/* * Adaptec AIC79xx device driver for Linux. * * Copyright (c) 2000-2001 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic79xx_osm.h#137 $ * */ #ifndef _AIC79XX_LINUX_H_ #define _AIC79XX_LINUX_H_ #include #include #include #include #include #include #include #include #include #include #include /* For tasklet support. */ #include #include /* Core SCSI definitions */ #define AIC_LIB_PREFIX ahd #include "scsi.h" #include /* Name space conflict with BSD queue macros */ #ifdef LIST_HEAD #undef LIST_HEAD #endif #include "cam.h" #include "queue.h" #include "scsi_message.h" #include "scsi_iu.h" #include "aiclib.h" /*********************************** Debugging ********************************/ #ifdef CONFIG_AIC79XX_DEBUG_ENABLE #ifdef CONFIG_AIC79XX_DEBUG_MASK #define AHD_DEBUG 1 #define AHD_DEBUG_OPTS CONFIG_AIC79XX_DEBUG_MASK #else /* * Compile in debugging code, but do not enable any printfs. */ #define AHD_DEBUG 1 #define AHD_DEBUG_OPTS 0 #endif /* No debugging code. */ #endif /********************************** Misc Macros *******************************/ #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) #define powerof2(x) ((((x)-1)&(x))==0) /************************* Forward Declarations *******************************/ struct ahd_softc; typedef struct pci_dev *ahd_dev_softc_t; typedef Scsi_Cmnd *ahd_io_ctx_t; /******************************* Byte Order ***********************************/ #define ahd_htobe16(x) cpu_to_be16(x) #define ahd_htobe32(x) cpu_to_be32(x) #define ahd_htobe64(x) cpu_to_be64(x) #define ahd_htole16(x) cpu_to_le16(x) #define ahd_htole32(x) cpu_to_le32(x) #define ahd_htole64(x) cpu_to_le64(x) #define ahd_be16toh(x) be16_to_cpu(x) #define ahd_be32toh(x) be32_to_cpu(x) #define ahd_be64toh(x) be64_to_cpu(x) #define ahd_le16toh(x) le16_to_cpu(x) #define ahd_le32toh(x) le32_to_cpu(x) #define ahd_le64toh(x) le64_to_cpu(x) /************************* Configuration Data *********************************/ extern uint32_t aic79xx_allow_memio; extern int aic79xx_detect_complete; extern Scsi_Host_Template aic79xx_driver_template; /***************************** Bus Space/DMA **********************************/ typedef uint32_t bus_size_t; typedef enum { BUS_SPACE_MEMIO, BUS_SPACE_PIO } bus_space_tag_t; typedef union { u_long ioport; volatile uint8_t __iomem *maddr; } bus_space_handle_t; typedef struct bus_dma_segment { dma_addr_t ds_addr; bus_size_t ds_len; } bus_dma_segment_t; struct ahd_linux_dma_tag { bus_size_t alignment; bus_size_t boundary; bus_size_t maxsize; }; typedef struct ahd_linux_dma_tag* bus_dma_tag_t; struct ahd_linux_dmamap { dma_addr_t bus_addr; }; typedef struct ahd_linux_dmamap* bus_dmamap_t; typedef int bus_dma_filter_t(void*, dma_addr_t); typedef void bus_dmamap_callback_t(void *, bus_dma_segment_t *, int, int); #define BUS_DMA_WAITOK 0x0 #define BUS_DMA_NOWAIT 0x1 #define BUS_DMA_ALLOCNOW 0x2 #define BUS_DMA_LOAD_SEGS 0x4 /* * Argument is an S/G list not * a single buffer. */ #define BUS_SPACE_MAXADDR 0xFFFFFFFF #define BUS_SPACE_MAXADDR_32BIT 0xFFFFFFFF #define BUS_SPACE_MAXSIZE_32BIT 0xFFFFFFFF int ahd_dma_tag_create(struct ahd_softc *, bus_dma_tag_t /*parent*/, bus_size_t /*alignment*/, bus_size_t /*boundary*/, dma_addr_t /*lowaddr*/, dma_addr_t /*highaddr*/, bus_dma_filter_t*/*filter*/, void */*filterarg*/, bus_size_t /*maxsize*/, int /*nsegments*/, bus_size_t /*maxsegsz*/, int /*flags*/, bus_dma_tag_t */*dma_tagp*/); void ahd_dma_tag_destroy(struct ahd_softc *, bus_dma_tag_t /*tag*/); int ahd_dmamem_alloc(struct