// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2010, 2011 Kent Overstreet * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc_foreground.h" #include "bkey_buf.h" #include "bset.h" #include "btree_update.h" #include "buckets.h" #include "checksum.h" #include "clock.h" #include "compress.h" #include "debug.h" #include "ec.h" #include "error.h" #include "extent_update.h" #include "inode.h" #include "io_write.h" #include "journal.h" #include "keylist.h" #include "move.h" #include "nocow_locking.h" #include "rebalance.h" #include "subvolume.h" #include "super.h" #include "super-io.h" #include "trace.h" #include #include #include #include #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, u64 now, int rw) { u64 latency_capable = ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; /* ideally we'd be taking into account the device's variance here: */ u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); s64 latency_over = io_latency - latency_threshold; if (latency_threshold && latency_over > 0) { /* * bump up congested by approximately latency_over * 4 / * latency_threshold - we don't need much accuracy here so don't * bother with the divide: */ if (atomic_read(&ca->congested) < CONGESTED_MAX) atomic_add(latency_over >> max_t(int, ilog2(latency_threshold) - 2, 0), &ca->congested); ca->congested_last = now; } else if (atomic_read(&ca->congested) > 0) { atomic_dec(&ca->congested); } } void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) { atomic64_t *latency = &ca->cur_latency[rw]; u64 now = local_clock(); u64 io_latency = time_after64(now, submit_time) ? now - submit_time : 0; u64 old, new; old = atomic64_read(latency); do { /* * If the io latency was reasonably close to the current * latency, skip doing the update and atomic operation - most of * the time: */ if (abs((int) (old - io_latency)) < (old >> 1) && now & ~(~0U << 5)) break; new = ewma_add(old, io_latency, 5); } while (!atomic64_try_cmpxchg(latency, &old, new)); bch2_congested_acct(ca, io_latency, now, rw); __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now); } #endif /* Allocate, free from mempool: */ void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) { struct bvec_iter_all iter; struct bio_vec *bv; bio_for_each_segment_all(bv, bio, iter) if (bv->bv_page != ZERO_PAGE(0)) mempool_free(bv->bv_page, &c->bio_bounce_pages); bio->bi_vcnt = 0; } static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) { struct page *page; if (likely(!*using_mempool)) { page = alloc_page(GFP_NOFS); if (unlikely(!page)) { mutex_lock(&c->bio_bounce_pages_lock); *using_mempool = true; goto pool_alloc; } } else { pool_alloc: page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); } return page; } void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, size_t size) { bool using_mempool = false; while (size) { struct page *page = __bio_alloc_page_pool(c, &using_mempool); unsigned len = min_t(size_t, PAGE_SIZE, size); BUG_ON(!bio_add_page(bio, page, len, 0)); size -= len; } if (using_mempool) mutex_unlock(&c->bio_bounce_pages_lock); } /* Extent update path: */ int bch2_sum_sector_overwrites(struct btree_trans *trans, struct btree_iter *extent_iter, struct bkey_i *new, bool *usage_increasing, s64 *i_sectors_delta, s64 *disk_sectors_delta) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c old; unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); int ret = 0; *usage_increasing = false; *i_sectors_delta = 0; *disk_sectors_delta = 0; bch2_trans_copy_iter(&iter, extent_iter); for_each_btree_key_upto_continue_norestart(iter, new->k.p, BTREE_ITER_slots, old, ret) { s64 sectors = min(new->k.p.offset, old.k->p.offset) - max(bkey_start_offset(&new->k), bkey_start_offset(old.k)); *i_sectors_delta += sectors * (bkey_extent_is_allocation(&new->k) - bkey_extent_is_allocation(old.k)); *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) : 0; if (!