// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_gc.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "buckets.h" #include "debug.h" #include "errcode.h" #include "error.h" #include "extent_update.h" #include "journal.h" #include "journal_reclaim.h" #include "keylist.h" #include "recovery.h" #include "subvolume.h" #include "replicas.h" #include "trace.h" #include #include static int __must_check bch2_trans_update_by_path(struct btree_trans *, struct btree_path *, struct bkey_i *, enum btree_update_flags); static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l, const struct btree_insert_entry *r) { return cmp_int(l->btree_id, r->btree_id) ?: cmp_int(l->cached, r->cached) ?: -cmp_int(l->level, r->level) ?: bpos_cmp(l->k->k.p, r->k->k.p); } static inline struct btree_path_level *insert_l(struct btree_insert_entry *i) { return i->path->l + i->level; } static inline bool same_leaf_as_prev(struct btree_trans *trans, struct btree_insert_entry *i) { return i != trans->updates && insert_l(&i[0])->b == insert_l(&i[-1])->b; } static inline bool same_leaf_as_next(struct btree_trans *trans, struct btree_insert_entry *i) { return i + 1 < trans->updates + trans->nr_updates && insert_l(&i[0])->b == insert_l(&i[1])->b; } static inline void bch2_btree_node_prep_for_write(struct btree_trans *trans, struct btree_path *path, struct btree *b) { struct bch_fs *c = trans->c; if (path->cached) return; if (unlikely(btree_node_just_written(b)) && bch2_btree_post_write_cleanup(c, b)) bch2_trans_node_reinit_iter(trans, b); /* * If the last bset has been written, or if it's gotten too big - start * a new bset to insert into: */ if (want_new_bset(c, b)) bch2_btree_init_next(trans, b); } void bch2_btree_node_lock_for_insert(struct btree_trans *trans, struct btree_path *path, struct btree *b) { bch2_btree_node_lock_write(trans, path, b); bch2_btree_node_prep_for_write(trans, path, b); } /* Inserting into a given leaf node (last stage of insert): */ /* Handle overwrites and do insert, for non extents: */ bool bch2_btree_bset_insert_key(struct btree_trans *trans, struct btree_path *path, struct btree *b, struct btree_node_iter *node_iter, struct bkey_i *insert) { struct bkey_packed *k; unsigned clobber_u64s = 0, new_u64s = 0; EBUG_ON(btree_node_just_written(b)); EBUG_ON(bset_written(b, btree_bset_last(b))); EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k)); EBUG_ON(bpos_cmp(insert->k.p, b->data->min_key) < 0); EBUG_ON(bpos_cmp(insert->k.p, b->data->max_key) > 0); EBUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(trans->c, b)); k = bch2_btree_node_iter_peek_all(node_iter, b); if (k && bkey_cmp_left_packed(b, k, &insert->k.p)) k = NULL; /* @k is the key being overwritten/deleted, if any: */ EBUG_ON(k && bkey_deleted(k)); /* Deleting, but not found? nothing to do: */ if (bkey_deleted(&insert->k) && !k) return false; if (bkey_deleted(&insert->k)) { /* Deleting: */ btree_account_key_drop(b, k); k->type = KEY_TYPE_deleted; if (k->needs_whiteout) push_whiteout(trans->c, b, insert->k.p); k->needs_whiteout = false; if (k >= btree_bset_last(b)->start) { clobber_u64s = k->u64s; bch2_bset_delete(b, k, clobber_u64s); goto fix_iter; } else { bch2_btree_path_fix_key_modified(trans, b, k); } return true; } if (k) { /* Overwriting: */ btree_account_key_drop(b, k); k->type = KEY_TYPE_deleted; insert->k.needs_whiteout = k->needs_whiteout; k->needs_whiteout = false; if (k >= btree_bset_last(b)->start) { clobber_u64s = k->u64s; goto overwrite; } else { bch2_btree_path_fix_key_modified(trans, b, k); } } k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b)); overwrite: bch2_bset_insert(b, node_iter, k, insert, clobber_u64s); new_u64s = k->u64s; fix_iter: if (clobber_u64s != new_u64s) bch2_btree_node_iter_fix(trans, path, b, node_iter, k, clobber_u64s, new_u64s); return true; } static int __btree_node_flush(struct journal *j, struct journal_entry_pin *pin, unsigned i, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct btree_write *w = container_of(pin, struct btree_write, journal); struct btree *b = container_of(w, struct btree, writes[i]); unsigned long old, new, v; unsigned idx = w - b->writes; six_lock_read(&b->c.lock, NULL, NULL); v = READ_ONCE(b->flags); do { old = new = v; if (!(old & (1 << BTREE_NODE_dirty)) || !!(old & (1 << BTREE_NODE_write_idx)) != idx || w->journal.seq != seq) break; new |= 1 << BTREE_NODE_need_write; } while ((v = cmpxchg(&b->flags, old, new)) != old); btree_node_write_if_need(c, b, SIX_LOCK_read); six_unlock_read(&b->c.lock); return 0; } static int btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 0, seq); } static int btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 1, seq); } inline void bch2_btree_add_journal_pin(struct bch_fs *c, struct btree *b, u64 seq) { struct btree_write *w = btree_current_write(b); bch2_journal_pin_add(&c->journal, seq, &w->journal, btree_node_write_idx(b) == 0 ? btree_node_flush0 : btree_node_flush1); } /** * btree_insert_key - insert a key one key into a leaf node */ static void btree_insert_key_leaf(struct btree_trans *trans, struct btree_insert_entry *insert) { struct bch_fs *c = trans->c; struct btree *b = insert_l(insert)->b; struct bset_tree *t = bset_tree_last(b); struct bset *i = bset(b, t); int old_u64s = bset_u64s(t); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; if (unlikely(!bch2_btree_bset_insert_key(trans, insert->path, b, &insert_l(insert)->iter, insert->k))) return; i->journal_seq = cpu_to_le64(max(trans->journal_res.seq, le64_to_cpu(i->journal_seq))); bch2_btree_add_journal_pin(c, b, trans->journal_res.seq); if (unlikely(!btree_node_dirty(b))) set_btree_node_dirty_acct(c, b); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) bset_u64s(t) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(c, b)) bch2_trans_node_reinit_iter(trans, b); } /* Cached btree updates: */ /* Normal update interface: */ static inline void btree_insert_entry_checks(struct btree_trans *trans, struct btree_insert_entry *i) { BUG_ON(bpos_cmp(i->k->k.p, i->path->pos)); BUG_ON(i->cached != i->path->cached); BUG_ON(i->level != i->path->level); BUG_ON(i->btree_id != i->path->btree_id); EBUG_ON(!i->level && !