ahd_softc *, bus_dma_tag_t /*dmat*/, void** /*vaddr*/, int /*flags*/, bus_dmamap_t* /*mapp*/); void ahd_dmamem_free(struct ahd_softc *, bus_dma_tag_t /*dmat*/, void* /*vaddr*/, bus_dmamap_t /*map*/); void ahd_dmamap_destroy(struct ahd_softc *, bus_dma_tag_t /*tag*/, bus_dmamap_t /*map*/); int ahd_dmamap_load(struct ahd_softc *ahd, bus_dma_tag_t /*dmat*/, bus_dmamap_t /*map*/, void * /*buf*/, bus_size_t /*buflen*/, bus_dmamap_callback_t *, void */*callback_arg*/, int /*flags*/); int ahd_dmamap_unload(struct ahd_softc *, bus_dma_tag_t, bus_dmamap_t); /* * Operations performed by ahd_dmamap_sync(). */ #define BUS_DMASYNC_PREREAD 0x01 /* pre-read synchronization */ #define BUS_DMASYNC_POSTREAD 0x02 /* post-read synchronization */ #define BUS_DMASYNC_PREWRITE 0x04 /* pre-write synchronization */ #define BUS_DMASYNC_POSTWRITE 0x08 /* post-write synchronization */ /* * XXX * ahd_dmamap_sync is only used on buffers allocated with * the pci_alloc_consistent() API. Although I'm not sure how * this works on architectures with a write buffer, Linux does * not have an API to sync "coherent" memory. Perhaps we need * to do an mb()? */ #define ahd_dmamap_sync(ahd, dma_tag, dmamap, offset, len, op) /************************** Timer DataStructures ******************************/ typedef struct timer_list ahd_timer_t; /********************************** Includes **********************************/ #ifdef CONFIG_AIC79XX_REG_PRETTY_PRINT #define AIC_DEBUG_REGISTERS 1 #else #define AIC_DEBUG_REGISTERS 0 #endif #include "aic79xx.h" /***************************** Timer Facilities *******************************/ #define ahd_timer_init init_timer #define ahd_timer_stop del_timer_sync typedef void ahd_linux_callback_t (u_long); static __inline void ahd_timer_reset(ahd_timer_t *timer, u_int usec, ahd_callback_t *func, void *arg); static __inline void ahd_scb_timer_reset(struct scb *scb, u_int usec); static __inline void ahd_timer_reset(ahd_timer_t *timer, u_int usec, ahd_callback_t *func, void *arg) { struct ahd_softc *ahd; ahd = (struct ahd_softc *)arg; del_timer(timer); timer->data = (u_long)arg; timer->expires = jiffies + (usec * HZ)/1000000; timer->function = (ahd_linux_callback_t*)func; add_timer(timer); } static __inline void ahd_scb_timer_reset(struct scb *scb, u_int usec) { mod_timer(&scb->io_ctx->eh_timeout, jiffies + (usec * HZ)/1000000); } /***************************** SMP support ************************************/ #include #define AHD_SCSI_HAS_HOST_LOCK 1 #define AIC79XX_DRIVER_VERSION "1.3.11" /**************************** Front End Queues ********************************/ /* * Data structure used to cast the Linux struct scsi_cmnd to something * that allows us to use the queue macros. The linux structure has * plenty of space to hold the links fields as required by the queue * macros, but the queue macors require them to have the correct type. */ struct ahd_cmd_internal { /* Area owned by the Linux scsi layer. */ uint8_t private[offsetof(struct scsi_cmnd, SCp.Status)]; union { STAILQ_ENTRY(ahd_cmd) ste; LIST_ENTRY(ahd_cmd) le; TAILQ_ENTRY(ahd_cmd) tqe; } links; uint32_t end; }; struct ahd_cmd { union { struct ahd_cmd_internal icmd; struct scsi_cmnd scsi_cmd; } un; }; #define acmd_icmd(cmd) ((cmd)->un.icmd) #define acmd_scsi_cmd(cmd) ((cmd)->un.scsi_cmd) #define acmd_links un.icmd.links /*************************** Device Data Structures ***************************/ /* * A per probed device structure used to deal with some error recovery * scenarios that the