write pointer offset on * the next zone append access. */ if (sdkp->zones_wp_offset[zno] != SD_ZBC_UPDATING_WP_OFST) sdkp->zones_wp_offset[zno] = SD_ZBC_INVALID_WP_OFST; goto unlock_wp_offset; } switch (op) { case REQ_OP_ZONE_APPEND: rq->__sector += sdkp->zones_wp_offset[zno]; fallthrough; case REQ_OP_WRITE_ZEROES: case REQ_OP_WRITE_SAME: case REQ_OP_WRITE: if (sdkp->zones_wp_offset[zno] < sd_zbc_zone_sectors(sdkp)) sdkp->zones_wp_offset[zno] += good_bytes >> SECTOR_SHIFT; break; case REQ_OP_ZONE_RESET: sdkp->zones_wp_offset[zno] = 0; break; case REQ_OP_ZONE_FINISH: sdkp->zones_wp_offset[zno] = sd_zbc_zone_sectors(sdkp); break; case REQ_OP_ZONE_RESET_ALL: memset(sdkp->zones_wp_offset, 0, sdkp->nr_zones * sizeof(unsigned int)); break; default: break; } unlock_wp_offset: spin_unlock_bh(&sdkp->zones_wp_offset_lock); return good_bytes; } /** * sd_zbc_complete - ZBC command post processing. * @cmd: Completed command * @good_bytes: Command reply bytes * @sshdr: command sense header * * Called from sd_done() to handle zone commands errors and updates to the * device queue zone write pointer offset cahce. */ unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr) { int result = cmd->result; struct request *rq = cmd->request; if (op_is_zone_mgmt(req_op(rq)) && result && sshdr->sense_key == ILLEGAL_REQUEST && sshdr->asc == 0x24) { /* * INVALID FIELD IN CDB error: a zone management command was * attempted on a conventional zone. Nothing to worry about, * so be quiet about the error. */ rq->rq_flags |= RQF_QUIET; } else if (sd_zbc_need_zone_wp_update(rq)) good_bytes = sd_zbc_zone_wp_update(cmd, good_bytes); if (req_op(rq) == REQ_OP_ZONE_APPEND) blk_req_zone_write_unlock(rq); return good_bytes; } /** * sd_zbc_check_zoned_characteristics - Check zoned block device characteristics * @sdkp: Target disk * @buf: Buffer where to store the VPD page data * * Read VPD page B6, get information and check that reads are unconstrained. */ static int sd_zbc_check_zoned_characteristics(struct scsi_disk *sdkp, unsigned char *buf) { if (scsi_get_vpd_page(sdkp->device, 0xb6, buf, 64)) { sd_printk(KERN_NOTICE, sdkp, "Read zoned characteristics VPD page failed\n"); return -ENODEV; } if (sdkp->device->type != TYPE_ZBC) { /* Host-aware */ sdkp->urswrz = 1; sdkp->zones_optimal_open = get_unaligned_be32(&buf[8]); sdkp->zones_optimal_nonseq = get_unaligned_be32(&buf[12]); sdkp->zones_max_open = 0; } else { /* Host-managed */ sdkp->urswrz = buf[4] & 1; sdkp->zones_optimal_open = 0; sdkp->zones_optimal_nonseq = 0; sdkp->zones_max_open = get_unaligned_be32(&buf[16]); } /* * Check for unconstrained reads: host-managed devices with * constrained reads (drives failing read after write pointer) * are not supported. */ if (!sdkp->urswrz) { if (sdkp->first_scan) sd_printk(KERN_NOTICE, sdkp, "constrained reads devices are not supported\n"); return -ENODEV; } return 0; } /** * sd_zbc_check_capacity - Check the device capacity * @sdkp: Target disk * @buf: command buffer * @zblocks: zone size in number of blocks * * Get the device zone size and check that the device capacity as reported * by READ CAPACITY matches the max_lba value (plus one) of the report zones * command reply for devices with RC_BASIS == 0. * * Returns 0 upon success or an error code upon failure. */ static int sd_zbc_check_capacity(struct scsi_disk *sdkp, unsigned char *buf, u32 *zblocks) { u64 zone_blocks; sector_t max_lba; unsigned char *rec; int ret; /* Do a report zone to get max_lba and the size of the first zone */ ret = sd_zbc_do_report_zones(sdkp, buf, SD_BUF_SIZE, 0, false); if (ret) return ret; if (sdkp->rc_basis == 0) { /* The max_lba field is the capacity of this device */ max_lba = get_unaligned_be64(&buf[8]); if (sdkp->capacity != max_lba + 1) { if (sdkp->first_scan) sd_printk(KERN_WARNING, sdkp, "Changing capacity from %llu to max LBA+1 %llu\n", (unsigned long long)sdkp->capacity, (unsigned long long)max_lba + 1); sdkp->capacity = max_lba + 