(i->flags & BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) && test_bit(JOURNAL_REPLAY_DONE, &trans->c->journal.flags) && i->k->k.p.snapshot && bch2_snapshot_internal_node(trans->c, i->k->k.p.snapshot)); } static noinline int bch2_trans_journal_preres_get_cold(struct btree_trans *trans, unsigned u64s, unsigned long trace_ip) { struct bch_fs *c = trans->c; int ret; bch2_trans_unlock(trans); ret = bch2_journal_preres_get(&c->journal, &trans->journal_preres, u64s, 0); if (ret) return ret; ret = bch2_trans_relock(trans); if (ret) { trace_trans_restart_journal_preres_get(trans, trace_ip); return ret; } return 0; } static inline int bch2_trans_journal_res_get(struct btree_trans *trans, unsigned flags) { struct bch_fs *c = trans->c; int ret; ret = bch2_journal_res_get(&c->journal, &trans->journal_res, trans->journal_u64s, flags| (trans->flags & JOURNAL_WATERMARK_MASK)); return ret == -EAGAIN ? BTREE_INSERT_NEED_JOURNAL_RES : ret; } #define JSET_ENTRY_LOG_U64s 4 static noinline void journal_transaction_name(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct jset_entry *entry = bch2_journal_add_entry(j, &trans->journal_res, BCH_JSET_ENTRY_log, 0, 0, JSET_ENTRY_LOG_U64s); struct jset_entry_log *l = container_of(entry, struct jset_entry_log, entry); strncpy(l->d, trans->fn, JSET_ENTRY_LOG_U64s * sizeof(u64)); } static inline enum btree_insert_ret btree_key_can_insert(struct btree_trans *trans, struct btree *b, unsigned u64s) { struct bch_fs *c = trans->c; if (!bch2_btree_node_insert_fits(c, b, u64s)) return BTREE_INSERT_BTREE_NODE_FULL; return BTREE_INSERT_OK; } static enum btree_insert_ret btree_key_can_insert_cached(struct btree_trans *trans, struct btree_path *path, unsigned u64s) { struct bch_fs *c = trans->c; struct bkey_cached *ck = (void *) path->l[0].b; unsigned old_u64s = ck->u64s, new_u64s; struct bkey_i *new_k; EBUG_ON(path->level); if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && bch2_btree_key_cache_must_wait(c) && !(trans->flags & BTREE_INSERT_JOURNAL_RECLAIM)) return BTREE_INSERT_NEED_JOURNAL_RECLAIM; /* * bch2_varint_decode can read past the end of the buffer by at most 7 * bytes (it won't be used): */ u64s += 1; if (u64s <= ck->u64s) return BTREE_INSERT_OK; new_u64s = roundup_pow_of_two(u64s); new_k = krealloc(ck->k, new_u64s * sizeof(u64), GFP_NOFS); if (!new_k) { bch_err(c, "error allocating memory for key cache key, btree %s u64s %u", bch2_btree_ids[path->btree_id], new_u64s); return -ENOMEM; } ck->u64s = new_u64s; ck->k = new_k; /* * Keys returned by peek() are no longer valid pointers, so we need a * transaction restart: */ trace_trans_restart_key_cache_key_realloced(trans, _RET_IP_, path, old_u64s, new_u64s); return btree_trans_restart_nounlock(trans, BCH_ERR_transaction_restart_key_cache_realloced); } /* Triggers: */ static int run_one_mem_trigger(struct btree_trans *trans, struct btree_insert_entry *i, unsigned flags) { struct bkey_s_c old = { &i->old_k, i->old_v }; struct bkey_i *new = i->k; int ret; if (unlikely(flags & BTREE_TRIGGER_NORUN)) return 0; if (!btree_node_type_needs_gc(i->btree_id)) return 0; if (bch2_bkey_ops[old.k->type].atomic_trigger == bch2_bkey_ops[i->k->k.type].atomic_trigger && ((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) { ret = bch2_mark_key(trans, old, bkey_i_to_s_c(new), BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE|flags); } else { struct bkey _deleted = KEY(0, 0, 0); struct bkey_s_c deleted = (struct bkey_s_c) { &_deleted, NULL }; _deleted.p = i->path->pos; ret = bch2_mark_key(trans, deleted, bkey_i_to_s_c(new), BTREE_TRIGGER_INSERT|flags) ?: bch2_mark_key(trans, old, deleted, BTREE_TRIGGER_OVERWRITE|flags); } return ret; } static int run_one_trans_trigger(struct btree_trans *trans, struct btree_insert_entry *i, bool overwrite) { /* * Transactional triggers create new btree_insert_entries, so we can't * pass them a pointer to a btree_insert_entry, that memory is going to * move: */ struct bkey old_k = i->old_k; struct bkey_s_c old = { &old_k, i->old_v }; if ((i->flags & BTREE_TRIGGER_NORUN) || !