*usage_increasing && (new->k.p.snapshot != old.k->p.snapshot || new_replicas > bch2_bkey_replicas(c, old) || (!new_compressed && bch2_bkey_sectors_compressed(old)))) *usage_increasing = true; if (bkey_ge(old.k->p, new->k.p)) break; } bch2_trans_iter_exit(trans, &iter); return ret; } static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, struct btree_iter *extent_iter, u64 new_i_size, s64 i_sectors_delta) { /* * Crazy performance optimization: * Every extent update needs to also update the inode: the inode trigger * will set bi->journal_seq to the journal sequence number of this * transaction - for fsync. * * But if that's the only reason we're updating the inode (we're not * updating bi_size or bi_sectors), then we don't need the inode update * to be journalled - if we crash, the bi_journal_seq update will be * lost, but that's fine. */ unsigned inode_update_flags = BTREE_UPDATE_nojournal; struct btree_iter iter; struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, SPOS(0, extent_iter->pos.inode, extent_iter->snapshot), BTREE_ITER_cached); int ret = bkey_err(k); if (unlikely(ret)) return ret; /* * varint_decode_fast(), in the inode .invalid method, reads up to 7 * bytes past the end of the buffer: */ struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8); ret = PTR_ERR_OR_ZERO(k_mut); if (unlikely(ret)) goto err; bkey_reassemble(k_mut, k); if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) { k_mut = bch2_inode_to_v3(trans, k_mut); ret = PTR_ERR_OR_ZERO(k_mut); if (unlikely(ret)) goto err; } struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut); if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) && new_i_size > le64_to_cpu(inode->v.bi_size)) { inode->v.bi_size = cpu_to_le64(new_i_size); inode_update_flags = 0; } if (i_sectors_delta) { le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); inode_update_flags = 0; } if (inode->k.p.snapshot != iter.snapshot) { inode->k.p.snapshot = iter.snapshot; inode_update_flags = 0; } ret = bch2_trans_update(trans, &iter, &inode->k_i, BTREE_UPDATE_internal_snapshot_node| inode_update_flags); err: bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_extent_update(struct btree_trans *trans, subvol_inum inum, struct btree_iter *iter, struct bkey_i *k, struct disk_reservation *disk_res, u64 new_i_size, s64 *i_sectors_delta_total, bool check_enospc) { struct bpos next_pos; bool usage_increasing; s64 i_sectors_delta = 0, disk_sectors_delta = 0; int ret; /* * This traverses us the iterator without changing iter->path->pos to * search_key() (which is pos + 1 for extents): we want there to be a * path already traversed at iter->pos because * bch2_trans_extent_update() will use it to attempt extent merging */ ret = __bch2_btree_iter_traverse(iter); if (ret) return ret; ret = bch2_extent_trim_atomic(trans, iter, k); if (ret) return ret; next_pos = k->k.p; ret = bch2_sum_sector_overwrites(trans, iter, k, &usage_increasing, &i_sectors_delta, &disk_sectors_delta); if (ret) return ret; if (disk_res && disk_sectors_delta > (s64) disk_res->sectors) { ret = bch2_disk_reservation_add(trans->c, disk_res, disk_sectors_delta - disk_res->sectors, !check_enospc || !usage_increasing ? BCH_DISK_RESERVATION_NOFAIL : 0); if (ret) return ret; } /* * Note: * We always have to do an inode update - even when i_size/i_sectors * aren't changing - for fsync to work properly; fsync relies on * inode->bi_journal_seq which is updated by the trigger code: */ ret = bch2_extent_update_i_size_sectors(trans, iter, min(k->k.p.offset << 9, new_i_size), i_sectors_delta) ?: bch2_trans_update(trans, iter, k, 0) ?: bch2_trans_commit(trans, disk_res, NULL, BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc); if (unlikely(ret)) return ret; if (i_sectors_delta_total) *i_sectors_delta_total += i_sectors_delta; bch2_btree_iter_set_pos(iter, next_pos); return 0; } static int bch2_write_index_default(struct bch_write_op *op) { struct bch_fs *c = op->c; struct bkey_buf sk; struct keylist *keys = &op->insert_keys; struct bkey_i *k = bch2_keylist_front(keys); struct btree_trans *trans = bch2_trans_get(c); struct