1; } } /* Get the size of the first reported zone */ rec = buf + 64; zone_blocks = get_unaligned_be64(&rec[8]); if (logical_to_sectors(sdkp->device, zone_blocks) > UINT_MAX) { if (sdkp->first_scan) sd_printk(KERN_NOTICE, sdkp, "Zone size too large\n"); return -EFBIG; } *zblocks = zone_blocks; return 0; } static void sd_zbc_revalidate_zones_cb(struct gendisk *disk) { struct scsi_disk *sdkp = scsi_disk(disk); swap(sdkp->zones_wp_offset, sdkp->rev_wp_offset); } static int sd_zbc_revalidate_zones(struct scsi_disk *sdkp, u32 zone_blocks, unsigned int nr_zones) { struct gendisk *disk = sdkp->disk; int ret = 0; /* * Make sure revalidate zones are serialized to ensure exclusive * updates of the scsi disk data. */ mutex_lock(&sdkp->rev_mutex); /* * Revalidate the disk zones to update the device request queue zone * bitmaps and the zone write pointer offset array. Do this only once * the device capacity is set on the second revalidate execution for * disk scan or if something changed when executing a normal revalidate. */ if (sdkp->first_scan) { sdkp->zone_blocks = zone_blocks; sdkp->nr_zones = nr_zones; goto unlock; } if (sdkp->zone_blocks == zone_blocks && sdkp->nr_zones == nr_zones && disk->queue->nr_zones == nr_zones) goto unlock; sdkp->rev_wp_offset = kvcalloc(nr_zones, sizeof(u32), GFP_NOIO); if (!sdkp->rev_wp_offset) { ret = -ENOMEM; goto unlock; } ret = blk_revalidate_disk_zones(disk, sd_zbc_revalidate_zones_cb); kvfree(sdkp->rev_wp_offset); sdkp->rev_wp_offset = NULL; unlock: mutex_unlock(&sdkp->rev_mutex); return ret; } int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf) { struct gendisk *disk = sdkp->disk; struct request_queue *q = disk->queue; unsigned int nr_zones; u32 zone_blocks = 0; u32 max_append; int ret; if (!sd_is_zoned(sdkp)) /* * Device managed or normal SCSI disk, * no special handling required */ return 0; /* Check zoned block device characteristics (unconstrained reads) */ ret = sd_zbc_check_zoned_characteristics(sdkp, buf); if (ret) goto err; /* Check the device capacity reported by report zones */ ret = sd_zbc_check_capacity(sdkp, buf, &zone_blocks); if (ret != 0) goto err; /* The drive satisfies the kernel restrictions: set it up */ blk_queue_flag_set(QUEUE_FLAG_ZONE_RESETALL, q); blk_queue_required_elevator_features(q, ELEVATOR_F_ZBD_SEQ_WRITE); nr_zones = round_up(sdkp->capacity, zone_blocks) >> ilog2(zone_blocks); /* READ16/WRITE16 is mandatory for ZBC disks */ sdkp->device->use_16_for_rw = 1; sdkp->device->use_10_for_rw = 0; ret = sd_zbc_revalidate_zones(sdkp, zone_blocks, nr_zones); if (ret) goto err; /* * On the first scan 'chunk_sectors' isn't setup yet, so calling * blk_queue_max_zone_append_sectors() will result in a WARN(). Defer * this setting to the second scan. */ if (sdkp->first_scan) return 0; max_append = min_t(u32, logical_to_sectors(sdkp->device, zone_blocks), q->limits.max_segments << (PAGE_SHIFT - 9)); blk_queue_max_zone_append_sectors(q, max_append); return 0; err: sdkp->capacity = 0; return ret; } void sd_zbc_print_zones(struct scsi_disk *sdkp) { if (!sd_is_zoned(sdkp) || !sdkp->capacity) return; if (sdkp->capacity & (sdkp->zone_blocks - 1)) sd_printk(KERN_NOTICE, sdkp, "%u zones of %u logical blocks + 1 runt zone\n", sdkp->nr_zones - 1, sdkp->zone_blocks); else sd_printk(KERN_NOTICE, sdkp, "%u zones of %u logical blocks\n", sdkp->nr_zones, sdkp->zone_blocks); } int sd_zbc_init_disk(struct scsi_disk *sdkp) { if (!sd_is_zoned(sdkp)) return 0; sdkp->zones_wp_offset = NULL; spin_lock_init(&sdkp->zones_wp_offset_lock); sdkp->rev_wp_offset = NULL; mutex_init(&sdkp->rev_mutex); INIT_WORK(&sdkp->zone_wp_offset_work, sd_zbc_update_wp_offset_workfn); sdkp->zone_wp_update_buf = kzalloc(SD_BUF_SIZE, GFP_KERNEL); if (!sdkp->zone_wp_update_buf) return -ENOMEM; return 0; } void sd_zbc_release_disk(struct scsi_disk *sdkp) { kvfree(sdkp->zones_wp_offset); sdkp->zones_wp_offset = NULL; kfree(sdkp->zone_wp_update_buf); sdkp->zone_wp_update_buf = NULL; }