(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type))) return 0; if (!i->insert_trigger_run && !i->overwrite_trigger_run && bch2_bkey_ops[old.k->type].trans_trigger == bch2_bkey_ops[i->k->k.type].trans_trigger && ((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) { i->overwrite_trigger_run = true; i->insert_trigger_run = true; return bch2_trans_mark_key(trans, i->btree_id, i->level, old, i->k, BTREE_TRIGGER_INSERT| BTREE_TRIGGER_OVERWRITE| i->flags) ?: 1; } else if (overwrite && !i->overwrite_trigger_run) { i->overwrite_trigger_run = true; return bch2_trans_mark_old(trans, i->btree_id, i->level, old, i->flags) ?: 1; } else if (!overwrite && !i->insert_trigger_run) { i->insert_trigger_run = true; return bch2_trans_mark_new(trans, i->btree_id, i->level, i->k, i->flags) ?: 1; } else { return 0; } } static int run_btree_triggers(struct btree_trans *trans, enum btree_id btree_id, struct btree_insert_entry *btree_id_start) { struct btree_insert_entry *i; bool trans_trigger_run; int ret, overwrite; for (overwrite = 1; overwrite >= 0; --overwrite) { /* * Running triggers will append more updates to the list of updates as * we're walking it: */ do { trans_trigger_run = false; for (i = btree_id_start; i < trans->updates + trans->nr_updates && i->btree_id <= btree_id; i++) { if (i->btree_id != btree_id) continue; ret = run_one_trans_trigger(trans, i, overwrite); if (ret < 0) return ret; if (ret) trans_trigger_run = true; } } while (trans_trigger_run); } return 0; } static int bch2_trans_commit_run_triggers(struct btree_trans *trans) { struct btree_insert_entry *i = NULL, *btree_id_start = trans->updates; unsigned btree_id = 0; int ret = 0; /* * * For a given btree, this algorithm runs insert triggers before * overwrite triggers: this is so that when extents are being moved * (e.g. by FALLOCATE_FL_INSERT_RANGE), we don't drop references before * they are re-added. */ for (btree_id = 0; btree_id < BTREE_ID_NR; btree_id++) { if (btree_id == BTREE_ID_alloc) continue; while (btree_id_start < trans->updates + trans->nr_updates && btree_id_start->btree_id < btree_id) btree_id_start++; ret = run_btree_triggers(trans, btree_id, btree_id_start); if (ret) return ret; } trans_for_each_update(trans, i) { if (i->btree_id > BTREE_ID_alloc) break; if (i->btree_id == BTREE_ID_alloc) { ret = run_btree_triggers(trans, BTREE_ID_alloc, i); if (ret) return ret; break; } } trans_for_each_update(trans, i) BUG_ON(!(i->flags & BTREE_TRIGGER_NORUN) && (BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type)) && (!i->insert_trigger_run || !i->overwrite_trigger_run)); return 0; } static noinline int bch2_trans_commit_run_gc_triggers(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; int ret = 0; trans_for_each_update(trans, i) { /* * XXX: synchronization of cached update triggers with gc * XXX: synchronization of interior node updates with gc */ BUG_ON(i->cached || i->level); if (gc_visited(c, gc_pos_btree_node(insert_l(i)->b))) { ret = run_one_mem_trigger(trans, i, i->flags|BTREE_TRIGGER_GC); if (ret) break; } } return ret; } static inline int bch2_trans_commit_write_locked(struct btree_trans *trans, struct btree_insert_entry **stopped_at, unsigned long trace_ip) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; struct btree_trans_commit_hook *h; unsigned u64s = 0; bool marking = false; int ret; if (race_fault()) { trace_trans_restart_fault_inject(trans, trace_ip); return btree_trans_restart_nounlock(trans, BCH_ERR_transaction_restart_fault_inject); } /* * Check if the insert will fit in the leaf node with the write lock * held, otherwise another thread could write the node changing the * amount of space available: */ prefetch(&trans->c->journal.flags); h = trans->hooks; while (h) { ret = h->fn(trans, h); if (ret) return ret; h = h->next; } trans_for_each_update(trans, i) { /* Multiple inserts might go to same leaf: */ if (!same_leaf_as_prev(trans, i)) u64s = 0; u64s += i->k->k.u64s; ret = !i->cached ? btree_key_can_insert(trans, insert_l(i)->b, u64s) : btree_key_can_insert_cached(trans, i->path, u64s); if (ret) { *stopped_at = i; return ret; } if (btree_node_type_needs_gc(i->bkey_type)) marking = true; /* * Revalidate before calling mem triggers - XXX, ugly: * * - successful btree node splits don't cause transaction * restarts and will have invalidated the pointer to the bkey * value * - btree_node_lock_for_insert() -> btree_node_prep_for_write() * when it has to resort * - btree_key_can_insert_cached() when it has to reallocate * * Ugly because we currently have no way to tell if the * pointer's been invalidated, which means it's debatabale * whether we should be stashing the old key at all. */ i->old_v = bch2_btree_path_peek_slot(i->path, &i->old_k).v; if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) { struct bkey_i *j_k = bch2_journal_keys_peek_slot(c, i->btree_id, i->level, i->k->k.p); if (j_k) { i->old_k = j_k->k; i->old_v = &j_k->v; } } } /* * Don't get journal reservation until after we know insert will * succeed: */ if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { ret = bch2_trans_journal_res_get(trans, JOURNAL_RES_GET_NONBLOCK); if (ret) return ret; if (unlikely(trans->journal_transaction_names)) journal_transaction_name(trans); } else { trans->journal_res.seq = c->journal.replay_journal_seq; } if (unlikely(trans->extra_journal_entries.nr)) { memcpy_u64s_small(journal_res_entry(&c->journal, &trans->journal_res), trans->extra_journal_entries.data, trans->extra_journal_entries.nr); trans->journal_res.offset += trans->extra_journal_entries.nr; trans->journal_res.u64s -= trans->extra_journal_entries.nr; } /* * Not allowed to fail after we've gotten our journal reservation - we * have to use it: */ if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) { if (bch2_journal_seq_verify) trans_for_each_update(trans, i) i->k->k.version.lo = trans->journal_res.seq; else if (bch2_inject_invalid_keys) trans_for_each_update(trans, i) i->k->k.version = MAX_VERSION; } if (trans->fs_usage_deltas && bch2_trans_fs_usage_apply(trans, trans->fs_usage_deltas)) return BTREE_INSERT_NEED_MARK_REPLICAS; trans_for_each_update(trans, i) if (BTREE_NODE_TYPE_HAS_MEM_TRIGGERS & (1U << i->bkey_type)) { ret = run_one_mem_trigger(trans, i, i->flags); if (ret) return ret; } if (unlikely(c->gc_pos.phase)) { ret = bch2_trans_commit_run_gc_triggers(trans); if (ret) return ret; } if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { trans_for_each_update(trans, i) { struct journal *j = &c->journal; struct jset_entry *entry; if (i->key_cache_already_flushed) continue; if (i->flags & BTREE_UPDATE_NOJOURNAL) continue; if (trans->journal_transaction_names) { entry = bch2_journal_add_entry(j, &trans->journal_res, BCH_JSET_ENTRY_overwrite, i->btree_id, i->level, i->old_k.u64s); bkey_reassemble(&entry->start[0], (struct bkey_s_c) { &i->old_k, i->old_v }); } entry = bch2_journal_add_entry(j, &trans->journal_res, BCH_JSET_ENTRY_btree_keys, i->btree_id, i->level, i->k->k.u64s); bkey_copy(&entry->start[0], i->k); } if (trans->journal_seq) *trans->journal_seq = trans->journal_res.seq; } trans_for_each_update(trans, i) { i->k->k.needs_whiteout = false; if (!i->cached) btree_insert_key_leaf(trans, i); else if (!i->key_cache_already_flushed) bch2_btree_insert_key_cached(trans, i->path, i->k); else { bch2_btree_key_cache_drop(trans, i->path); btree_path_set_dirty(i->path, BTREE_ITER_NEED_TRAVERSE); } } return ret; } static inline void path_upgrade_readers(struct btree_trans *trans, struct btree_path *path) { unsigned l; for (l = 0; l < BTREE_MAX_DEPTH; l++) if (btree_node_read_locked(path, l)) BUG_ON(!bch2_btree_node_upgrade(trans, path, l)); } static inline void upgrade_readers(struct btree_trans *trans, struct btree_path *path) { struct btree *b = path_l(path)->b; unsigned l; do { for (l = 0; l < BTREE_MAX_DEPTH; l++) if (btree_node_read_locked(path, l)) path_upgrade_readers(trans, path); } while ((path = prev_btree_path(trans, path)) && path_l(path)->b == b); } /* * Check for nodes that we have both read and intent locks on, and upgrade the * readers to intent: */ static inline void normalize_read_intent_locks(struct btree_trans *trans) { struct btree_path *path; unsigned i, nr_read = 0, nr_intent = 0; trans_for_each_path_inorder(trans, path, i) { struct btree_path *next = i + 1 < trans->nr_sorted ? trans->paths + trans->sorted[i + 1] : NULL; switch (btree_node_locked_type(path, path->level)) { case BTREE_NODE_READ_LOCKED: nr_read++; break; case BTREE_NODE_INTENT_LOCKED: nr_intent++; break; } if (!next || path_l(path)->b != path_l(next)->b) { if (nr_read && nr_intent) upgrade_readers(trans, path); nr_read = nr_intent = 0; } } bch2_trans_verify_locks(trans); } static inline bool have_conflicting_read_lock(struct btree_trans *trans, struct btree_path *pos) { struct btree_path *path; unsigned i; trans_for_each_path_inorder(trans, path, i) { //if (path == pos) // break; if (btree_node_read_locked(path, path->level) && !bch2_btree_path_upgrade(trans, path, path->level + 1)) return true; } return false; } static inline int trans_lock_write(struct btree_trans *trans) { struct btree_insert_entry *i; int ret; trans_for_each_update(trans, i) { if (same_leaf_as_prev(trans, i)) continue; if (!six_trylock_write(&insert_l(i)->b->c.lock)) { if (have_conflicting_read_lock(trans, i->path)) goto fail; ret = btree_node_lock_type(trans, i->path, &insert_l(i)->b->c, i->path->pos, i->level, SIX_LOCK_write, NULL, NULL); BUG_ON(ret); } mark_btree_node_locked_noreset(i->path, i->level, SIX_LOCK_write); bch2_btree_node_prep_for_write(trans, i->path, insert_l(i)->b); } return 0; fail: while (--i >= trans->updates) { if (same_leaf_as_prev(trans, i)) continue; bch2_btree_node_unlock_write_inlined(trans, i->path, insert_l(i)->b); } trace_trans_restart_would_deadlock_write(trans); return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock_write); } static noinline void bch2_drop_overwrites_from_journal(struct btree_trans *trans) { struct btree_insert_entry *i; trans_for_each_update(trans, i) bch2_journal_key_overwritten(trans->c, i->btree_id, i->level, i->k->k.p); } /* * Get journal reservation, take write locks, and attempt to do btree update(s): */ static inline int do_bch2_trans_commit(struct btree_trans *trans, struct btree_insert_entry **stopped_at, unsigned long trace_ip) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; struct printbuf buf = PRINTBUF; int ret, u64s_delta = 0; int rw = (trans->flags & BTREE_INSERT_JOURNAL_REPLAY) ? READ : WRITE; trans_for_each_update(trans, i) { if (bch2_bkey_invalid(c, bkey_i_to_s_c(i->k), i->bkey_type, rw, &buf)) { printbuf_reset(&buf); prt_printf(&buf, "invalid bkey on insert from %s -> %ps", trans->fn, (void *) i->ip_allocated); prt_newline(&buf); printbuf_indent_add(&buf, 2); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(i->k)); prt_newline(&buf); bch2_bkey_invalid(c, bkey_i_to_s_c(i->k), i->bkey_type, rw, &buf); bch2_trans_inconsistent(trans, "%s", buf.buf); printbuf_exit(&buf); return -EINVAL; } btree_insert_entry_checks(trans, i); } printbuf_exit(&buf); trans_for_each_update(trans, i) { if (i->cached) continue; u64s_delta += !bkey_deleted(&i->k->k) ? i->k->k.u64s : 0; u64s_delta -= i->old_btree_u64s; if (!same_leaf_as_next(trans, i)) { if (u64s_delta <= 0) { ret = bch2_foreground_maybe_merge(trans, i->path, i->level, trans->flags); if (unlikely(ret)) return ret; } u64s_delta = 