Linux mid-layer code just doesn't know how to * handle. The structure allocated for a device only becomes persistent * after a successfully completed inquiry command to the target when * that inquiry data indicates a lun is present. */ typedef enum { AHD_DEV_UNCONFIGURED = 0x01, AHD_DEV_FREEZE_TIL_EMPTY = 0x02, /* Freeze queue until active == 0 */ AHD_DEV_TIMER_ACTIVE = 0x04, /* Our timer is active */ AHD_DEV_Q_BASIC = 0x10, /* Allow basic device queuing */ AHD_DEV_Q_TAGGED = 0x20, /* Allow full SCSI2 command queueing */ AHD_DEV_PERIODIC_OTAG = 0x40, /* Send OTAG to prevent starvation */ AHD_DEV_SLAVE_CONFIGURED = 0x80 /* slave_configure() has been called */ } ahd_linux_dev_flags; struct ahd_linux_target; struct ahd_linux_device { TAILQ_ENTRY(ahd_linux_device) links; /* * The number of transactions currently * queued to the device. */ int active; /* * The currently allowed number of * transactions that can be queued to * the device. Must be signed for * conversion from tagged to untagged * mode where the device may have more * than one outstanding active transaction. */ int openings; /* * A positive count indicates that this * device's queue is halted. */ u_int qfrozen; /* * Cumulative command counter. */ u_long commands_issued; /* * The number of tagged transactions when * running at our current opening level * that have been successfully received by * this device since the last QUEUE FULL. */ u_int tag_success_count; #define AHD_TAG_SUCCESS_INTERVAL 50 ahd_linux_dev_flags flags; /* * Per device timer. */ struct timer_list timer; /* * The high limit for the tags variable. */ u_int maxtags; /* * The computed number of tags outstanding * at the time of the last QUEUE FULL event. */ u_int tags_on_last_queuefull; /* * How many times we have seen a queue full * with the same number of tags. This is used * to stop our adaptive queue depth algorithm * on devices with a fixed number of tags. */ u_int last_queuefull_same_count; #define AHD_LOCK_TAGS_COUNT 50 /* * How many transactions have been queued * without the device going idle. We use * this statistic to determine when to issue * an ordered tag to prevent transaction * starvation. This statistic is only updated * if the AHD_DEV_PERIODIC_OTAG flag is set * on this device. */ u_int commands_since_idle_or_otag; #define AHD_OTAG_THRESH 500 int lun; Scsi_Device *scsi_device; struct ahd_linux_target *target; }; typedef enum { AHD_DV_REQUIRED = 0x01, AHD_INQ_VALID = 0x02, AHD_BASIC_DV = 0x04, AHD_ENHANCED_DV = 0x08 } ahd_linux_targ_flags; /* DV States */ typedef enum { AHD_DV_STATE_EXIT = 0, AHD_DV_STATE_INQ_SHORT_ASYNC, AHD_DV_STATE_INQ_ASYNC, AHD_DV_STATE_INQ_ASYNC_VERIFY, AHD_DV_STATE_TUR, AHD_DV_STATE_REBD, AHD_DV_STATE_INQ_VERIFY, AHD_DV_STATE_WEB, AHD_DV_STATE_REB, AHD_DV_STATE_SU, AHD_DV_STATE_BUSY } ahd_dv_state; struct ahd_linux_target { struct ahd_linux_device *devices[AHD_NUM_LUNS]; int channel; int target; int refcount; struct ahd_transinfo last_tinfo; struct ahd_softc *ahd; ahd_linux_targ_flags flags; struct scsi_inquiry_data *inq_data; /* * The next "fallback" period to use for narrow/wide transfers. */ uint8_t dv_next_narrow_period; uint8_t dv_next_wide_period; uint8_t dv_max_width; uint8_t dv_max_ppr_options; uint8_t dv_last_ppr_options; u_int dv_echo_size; ahd_dv_state dv_state; u_int dv_state_retry; uint8_t *dv_buffer; uint8_t *dv_buffer1; /* * Cumulative counter of errors. */ u_long errors_detected; u_long cmds_since_error; }; /********************* Definitions Required by the Core ***********************/ /* * Number of SG segments we require. So long as the S/G segments for * a particular transaction are allocated in a physically contiguous * manner and are allocated below 4GB, the number of S/G segments is * unrestricted. */ #define AHD_NSEG 128 /* * Per-SCB OSM storage. */ typedef enum { AHD_SCB_UP_EH_SEM = 0x1 } ahd_linux_scb_flags; struct scb_platform_data { struct ahd_linux_device *dev; dma_addr_t buf_busaddr; uint32_t xfer_len; uint32_t sense_resid; /* Auto-Sense residual */ ahd_linux_scb_flags flags; }; /* * Define a structure used for each host adapter. All members are * aligned on a boundary >= the size of the member to honor the * alignment restrictions of the various platforms supported by * this driver. */ typedef enum { AHD_DV_WAIT_SIMQ_EMPTY = 0x01, AHD_DV_WAIT_SIMQ_RELEASE = 0x02, AHD_DV_ACTIVE = 0x04, AHD_DV_SHUTDOWN = 0x08, AHD_RUN_CMPLT_Q_TIMER = 0x10 } ahd_linux_softc_flags; TAILQ_HEAD(ahd_completeq, ahd_cmd); struct ahd_platform_data { /* * Fields accessed from interrupt context. */ struct ahd_linux_target *targets[AHD_NUM_TARGETS]; struct ahd_completeq completeq; spinlock_t spin_lock; u_int qfrozen; pid_t dv_pid; struct timer_list completeq_timer; struct timer_list reset_timer; struct timer_list stats_timer; struct semaphore eh_sem; struct semaphore dv_sem; struct semaphore dv_cmd_sem; /* XXX This needs to be in * the target struct */ struct scsi_device *dv_scsi_dev; struct Scsi_Host *host; /* pointer to scsi host */ #define AHD_LINUX_NOIRQ ((uint32_t)~0) uint32_t irq; /* IRQ for this adapter */ uint32_t bios_address; uint32_t mem_busaddr; /* Mem Base Addr */ uint64_t hw_dma_mask; ahd_linux_softc_flags flags; }; /************************** OS Utility Wrappers *******************************/ #define printf printk #define M_NOWAIT GFP_ATOMIC #define M_WAITOK 0 #define malloc(size, type, flags) kmalloc(size, flags) #define free(ptr, type) kfree(ptr) static __inline void ahd_delay(long); static __inline void ahd_delay(long usec) { /* * udelay on Linux can have problems for * multi-millisecond waits. Wait at most * 1024us per call. */ while (usec > 0) { udelay(usec % 1024); usec -= 1024; } } /***************************** Low Level I/O **********************************/ static __inline uint8_t ahd_inb(struct ahd_softc * ahd, long port); static __inline uint16_t ahd_inw_atomic(struct ahd_softc * ahd, long port); static __inline void ahd_outb(struct ahd_softc * ahd, long port, uint8_t val); static __inline void ahd_outw_atomic(struct ahd_softc * ahd, long port, uint16_t val); static __inline void ahd_outsb(struct ahd_softc * ahd, long port, uint8_t *, int count); static __inline void ahd_insb(struct ahd_softc * ahd, long port, uint8_t *, int count); static __inline uint8_t ahd_inb(struct ahd_softc * ahd, long port) { uint8_t x; if (ahd->tags[0] == BUS_SPACE_MEMIO) { x = readb(ahd->bshs[0].maddr + port); } else { x = inb(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF)); } mb(); return (x); } static __inline uint16_t ahd_inw_atomic(struct ahd_softc * ahd, long port) { uint8_t x; if (ahd->tags[0] == BUS_SPACE_MEMIO) { x = readw(ahd->bshs[0].maddr + port); } else { x = inw(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF)); } mb(); return (x); } static __inline void ahd_outb(struct ahd_softc * ahd, long port, uint8_t val) { if (ahd->tags[0] == BUS_SPACE_MEMIO) { writeb(val, ahd->bshs[0].maddr + port); } else { outb(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF)); } mb(); } static __inline void ahd_outw_atomic(struct