btree_iter iter; subvol_inum inum = { .subvol = op->subvol, .inum = k->k.p.inode, }; int ret; BUG_ON(!inum.subvol); bch2_bkey_buf_init(&sk); do { bch2_trans_begin(trans); k = bch2_keylist_front(keys); bch2_bkey_buf_copy(&sk, c, k); ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &sk.k->k.p.snapshot); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) break; bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, bkey_start_pos(&sk.k->k), BTREE_ITER_slots|BTREE_ITER_intent); ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?: bch2_extent_update(trans, inum, &iter, sk.k, &op->res, op->new_i_size, &op->i_sectors_delta, op->flags & BCH_WRITE_CHECK_ENOSPC); bch2_trans_iter_exit(trans, &iter); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) break; if (bkey_ge(iter.pos, k->k.p)) bch2_keylist_pop_front(&op->insert_keys); else bch2_cut_front(iter.pos, k); } while (!bch2_keylist_empty(keys)); bch2_trans_put(trans); bch2_bkey_buf_exit(&sk, c); return ret; } /* Writes */ void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, enum bch_data_type type, const struct bkey_i *k, bool nocow) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); struct bch_write_bio *n; BUG_ON(c->opts.nochanges); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = nocow ? bch2_dev_have_ref(c, ptr->dev) : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE); if (to_entry(ptr + 1) < ptrs.end) { n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set)); n->bio.bi_end_io = wbio->bio.bi_end_io; n->bio.bi_private = wbio->bio.bi_private; n->parent = wbio; n->split = true; n->bounce = false; n->put_bio = true; n->bio.bi_opf = wbio->bio.bi_opf; bio_inc_remaining(&wbio->bio); } else { n = wbio; n->split = false; } n->c = c; n->dev = ptr->dev; n->have_ioref = ca != NULL; n->nocow = nocow; n->submit_time = local_clock(); n->inode_offset = bkey_start_offset(&k->k); if (nocow) n->nocow_bucket = PTR_BUCKET_NR(ca, ptr); n->bio.bi_iter.bi_sector = ptr->offset; if (likely(n->have_ioref)) { this_cpu_add(ca->io_done->sectors[WRITE][type], bio_sectors(&n->bio)); bio_set_dev(&n->bio, ca->disk_sb.bdev); if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { bio_endio(&n->bio); continue; } submit_bio(&n->bio); } else { n->bio.bi_status = BLK_STS_REMOVED; bio_endio(&n->bio); } } } static void __bch2_write(struct bch_write_op *); static void bch2_write_done(struct closure *cl) { struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); struct bch_fs *c = op->c; EBUG_ON(op->open_buckets.nr); bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); bch2_disk_reservation_put(c, &op->res); if (!(op->flags & BCH_WRITE_MOVE)) bch2_write_ref_put(c, BCH_WRITE_REF_write); bch2_keylist_free(&op->insert_keys, op->inline_keys); EBUG_ON(cl->parent); closure_debug_destroy(cl); if (op->end_io) op->end_io(op); } static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) { struct keylist *keys = &op->insert_keys; struct bkey_i *src, *dst = keys->keys, *n; for (src = keys->keys; src != keys->top; src = n) { n = bkey_next(src); if (bkey_extent_is_direct_data(&src->k)) { bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, test_bit(ptr->dev, op->failed.d)); if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) return -EIO; } if (dst != src) memmove_u64s_down(dst, src, src->k.u64s); dst = bkey_next(dst); } keys->top = dst; return 0; } /** * __bch2_write_index - after a write, update index to point to new data * @op: bch_write_op to process */ static void __bch2_write_index(struct bch_write_op *op) { struct bch_fs *c = op->c; struct keylist *keys = &op->insert_keys; unsigned dev; int ret = 0; if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { ret = bch2_write_drop_io_error_ptrs(op); if (ret) goto err; } if (!bch2_keylist_empty(keys)) { u64 sectors_start = keylist_sectors(keys); ret = !