0; } } ret = bch2_journal_preres_get(&c->journal, &trans->journal_preres, trans->journal_preres_u64s, JOURNAL_RES_GET_NONBLOCK| (trans->flags & JOURNAL_WATERMARK_MASK)); if (unlikely(ret == -EAGAIN)) ret = bch2_trans_journal_preres_get_cold(trans, trans->journal_preres_u64s, trace_ip); if (unlikely(ret)) return ret; normalize_read_intent_locks(trans); ret = trans_lock_write(trans); if (unlikely(ret)) return ret; ret = bch2_trans_commit_write_locked(trans, stopped_at, trace_ip); if (!ret && unlikely(trans->journal_replay_not_finished)) bch2_drop_overwrites_from_journal(trans); trans_for_each_update(trans, i) if (!same_leaf_as_prev(trans, i)) bch2_btree_node_unlock_write_inlined(trans, i->path, insert_l(i)->b); if (!ret && trans->journal_pin) bch2_journal_pin_add(&c->journal, trans->journal_res.seq, trans->journal_pin, NULL); /* * Drop journal reservation after dropping write locks, since dropping * the journal reservation may kick off a journal write: */ bch2_journal_res_put(&c->journal, &trans->journal_res); if (unlikely(ret)) return ret; bch2_trans_downgrade(trans); return 0; } static int journal_reclaim_wait_done(struct bch_fs *c) { int ret = bch2_journal_error(&c->journal) ?: !bch2_btree_key_cache_must_wait(c); if (!ret) journal_reclaim_kick(&c->journal); return ret; } static noinline int bch2_trans_commit_error(struct btree_trans *trans, struct btree_insert_entry *i, int ret, unsigned long trace_ip) { struct bch_fs *c = trans->c; switch (ret) { case BTREE_INSERT_BTREE_NODE_FULL: ret = bch2_btree_split_leaf(trans, i->path, trans->flags); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) trace_trans_restart_btree_node_split(trans, trace_ip, i->path); break; case BTREE_INSERT_NEED_MARK_REPLICAS: bch2_trans_unlock(trans); ret = bch2_replicas_delta_list_mark(c, trans->fs_usage_deltas); if (ret) break; ret = bch2_trans_relock(trans); if (ret) trace_trans_restart_mark_replicas(trans, trace_ip); break; case BTREE_INSERT_NEED_JOURNAL_RES: bch2_trans_unlock(trans); if ((trans->flags & BTREE_INSERT_JOURNAL_RECLAIM) && !(trans->flags & JOURNAL_WATERMARK_reserved)) { ret = -BCH_ERR_journal_reclaim_would_deadlock; break; } ret = bch2_trans_journal_res_get(trans, JOURNAL_RES_GET_CHECK); if (ret) break; ret = bch2_trans_relock(trans); if (ret) trace_trans_restart_journal_res_get(trans, trace_ip); break; case BTREE_INSERT_NEED_JOURNAL_RECLAIM: bch2_trans_unlock(trans); trace_trans_blocked_journal_reclaim(trans, trace_ip); wait_event_freezable(c->journal.reclaim_wait, (ret = journal_reclaim_wait_done(c))); if (ret < 0) break; ret = bch2_trans_relock(trans); if (ret) trace_trans_restart_journal_reclaim(trans, trace_ip); break; default: BUG_ON(ret >= 0); break; } BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart) != !!trans->restarted); BUG_ON(ret == -ENOSPC && !(trans->flags & BTREE_INSERT_NOWAIT) && (trans->flags & BTREE_INSERT_NOFAIL)); return ret; } static noinline int bch2_trans_commit_get_rw_cold(struct btree_trans *trans) { struct bch_fs *c = trans->c; int ret; if (likely(!(trans->flags & BTREE_INSERT_LAZY_RW)) || test_bit(BCH_FS_STARTED, &c->flags)) return -EROFS; bch2_trans_unlock(trans); ret = bch2_fs_read_write_early(c) ?: bch2_trans_relock(trans); if (ret) return ret; percpu_ref_get(&c->writes); return 0; } /* * This is for updates done in the early part of fsck - btree_gc - before we've * gone RW. we only add the new key to the list of keys for journal replay to * do. */ static noinline int do_bch2_trans_commit_to_journal_replay(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; int ret = 0; trans_for_each_update(trans, i) { ret = bch2_journal_key_insert(c, i->btree_id, i->level, i->k); if (ret) break; } return ret; } int __bch2_trans_commit(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct btree_insert_entry *i = NULL; unsigned u64s; int ret = 0; if (!trans->nr_updates && !trans->extra_journal_entries.nr) goto out_reset; if (trans->flags & BTREE_INSERT_GC_LOCK_HELD) lockdep_assert_held(&c->gc_lock); ret = bch2_trans_commit_run_triggers(trans); if (ret) goto out_reset; if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { ret = do_bch2_trans_commit_to_journal_replay(trans); goto out_reset; } if (!(trans->flags & BTREE_INSERT_NOCHECK_RW) && unlikely(!percpu_ref_tryget_live(&c->writes))) { ret = bch2_trans_commit_get_rw_cold(trans); if (ret) goto out_reset; } EBUG_ON(test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags)); memset(&trans->journal_preres, 0, sizeof(trans->journal_preres)); trans->journal_u64s = trans->extra_journal_entries.nr; trans->journal_preres_u64s = 0; trans->journal_transaction_names = READ_ONCE(c->opts.journal_transaction_names); if (trans->journal_transaction_names) trans->journal_u64s += jset_u64s(JSET_ENTRY_LOG_U64s); trans_for_each_update(trans, i) { BUG_ON(!i->path->should_be_locked); if (unlikely(!bch2_btree_path_upgrade(trans, i->path, i->level + 1))) { trace_trans_restart_upgrade(trans, _RET_IP_, i->path); ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_upgrade); goto out; } BUG_ON(!btree_node_intent_locked(i->path, i->level)); if (i->key_cache_already_flushed) continue; /* we're going to journal the key being updated: */ u64s = jset_u64s(i->k->k.u64s); if (i->cached && likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) trans->journal_preres_u64s += u64s; if (i->flags & BTREE_UPDATE_NOJOURNAL) continue; trans->journal_u64s += u64s; /* and we're also going to log the overwrite: */ if (trans->journal_transaction_names) trans->journal_u64s += jset_u64s(i->old_k.u64s); } if (trans->extra_journal_res) { ret = bch2_disk_reservation_add(c, trans->disk_res, trans->extra_journal_res, (trans->flags & BTREE_INSERT_NOFAIL) ? BCH_DISK_RESERVATION_NOFAIL : 0); if (ret) goto err; } retry: BUG_ON(trans->restarted); memset(&trans->journal_res, 0, sizeof(trans->journal_res)); ret = do_bch2_trans_commit(trans, &i, _RET_IP_); /* make sure we didn't drop or screw up locks: */ bch2_trans_verify_locks(trans); if (ret) goto err; trace_transaction_commit(trans, _RET_IP_); out: bch2_journal_preres_put(&c->journal, &trans->journal_preres); if (likely(!