ahd_softc * ahd, long port, uint16_t val) { if (ahd->tags[0] == BUS_SPACE_MEMIO) { writew(val, ahd->bshs[0].maddr + port); } else { outw(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF)); } mb(); } static __inline void ahd_outsb(struct ahd_softc * ahd, long port, uint8_t *array, int count) { int i; /* * There is probably a more efficient way to do this on Linux * but we don't use this for anything speed critical and this * should work. */ for (i = 0; i < count; i++) ahd_outb(ahd, port, *array++); } static __inline void ahd_insb(struct ahd_softc * ahd, long port, uint8_t *array, int count) { int i; /* * There is probably a more efficient way to do this on Linux * but we don't use this for anything speed critical and this * should work. */ for (i = 0; i < count; i++) *array++ = ahd_inb(ahd, port); } /**************************** Initialization **********************************/ int ahd_linux_register_host(struct ahd_softc *, Scsi_Host_Template *); uint64_t ahd_linux_get_memsize(void); /*************************** Pretty Printing **********************************/ struct info_str { char *buffer; int length; off_t offset; int pos; }; void ahd_format_transinfo(struct info_str *info, struct ahd_transinfo *tinfo); /******************************** Locking *************************************/ /* Lock protecting internal data structures */ static __inline void ahd_lockinit(struct ahd_softc *); static __inline void ahd_lock(struct ahd_softc *, unsigned long *flags); static __inline void ahd_unlock(struct ahd_softc *, unsigned long *flags); /* Lock acquisition and release of the above lock in midlayer entry points. */ static __inline void ahd_midlayer_entrypoint_lock(struct ahd_softc *, unsigned long *flags); static __inline void ahd_midlayer_entrypoint_unlock(struct ahd_softc *, unsigned long *flags); /* Lock held during command compeletion to the upper layer */ static __inline void ahd_done_lockinit(struct ahd_softc *); static __inline void ahd_done_lock(struct ahd_softc *, unsigned long *flags); static __inline void ahd_done_unlock(struct ahd_softc *, unsigned long *flags); /* Lock held during ahd_list manipulation and ahd softc frees */ extern spinlock_t ahd_list_spinlock; static __inline void ahd_list_lockinit(void); static __inline void ahd_list_lock(unsigned long *flags); static __inline void ahd_list_unlock(unsigned long *flags); static __inline void ahd_lockinit(struct ahd_softc *ahd) { spin_lock_init(&ahd->platform_data->spin_lock); } static __inline void ahd_lock(struct ahd_softc *ahd, unsigned long *flags) { spin_lock_irqsave(&ahd->platform_data->spin_lock, *flags); } static __inline void ahd_unlock(struct ahd_softc *ahd, unsigned long *flags) { spin_unlock_irqrestore(&ahd->platform_data->spin_lock, *flags); } static __inline void ahd_midlayer_entrypoint_lock(struct ahd_softc *ahd, unsigned long *flags) { /* * In 2.5.X and some 2.4.X versions, the midlayer takes our * lock just before calling us, so we avoid locking again. * For other kernel versions, the io_request_lock is taken * just before our entry point is called. In this case, we * trade the io_request_lock for our per-softc lock. */ #if AHD_SCSI_HAS_HOST_LOCK == 0 spin_unlock(&io_request_lock); spin_lock(&ahd->platform_data->spin_lock); #endif } static __inline void ahd_midlayer_entrypoint_unlock(struct ahd_softc *ahd, unsigned long *flags) { #if AHD_SCSI_HAS_HOST_LOCK == 0 spin_unlock(&ahd->platform_data->spin_lock); spin_lock(&io_request_lock); #endif } static __inline void