(op->flags & BCH_WRITE_MOVE) ? bch2_write_index_default(op) : bch2_data_update_index_update(op); BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); BUG_ON(keylist_sectors(keys) && !ret); op->written += sectors_start - keylist_sectors(keys); if (ret && !bch2_err_matches(ret, EROFS)) { struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); bch_err_inum_offset_ratelimited(c, insert->k.p.inode, insert->k.p.offset << 9, "%s write error while doing btree update: %s", op->flags & BCH_WRITE_MOVE ? "move" : "user", bch2_err_str(ret)); } if (ret) goto err; } out: /* If some a bucket wasn't written, we can't erasure code it: */ for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) bch2_open_bucket_write_error(c, &op->open_buckets, dev); bch2_open_buckets_put(c, &op->open_buckets); return; err: keys->top = keys->keys; op->error = ret; op->flags |= BCH_WRITE_SUBMITTED; goto out; } static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) { if (state != wp->state) { u64 now = ktime_get_ns(); if (wp->last_state_change && time_after64(now, wp->last_state_change)) wp->time[wp->state] += now - wp->last_state_change; wp->state = state; wp->last_state_change = now; } } static inline void wp_update_state(struct write_point *wp, bool running) { enum write_point_state state; state = running ? WRITE_POINT_running : !list_empty(&wp->writes) ? WRITE_POINT_waiting_io : WRITE_POINT_stopped; __wp_update_state(wp, state); } static CLOSURE_CALLBACK(bch2_write_index) { closure_type(op, struct bch_write_op, cl); struct write_point *wp = op->wp; struct workqueue_struct *wq = index_update_wq(op); unsigned long flags; if ((op->flags & BCH_WRITE_SUBMITTED) && (op->flags & BCH_WRITE_MOVE)) bch2_bio_free_pages_pool(op->c, &op->wbio.bio); spin_lock_irqsave(&wp->writes_lock, flags); if (wp->state == WRITE_POINT_waiting_io) __wp_update_state(wp, WRITE_POINT_waiting_work); list_add_tail(&op->wp_list, &wp->writes); spin_unlock_irqrestore (&wp->writes_lock, flags); queue_work(wq, &wp->index_update_work); } static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) { op->wp = wp; if (wp->state == WRITE_POINT_stopped) { spin_lock_irq(&wp->writes_lock); __wp_update_state(wp, WRITE_POINT_waiting_io); spin_unlock_irq(&wp->writes_lock); } } void bch2_write_point_do_index_updates(struct work_struct *work) { struct write_point *wp = container_of(work, struct write_point, index_update_work); struct bch_write_op *op; while (1) { spin_lock_irq(&wp->writes_lock); op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list); if (op) list_del(&op->wp_list); wp_update_state(wp, op != NULL); spin_unlock_irq(&wp->writes_lock); if (!op) break; op->flags |= BCH_WRITE_IN_WORKER; __bch2_write_index(op); if (!(op->flags & BCH_WRITE_SUBMITTED)) __bch2_write(op); else bch2_write_done(&op->cl); } } static void bch2_write_endio(struct bio *bio) { struct closure *cl = bio->bi_private; struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); struct bch_write_bio *wbio = to_wbio(bio); struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; struct bch_fs *c = wbio->c; struct bch_dev *ca = wbio->have_ioref ? bch2_dev_have_ref(c, wbio->dev) : NULL; if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write, op->pos.inode, wbio->inode_offset << 9, "data write error: %s", bch2_blk_status_to_str(bio->bi_status))) { set_bit(wbio->dev, op->failed.d); op->flags |= BCH_WRITE_IO_ERROR; } if (wbio->nocow) { bch2_bucket_nocow_unlock(&c->nocow_locks, POS(ca->dev_idx, wbio->nocow_bucket), BUCKET_NOCOW_LOCK_UPDATE); set_bit(wbio->dev, op->devs_need_flush->d); } if (wbio->have_ioref) { bch2_latency_acct(ca, wbio->submit_time, WRITE); percpu_ref_put(&ca->io_ref); } if (wbio->bounce) bch2_bio_free_pages_pool(c, bio); if (wbio->put_bio) bio_put(bio); if (parent) bio_endio(&parent->bio); else closure_put(cl); } static void init_append_extent(struct bch_write_op *op, struct write_point *wp, struct bversion version, struct bch_extent_crc_unpacked crc) { struct bkey_i_extent *e; op->pos.offset += crc.uncompressed_size; e = bkey_extent_init(op->insert_keys.top); e->k.p = op->pos; e->k.size = crc.uncompressed_size; e->k.bversion = version; if (crc.csum_type || crc.compression_type || crc.nonce) bch2_extent_crc_append(&e->k_i, crc); bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, op->flags & BCH_WRITE_CACHED); bch2_keylist_push(&op->insert_keys); } static struct bio *bch2_write_bio_alloc(struct bch_fs *c, struct write_point *wp, struct bio *src, bool *page_alloc_failed, void *buf) { struct bch_write_bio *wbio; struct bio *bio; unsigned output_available = min(wp->sectors_free << 9, src->bi_iter.bi_size); unsigned pages = DIV_ROUND_UP(output_available + (buf ? ((unsigned long) buf & (PAGE_SIZE - 1)) : 0), PAGE_SIZE); pages = min(pages, BIO_MAX_VECS); bio = bio_alloc_bioset(NULL, pages, 0, GFP_NOFS, &c->bio_write); wbio = wbio_init(bio); wbio->put_bio = true; /* copy WRITE_SYNC flag */ wbio->bio.bi_opf = src->bi_opf; if (buf) { bch2_bio_map(bio, buf, output_available); return bio; } wbio->bounce = true; /* * We can't use mempool for more than c->sb.encoded_extent_max * worth of pages, but we'd like to allocate more if we can: */ bch2_bio_alloc_pages_pool(c, bio, min_t(unsigned, output_available, c->opts.encoded_extent_max)); if (bio->bi_iter.bi_size < output_available) *page_alloc_failed = bch2_bio_alloc_pages(bio, output_available - bio->bi_iter.bi_size, GFP_NOFS) != 0; return bio; } static int bch2_write_rechecksum(struct bch_fs *c, struct bch_write_op *op, unsigned new_csum_type) { struct bio *bio = &op->wbio.bio; struct bch_extent_crc_unpacked new_crc; int ret; /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ if (bch2_csum_type_is_encryption(op->crc.csum_type) != bch2_csum_type_is_encryption(new_csum_type)) new_csum_type = op->crc.csum_type; ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, NULL, &new_crc, op->crc.offset, op->crc.live_size, new_csum_type); if (ret) return ret; bio_advance(bio, op->crc.offset << 9); bio->bi_iter.bi_size = op->crc.live_size << 9; op->crc = new_crc; return 0; } static int bch2_write_decrypt(struct bch_write_op *op) { struct bch_fs *c = op->c; struct nonce nonce = extent_nonce(op->version, op->crc); struct bch_csum csum; int ret; if (!bch2_csum_type_is_encryption(op->crc.csum_type)) return 0; /* * If we need to decrypt data in the write path, we'll no longer be able * to verify the existing checksum (poly1305 mac, in this case) after * it's decrypted - this is the last point we'll be able to reverify the * checksum: */ csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) return -EIO; ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); op->crc.csum_type = 0; op->crc.csum = (struct bch_csum) { 0, 0 }; return ret; } static enum prep_encoded_ret { PREP_ENCODED_OK, PREP_ENCODED_ERR, PREP_ENCODED_CHECKSUM_ERR, PREP_ENCODED_DO_WRITE, } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) { struct bch_fs *c = op->c; struct bio *bio = &op->wbio.bio; if (!(op->flags & BCH_WRITE_DATA_ENCODED)) return PREP_ENCODED_OK; BUG_ON(bio_sectors(bio) != op->crc.compressed_size); /* Can we just write the entire extent as is? */ if (op->crc.uncompressed_size == op->crc.live_size && op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 && op->crc.compressed_size <= wp->sectors_free && (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || op->incompressible)) { if (!crc_is_compressed(op->crc) && op->csum_type != op->crc.csum_type && bch2_write_rechecksum(c, op, op->csum_type) && !c->opts.no_data_io) return PREP_ENCODED_CHECKSUM_ERR; return PREP_ENCODED_DO_WRITE; } /* * If the data is compressed and we couldn't write the entire extent as * is, we have to decompress it: */ if (crc_is_compressed(op->crc)) { struct bch_csum csum; if (bch2_write_decrypt(op)) return PREP_ENCODED_CHECKSUM_ERR; /* Last point we can still verify checksum: */ csum = bch2_checksum_bio(c, op->crc.csum_type, extent_nonce(op->version, op->crc), bio); if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) return PREP_ENCODED_CHECKSUM_ERR; if (bch2_bio_uncompress_inplace(c, bio, &op->crc)) return PREP_ENCODED_ERR; } /* * No longer have compressed data after this point - data might