(trans->flags & BTREE_INSERT_NOCHECK_RW))) percpu_ref_put(&c->writes); out_reset: bch2_trans_reset_updates(trans); if (trans->fs_usage_deltas) { trans->fs_usage_deltas->used = 0; memset((void *) trans->fs_usage_deltas + offsetof(struct replicas_delta_list, memset_start), 0, (void *) &trans->fs_usage_deltas->memset_end - (void *) &trans->fs_usage_deltas->memset_start); } return ret; err: ret = bch2_trans_commit_error(trans, i, ret, _RET_IP_); if (ret) goto out; goto retry; } static int check_pos_snapshot_overwritten(struct btree_trans *trans, enum btree_id id, struct bpos pos) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; int ret; if (!btree_type_has_snapshots(id)) return 0; if (!snapshot_t(c, pos.snapshot)->children[0]) return 0; bch2_trans_iter_init(trans, &iter, id, pos, BTREE_ITER_NOT_EXTENTS| BTREE_ITER_ALL_SNAPSHOTS); while (1) { k = bch2_btree_iter_prev(&iter); ret = bkey_err(k); if (ret) break; if (!k.k) break; if (bkey_cmp(pos, k.k->p)) break; if (bch2_snapshot_is_ancestor(c, k.k->p.snapshot, pos.snapshot)) { ret = 1; break; } } bch2_trans_iter_exit(trans, &iter); return ret; } static noinline int extent_front_merge(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k, struct bkey_i **insert, enum btree_update_flags flags) { struct bch_fs *c = trans->c; struct bkey_i *update; int ret; update = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ret = PTR_ERR_OR_ZERO(update); if (ret) return ret; bkey_reassemble(update, k); if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert))) return 0; ret = check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p) ?: check_pos_snapshot_overwritten(trans, iter->btree_id, (*insert)->k.p); if (ret < 0) return ret; if (ret) return 0; ret = bch2_btree_delete_at(trans, iter, flags); if (ret) return ret; *insert = update; return 0; } static noinline int extent_back_merge(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *insert, struct bkey_s_c k) { struct bch_fs *c = trans->c; int ret; ret = check_pos_snapshot_overwritten(trans, iter->btree_id, insert->k.p) ?: check_pos_snapshot_overwritten(trans, iter->btree_id, k.k->p); if (ret < 0) return ret; if (ret) return 0; bch2_bkey_merge(c, bkey_i_to_s(insert), k); return 0; } int bch2_trans_update_extent(struct btree_trans *trans, struct btree_iter *orig_iter, struct bkey_i *insert, enum btree_update_flags flags) { struct btree_iter iter, update_iter; struct bpos start = bkey_start_pos(&insert->k); struct bkey_i *update; struct bkey_s_c k; enum btree_id btree_id = orig_iter->btree_id; int ret = 0, compressed_sectors; bch2_trans_iter_init(trans, &iter, btree_id, start, BTREE_ITER_INTENT| BTREE_ITER_WITH_UPDATES| BTREE_ITER_NOT_EXTENTS); k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX)); if ((ret = bkey_err(k))) goto err; if (!k.k) goto out; if (!bkey_cmp(k.k->p, bkey_start_pos(&insert->k))) { if (bch2_bkey_maybe_mergable(k.k, &insert->k)) { ret = extent_front_merge(trans, &iter, k, &insert, flags); if (ret) goto err; } goto next; } while (bkey_cmp(insert->k.p, bkey_start_pos(k.k)) > 0) { bool front_split = bkey_cmp(bkey_start_pos(k.k), start) < 0; bool back_split = bkey_cmp(k.k->p, insert->k.p) > 0; /* * If we're going to be splitting a compressed extent, note it * so that __bch2_trans_commit() can increase our disk * reservation: */ if (((front_split && back_split) || ((front_split || back_split) && k.k->p.snapshot != insert->k.p.snapshot)) && (compressed_sectors = bch2_bkey_sectors_compressed(k))) trans->extra_journal_res += compressed_sectors; if (front_split) { update = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); if ((ret = PTR_ERR_OR_ZERO(update))) goto err; bkey_reassemble(update, k); bch2_cut_back(start, update); bch2_trans_iter_init(trans, &update_iter, btree_id, update->k.p, BTREE_ITER_NOT_EXTENTS| BTREE_ITER_ALL_SNAPSHOTS| BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(&update_iter) ?: bch2_trans_update(trans, &update_iter, update, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| flags); bch2_trans_iter_exit(trans, &update_iter); if (ret) goto err; } if (k.k->p.snapshot != insert->k.p.snapshot && (front_split || back_split)) { update = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); if ((ret = PTR_ERR_OR_ZERO(update))) goto err; bkey_reassemble(update, k); bch2_cut_front(start, update); bch2_cut_back(insert->k.p, update); bch2_trans_iter_init(trans, &update_iter, btree_id, update->k.p, BTREE_ITER_NOT_EXTENTS| BTREE_ITER_ALL_SNAPSHOTS| BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(&update_iter) ?: bch2_trans_update(trans, &update_iter, update, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| flags); bch2_trans_iter_exit(trans, &update_iter); if (ret) goto