ahd_done_lockinit(struct ahd_softc *ahd) { /* * In 2.5.X, our own lock is held during completions. * In previous versions, the io_request_lock is used. * In either case, we can't initialize this lock again. */ } static __inline void ahd_done_lock(struct ahd_softc *ahd, unsigned long *flags) { #if AHD_SCSI_HAS_HOST_LOCK == 0 spin_lock(&io_request_lock); #endif } static __inline void ahd_done_unlock(struct ahd_softc *ahd, unsigned long *flags) { #if AHD_SCSI_HAS_HOST_LOCK == 0 spin_unlock(&io_request_lock); #endif } static __inline void ahd_list_lockinit(void) { spin_lock_init(&ahd_list_spinlock); } static __inline void ahd_list_lock(unsigned long *flags) { spin_lock_irqsave(&ahd_list_spinlock, *flags); } static __inline void ahd_list_unlock(unsigned long *flags) { spin_unlock_irqrestore(&ahd_list_spinlock, *flags); } /******************************* PCI Definitions ******************************/ /* * PCIM_xxx: mask to locate subfield in register * PCIR_xxx: config register offset * PCIC_xxx: device class * PCIS_xxx: device subclass * PCIP_xxx: device programming interface * PCIV_xxx: PCI vendor ID (only required to fixup ancient devices) * PCID_xxx: device ID */ #define PCIR_DEVVENDOR 0x00 #define PCIR_VENDOR 0x00 #define PCIR_DEVICE 0x02 #define PCIR_COMMAND 0x04 #define PCIM_CMD_PORTEN 0x0001 #define PCIM_CMD_MEMEN 0x0002 #define PCIM_CMD_BUSMASTEREN 0x0004 #define PCIM_CMD_MWRICEN 0x0010 #define PCIM_CMD_PERRESPEN 0x0040 #define PCIM_CMD_SERRESPEN 0x0100 #define PCIR_STATUS 0x06 #define PCIR_REVID 0x08 #define PCIR_PROGIF 0x09 #define PCIR_SUBCLASS 0x0a #define PCIR_CLASS 0x0b #define PCIR_CACHELNSZ 0x0c #define PCIR_LATTIMER 0x0d #define PCIR_HEADERTYPE 0x0e #define PCIM_MFDEV 0x80 #define PCIR_BIST 0x0f #define PCIR_CAP_PTR 0x34 /* config registers for header type 0 devices */ #define PCIR_MAPS 0x10 #define PCIR_SUBVEND_0 0x2c #define PCIR_SUBDEV_0 0x2e /****************************** PCI-X definitions *****************************/ #define PCIXR_COMMAND 0x96 #define PCIXR_DEVADDR 0x98 #define PCIXM_DEVADDR_FNUM 0x0003 /* Function Number */ #define PCIXM_DEVADDR_DNUM 0x00F8 /* Device Number */ #define PCIXM_DEVADDR_BNUM 0xFF00 /* Bus Number */ #define PCIXR_STATUS 0x9A #define PCIXM_STATUS_64BIT 0x0001 /* Active 64bit connection to device. */ #define PCIXM_STATUS_133CAP 0x0002 /* Device is 133MHz capable */ #define PCIXM_STATUS_SCDISC 0x0004 /* Split Completion Discarded */ #define PCIXM_STATUS_UNEXPSC 0x0008 /* Unexpected Split Completion */ #define PCIXM_STATUS_CMPLEXDEV 0x0010 /* Device Complexity (set == bridge) */ #define PCIXM_STATUS_MAXMRDBC 0x0060 /* Maximum Burst Read Count */ #define PCIXM_STATUS_MAXSPLITS 0x0380 /* Maximum Split Transactions */ #define PCIXM_STATUS_MAXCRDS 0x1C00 /* Maximum Cumulative Read Size */ #define PCIXM_STATUS_RCVDSCEM 0x2000 /* Received a Split Comp w/Error msg */ extern struct pci_driver aic79xx_pci_driver; typedef enum { AHD_POWER_STATE_D0, AHD_POWER_STATE_D1, AHD_POWER_STATE_D2, AHD_POWER_STATE_D3 } ahd_power_state; void ahd_power_state_change(struct ahd_softc *ahd, ahd_power_state new_state); /******************************* PCI Routines *********************************/ int ahd_linux_pci_init(void); void ahd_linux_pci_exit(void); int ahd_pci_map_registers(struct ahd_softc *ahd); int ahd_pci_map_int(struct ahd_softc *ahd); static __inline uint32_t ahd_pci_read_config(ahd_dev_softc_t pci, int reg, int width); static __inline uint32_t ahd_pci_read_config(ahd_dev_softc_t pci, int reg, int width) { switch (width) { case 