err; } if (bkey_cmp(k.k->p, insert->k.p) <= 0) { update = bch2_trans_kmalloc(trans, sizeof(*update)); if ((ret = PTR_ERR_OR_ZERO(update))) goto err; bkey_init(&update->k); update->k.p = k.k->p; if (insert->k.p.snapshot != k.k->p.snapshot) { update->k.p.snapshot = insert->k.p.snapshot; update->k.type = KEY_TYPE_whiteout; } bch2_trans_iter_init(trans, &update_iter, btree_id, update->k.p, BTREE_ITER_NOT_EXTENTS| BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(&update_iter) ?: bch2_trans_update(trans, &update_iter, update, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| flags); bch2_trans_iter_exit(trans, &update_iter); if (ret) goto err; } if (back_split) { update = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); if ((ret = PTR_ERR_OR_ZERO(update))) goto err; bkey_reassemble(update, k); bch2_cut_front(insert->k.p, update); ret = bch2_trans_update_by_path(trans, iter.path, update, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| flags); if (ret) goto err; goto out; } next: bch2_btree_iter_advance(&iter); k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX)); if ((ret = bkey_err(k))) goto err; if (!k.k) goto out; } if (bch2_bkey_maybe_mergable(&insert->k, k.k)) { ret = extent_back_merge(trans, &iter, insert, k); if (ret) goto err; } out: if (!bkey_deleted(&insert->k)) { /* * Rewinding iterators is expensive: get a new one and the one * that points to the start of insert will be cloned from: */ bch2_trans_iter_exit(trans, &iter); bch2_trans_iter_init(trans, &iter, btree_id, insert->k.p, BTREE_ITER_NOT_EXTENTS| BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, insert, flags); } err: bch2_trans_iter_exit(trans, &iter); return ret; } /* * When deleting, check if we need to emit a whiteout (because we're overwriting * something in an ancestor snapshot) */ static int need_whiteout_for_snapshot(struct btree_trans *trans, enum btree_id btree_id, struct bpos pos) { struct btree_iter iter; struct bkey_s_c k; u32 snapshot = pos.snapshot; int ret; if (!bch2_snapshot_parent(trans->c, pos.snapshot)) return 0; pos.snapshot++; for_each_btree_key_norestart(trans, iter, btree_id, pos, BTREE_ITER_ALL_SNAPSHOTS| BTREE_ITER_NOPRESERVE, k, ret) { if (bkey_cmp(k.k->p, pos)) break; if (bch2_snapshot_is_ancestor(trans->c, snapshot, k.k->p.snapshot)) { ret = !bkey_whiteout(k.k); break; } } bch2_trans_iter_exit(trans, &iter); return ret; } static int __must_check bch2_trans_update_by_path_trace(struct btree_trans *trans, struct btree_path *path, struct bkey_i *k, enum btree_update_flags flags, unsigned long ip) { struct bch_fs *c = trans->c; struct btree_insert_entry *i, n; int ret = 0; BUG_ON(!path->should_be_locked); BUG_ON(trans->nr_updates >= BTREE_ITER_MAX); BUG_ON(bpos_cmp(k->k.p, path->pos)); n = (struct btree_insert_entry) { .flags = flags, .bkey_type = __btree_node_type(path->level, path->btree_id), .btree_id = path->btree_id, .level = path->level, .cached = path->cached, .path = path, .k = k, .ip_allocated = ip, }; #ifdef CONFIG_BCACHEFS_DEBUG trans_for_each_update(trans, i) BUG_ON(i != trans->updates && btree_insert_entry_cmp(i - 1, i) >= 0); #endif /* * Pending updates are kept sorted: first, find position of new update, * then delete/trim any updates the new update overwrites: */ trans_for_each_update(trans, i) if (btree_insert_entry_cmp(&n, i) <= 0) break; if (i < trans->updates + trans->nr_updates && !btree_insert_entry_cmp(&n, i)) { BUG_ON(i->insert_trigger_run || i->overwrite_trigger_run); bch2_path_put(trans, i->path, true); i->flags = n.flags; i->cached = n.cached; i->k = n.k; i->path = n.path; i->ip_allocated = n.ip_allocated; } else { array_insert_item(trans->updates, trans->nr_updates, i - trans->updates, n); i->old_v = bch2_btree_path_peek_slot(path, &i->old_k).v; i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0; if (unlikely(trans->journal_replay_not_finished)) { struct bkey_i *j_k = bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p); if (j_k) { i->old_k = j_k->k; i->old_v = &j_k->v; } } } __btree_path_get(i->path, true); /* * If a key is present in the key cache, it must also exist in the * btree - this is necessary for cache coherency. When iterating over * a btree that's cached in the key cache, the btree iter code checks * the key cache - but the key has to exist in the btree for that to * work: */ if (path->cached && bkey_deleted(&i->old_k) && !(flags & BTREE_UPDATE_NO_KEY_CACHE_COHERENCY)) { struct btree_path *btree_path; i->key_cache_already_flushed = true; i->flags |= BTREE_TRIGGER_NORUN; btree_path = bch2_path_get(trans, path->btree_id, path->pos, 1, 0, BTREE_ITER_INTENT); ret = bch2_btree_path_traverse(trans, btree_path, 0); if (ret) goto err; btree_path_set_should_be_locked(btree_path); ret = bch2_trans_update_by_path_trace(trans, btree_path, k, flags, ip); err: bch2_path_put(trans, btree_path, true); } return ret; } static int __must_check bch2_trans_update_by_path(struct btree_trans *trans, struct btree_path *path, struct bkey_i *k, enum btree_update_flags flags) { return bch2_trans_update_by_path_trace(trans, path, k, flags, _RET_IP_); } int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *k, enum btree_update_flags flags) { struct btree_path *path = iter->update_path ?: iter->path; struct bkey_cached *ck; int ret; if (iter->flags & BTREE_ITER_IS_EXTENTS) return bch2_trans_update_extent(trans, iter, k, flags); if (bkey_deleted(&k->k) && !(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) && (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) { ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p); if (unlikely(ret < 0)) return ret; if (ret) k->k.type = KEY_TYPE_whiteout; } /* * Ensure that updates to cached btrees go to the key cache: */ if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) && !path->cached && !path->level && btree_id_cached(trans->c, path->btree_id)) { if (!iter->key_cache_path || !iter->key_cache_path->should_be_locked || bpos_cmp(iter->key_cache_path->pos, k->k.p)) { if (!iter->key_cache_path) iter->key_cache_path = bch2_path_get(trans, path->btree_id, path->pos, 1, 0, BTREE_ITER_INTENT|BTREE_ITER_CACHED); iter->key_cache_path = bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos, iter->flags & BTREE_ITER_INTENT); ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_CACHED); if (unlikely(ret)) return ret; ck = (void *) iter->key_cache_path->l[0].b; if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { trace_trans_restart_key_cache_raced(trans, _RET_IP_); return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced); } btree_path_set_should_be_locked(iter->key_cache_path); } path = iter->key_cache_path; } return bch2_trans_update_by_path(trans, path, k, flags); } void bch2_trans_commit_hook(struct btree_trans *trans, struct btree_trans_commit_hook *h) { h->next = trans->hooks; trans->hooks = h; } int __bch2_btree_insert(struct btree_trans *trans, enum btree_id id, struct bkey_i *k) { struct btree_iter iter; int ret; bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k), BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, k, 0); bch2_trans_iter_exit(trans, &iter); return ret; } /** * bch2_btree_insert - insert keys into the extent btree * @c: pointer to struct bch_fs * @id: btree to insert into * @insert_keys: list of keys to insert * @hook: insert callback */ int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k, struct disk_reservation *disk_res, u64 *journal_seq, int flags) { return bch2_trans_do(c, disk_res, journal_seq, flags, __bch2_btree_insert(&trans, id, k)); } int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter, unsigned len, unsigned update_flags) { struct bkey_i *k; k = bch2_trans_kmalloc(trans, sizeof(*k)); if (IS_ERR(k)) return PTR_ERR(k); bkey_init(&k->k); k->k.p = iter->pos; bch2_key_resize(&k->k, len); return bch2_trans_update(trans, iter, k, update_flags); } int bch2_btree_delete_at(struct btree_trans *trans, struct btree_iter *iter, unsigned update_flags) { return bch2_btree_delete_extent_at(trans, iter, 0, update_flags); } int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id, struct bpos start, struct bpos end, unsigned update_flags, u64 *journal_seq) { u32 restart_count = trans->restart_count; struct btree_iter iter; struct bkey_s_c k; int ret = 0; bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT); retry: while ((k = bch2_btree_iter_peek(&iter)).k && !(ret = bkey_err(k) ?: btree_trans_too_many_iters(trans)) && bkey_cmp(iter.pos, end) < 0) { struct disk_reservation disk_res = bch2_disk_reservation_init(trans->c, 0); struct bkey_i delete; bkey_init(&delete.k); /* * This could probably be more efficient for extents: */ /* * For extents, iter.pos won't necessarily be the same as * bkey_start_pos(k.k) (for non extents they always will be the * same). It's important that we delete starting from iter.pos * because the range we want to delete could start in the middle * of k. * * (bch2_btree_iter_peek() does guarantee that iter.pos >= * bkey_start_pos(k.k)). */ delete.k.p = iter.pos; if (iter.flags & BTREE_ITER_IS_EXTENTS) { unsigned max_sectors = KEY_SIZE_MAX & (~0 << trans->c->block_bits); /* create the biggest key we can */ bch2_key_resize(&delete.k, max_sectors); bch2_cut_back(end, &delete); ret = bch2_extent_trim_atomic(trans, &iter, &delete); if (ret) break; } ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?: bch2_trans_commit(trans, &disk_res, journal_seq, BTREE_INSERT_NOFAIL); bch2_disk_reservation_put(trans->c, &disk_res); if (ret) break; } if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) { bch2_trans_begin(trans); ret = 0; goto retry; } bch2_trans_iter_exit(trans, &iter); if (!ret && trans_was_restarted(trans, restart_count)) ret = -BCH_ERR_transaction_restart_nested; return ret; } /* * bch_btree_delete_range - delete everything within a given range * * Range is a half open interval - [start, end) */ int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, struct bpos start, struct bpos end, unsigned update_flags, u64 *journal_seq) { int ret = bch2_trans_run(c, bch2_btree_delete_range_trans(&trans, id, start, end, update_flags, journal_seq)); if (ret == -BCH_ERR_transaction_restart_nested) ret = 0; return ret; } int bch2_trans_log_msg(struct btree_trans *trans, const char *msg) { unsigned len = strlen(msg); unsigned u64s = DIV_ROUND_UP(len, sizeof(u64)); struct jset_entry_log *l; int ret; ret = darray_make_room(&trans->extra_journal_entries, jset_u64s(u64s)); if (ret) return ret; l = (void *) &darray_top(trans->extra_journal_entries); l->entry.u64s = cpu_to_le16(u64s); l->entry.btree_id = 0; l->entry.level = 1; l->entry.type = BCH_JSET_ENTRY_log; l->entry.pad[0] = 0; l->entry.pad[1] = 0; l->entry.pad[2] = 0; memcpy(l->d, msg, len); while (len & 7) l->d[len++] = '\0'; trans->extra_journal_entries.nr += jset_u64s(u64s); return 0; }