1: { uint8_t retval; pci_read_config_byte(pci, reg, &retval); return (retval); } case 2: { uint16_t retval; pci_read_config_word(pci, reg, &retval); return (retval); } case 4: { uint32_t retval; pci_read_config_dword(pci, reg, &retval); return (retval); } default: panic("ahd_pci_read_config: Read size too big"); /* NOTREACHED */ return (0); } } static __inline void ahd_pci_write_config(ahd_dev_softc_t pci, int reg, uint32_t value, int width); static __inline void ahd_pci_write_config(ahd_dev_softc_t pci, int reg, uint32_t value, int width) { switch (width) { case 1: pci_write_config_byte(pci, reg, value); break; case 2: pci_write_config_word(pci, reg, value); break; case 4: pci_write_config_dword(pci, reg, value); break; default: panic("ahd_pci_write_config: Write size too big"); /* NOTREACHED */ } } static __inline int ahd_get_pci_function(ahd_dev_softc_t); static __inline int ahd_get_pci_function(ahd_dev_softc_t pci) { return (PCI_FUNC(pci->devfn)); } static __inline int ahd_get_pci_slot(ahd_dev_softc_t); static __inline int ahd_get_pci_slot(ahd_dev_softc_t pci) { return (PCI_SLOT(pci->devfn)); } static __inline int ahd_get_pci_bus(ahd_dev_softc_t); static __inline int ahd_get_pci_bus(ahd_dev_softc_t pci) { return (pci->bus->number); } static __inline void ahd_flush_device_writes(struct ahd_softc *); static __inline void ahd_flush_device_writes(struct ahd_softc *ahd) { /* XXX Is this sufficient for all architectures??? */ ahd_inb(ahd, INTSTAT); } /**************************** Proc FS Support *********************************/ int ahd_linux_proc_info(struct Scsi_Host *, char *, char **, off_t, int, int); /*************************** Domain Validation ********************************/ #define AHD_DV_CMD(cmd) ((cmd)->scsi_done == ahd_linux_dv_complete) #define AHD_DV_SIMQ_FROZEN(ahd) \ ((((ahd)->platform_data->flags & AHD_DV_ACTIVE) != 0) \ && (ahd)->platform_data->qfrozen == 1) /*********************** Transaction Access Wrappers **************************/ static __inline void ahd_cmd_set_transaction_status(Scsi_Cmnd *, uint32_t); static __inline void ahd_set_transaction_status(struct scb *, uint32_t); static __inline void ahd_cmd_set_scsi_status(Scsi_Cmnd *, uint32_t); static __inline void ahd_set_scsi_status(struct scb *, uint32_t); static __inline uint32_t ahd_cmd_get_transaction_status(Scsi_Cmnd *cmd); static __inline uint32_t ahd_get_transaction_status(struct scb *); static __inline uint32_t ahd_cmd_get_scsi_status(Scsi_Cmnd *cmd); static __inline uint32_t ahd_get_scsi_status(struct scb *); static __inline void ahd_set_transaction_tag(struct scb *, int, u_int); static __inline u_long ahd_get_transfer_length(struct scb *); static __inline int ahd_get_transfer_dir(struct scb *); static __inline void ahd_set_residual(struct scb *, u_long); static __inline void ahd_set_sense_residual(struct scb *scb, u_long resid); static __inline u_long ahd_get_residual(struct scb *); static __inline u_long ahd_get_sense_residual(struct scb *); static __inline int ahd_perform_autosense(struct scb *); static __inline uint32_t ahd_get_sense_bufsize(struct ahd_softc *, struct scb *); static __inline void ahd_notify_xfer_settings_change(struct ahd_softc *, struct ahd_devinfo *); static __inline void ahd_platform_scb_free(struct ahd_softc *ahd, struct scb *scb); static __inline void ahd_freeze_scb(struct scb *scb); static __inline void ahd_cmd_set_transaction_status(Scsi_Cmnd *cmd, uint32_t status) { cmd->result &= ~(CAM_STATUS_MASK << 16); cmd->result |= status << 16; } static __inline void ahd_set_transaction_status(struct scb *scb, uint32_t status) { ahd_cmd_set_transaction_status(scb->io_ctx,status); } static __inline void ahd_cmd_set_scsi_status(Scsi_Cmnd *cmd, uint32_t status) { cmd->result &= ~0xFFFF; cmd->result |= status; } static __inline void ahd_set_scsi_status(struct scb *scb, uint32_t status) { ahd_cmd_set_scsi_status(scb->io_ctx, status); } static __inline uint32_t ahd_cmd_get_transaction_status(Scsi_Cmnd *cmd) { return ((cmd->result >> 16) & CAM_STATUS_MASK); } static __inline uint32_t ahd_get_transaction_status(struct scb *scb) { return (ahd_cmd_get_transaction_status(scb->io_ctx)); } static __inline uint32_t ahd_cmd_get_scsi_status(Scsi_Cmnd *cmd) { return (cmd->result & 0xFFFF); } static __inline uint32_t ahd_get_scsi_status(struct scb *scb) { return (ahd_cmd_get_scsi_status(scb->io_ctx)); } static __inline void ahd_set_transaction_tag(struct scb *scb, int enabled, u_int type) { /* * Nothing to do for linux as the incoming transaction * has no concept of tag/non tagged, etc. */ } static __inline u_long ahd_get_transfer_length(struct scb *scb) { return (scb->platform_data->xfer_len); } static __inline int ahd_get_transfer_dir(struct scb *scb) { return (scb->io_ctx->sc_data_direction); } static __inline void ahd_set_residual(struct scb *scb, u_long resid) { scb->io_ctx->resid = resid; } static __inline void ahd_set_sense_residual(struct scb *scb, u_long resid) { scb->platform_data->sense_resid = resid; } static __inline u_long ahd_get_residual(struct scb *scb) { return (scb->io_ctx->resid); } static __inline u_long ahd_get_sense_residual(struct scb *scb) { return (scb->platform_data->sense_resid); } static __inline int ahd_perform_autosense(struct scb *scb) { /* * We always perform autosense in Linux. * On other platforms this is set on a * per-transaction basis. */ return (1); } static __inline uint32_t ahd_get_sense_bufsize(struct ahd_softc *ahd, struct scb *scb) { return (sizeof(struct scsi_sense_data)); } static __inline void ahd_notify_xfer_settings_change(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { /* Nothing to do here for linux */ } static __inline void ahd_platform_scb_free(struct ahd_softc *ahd, struct scb *scb) { ahd->flags &= ~AHD_RESOURCE_SHORTAGE; } int ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg); void ahd_platform_free(struct ahd_softc *ahd); void ahd_platform_init(struct ahd_softc *ahd); void ahd_platform_freeze_devq(struct ahd_softc *ahd, struct scb *scb); void ahd_freeze_simq(struct ahd_softc *ahd); void ahd_release_simq(struct ahd_softc *ahd); static __inline void ahd_freeze_scb(struct scb *scb) { if ((scb->io_ctx->result & (CAM_DEV_QFRZN << 16)) == 0) { scb->io_ctx->result |= CAM_DEV_QFRZN << 16; scb->platform_data->dev->qfrozen++; } } void ahd_platform_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, ahd_queue_alg); int ahd_platform_abort_scbs(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status); irqreturn_t ahd_linux_isr(int irq, void *dev_id, struct pt_regs * regs); void ahd_platform_flushwork(struct ahd_softc *ahd); int ahd_softc_comp(struct ahd_softc *, struct ahd_softc *); void ahd_done(struct ahd_softc*, struct scb*); void ahd_send_async(struct ahd_softc *, char channel, u_int target, u_int lun, ac_code, void *); void ahd_print_path(struct ahd_softc *, struct scb *); #ifdef CONFIG_PCI #define AHD_PCI_CONFIG 1 #else #define AHD_PCI_CONFIG 0 #endif #define bootverbose aic79xx_verbose extern uint32_t aic79xx_verbose; #endif /* _AIC79XX_LINUX_H_ */