be * encrypted: */ /* * If the data is checksummed and we're only writing a subset, * rechecksum and adjust bio to point to currently live data: */ if ((op->crc.live_size != op->crc.uncompressed_size || op->crc.csum_type != op->csum_type) && bch2_write_rechecksum(c, op, op->csum_type) && !c->opts.no_data_io) return PREP_ENCODED_CHECKSUM_ERR; /* * If we want to compress the data, it has to be decrypted: */ if ((op->compression_opt || bch2_csum_type_is_encryption(op->crc.csum_type) != bch2_csum_type_is_encryption(op->csum_type)) && bch2_write_decrypt(op)) return PREP_ENCODED_CHECKSUM_ERR; return PREP_ENCODED_OK; } static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, struct bio **_dst) { struct bch_fs *c = op->c; struct bio *src = &op->wbio.bio, *dst = src; struct bvec_iter saved_iter; void *ec_buf; unsigned total_output = 0, total_input = 0; bool bounce = false; bool page_alloc_failed = false; int ret, more = 0; BUG_ON(!bio_sectors(src)); ec_buf = bch2_writepoint_ec_buf(c, wp); switch (bch2_write_prep_encoded_data(op, wp)) { case PREP_ENCODED_OK: break; case PREP_ENCODED_ERR: ret = -EIO; goto err; case PREP_ENCODED_CHECKSUM_ERR: goto csum_err; case PREP_ENCODED_DO_WRITE: /* XXX look for bug here */ if (ec_buf) { dst = bch2_write_bio_alloc(c, wp, src, &page_alloc_failed, ec_buf); bio_copy_data(dst, src); bounce = true; } init_append_extent(op, wp, op->version, op->crc); goto do_write; } if (ec_buf || op->compression_opt || (op->csum_type && !(op->flags & BCH_WRITE_PAGES_STABLE)) || (bch2_csum_type_is_encryption(op->csum_type) && !(op->flags & BCH_WRITE_PAGES_OWNED))) { dst = bch2_write_bio_alloc(c, wp, src, &page_alloc_failed, ec_buf); bounce = true; } saved_iter = dst->bi_iter; do { struct bch_extent_crc_unpacked crc = { 0 }; struct bversion version = op->version; size_t dst_len = 0, src_len = 0; if (page_alloc_failed && dst->bi_iter.bi_size < (wp->sectors_free << 9) && dst->bi_iter.bi_size < c->opts.encoded_extent_max) break; BUG_ON(op->compression_opt && (op->flags & BCH_WRITE_DATA_ENCODED) && bch2_csum_type_is_encryption(op->crc.csum_type)); BUG_ON(op->compression_opt && !bounce); crc.compression_type = op->incompressible ? BCH_COMPRESSION_TYPE_incompressible : op->compression_opt ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, op->compression_opt) : 0; if (!crc_is_compressed(crc)) { dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); if (op->csum_type) dst_len = min_t(unsigned, dst_len, c->opts.encoded_extent_max); if (bounce) { swap(dst->bi_iter.bi_size, dst_len); bio_copy_data(dst, src); swap(dst->bi_iter.bi_size, dst_len); } src_len = dst_len; } BUG_ON(!src_len || !dst_len); if (bch2_csum_type_is_encryption(op->csum_type)) { if (bversion_zero(version)) { version.lo = atomic64_inc_return(&c->key_version); } else { crc.nonce = op->nonce; op->nonce += src_len >> 9; } } if ((op->flags & BCH_WRITE_DATA_ENCODED) && !crc_is_compressed(crc) && bch2_csum_type_is_encryption(op->crc.csum_type) == bch2_csum_type_is_encryption(op->csum_type)) { u8 compression_type = crc.compression_type; u16 nonce = crc.nonce; /* * Note: when we're using rechecksum(), we need to be * checksumming @src because it has all the data our * existing checksum covers - if we bounced (because we * were trying to compress), @dst will only have the * part of the data the new checksum will cover. * * But normally we want to be checksumming post bounce, * because part of the reason for bouncing is so the * data can't be modified (by userspace) while it's in * flight. */ if (bch2_rechecksum_bio(c, src, version, op->crc, &crc, &op->crc, src_len >> 9, bio_sectors(src) - (src_len >> 9), op->csum_type)) goto csum_err; /* * rchecksum_bio sets compression_type on crc from op->crc, * this isn't always correct as sometimes we're changing * an extent from uncompressed to incompressible. */ crc.compression_type = compression_type; crc.nonce = nonce; } else { if ((op->flags & BCH_WRITE_DATA_ENCODED) && bch2_rechecksum_bio(c, src, version, op->crc, NULL, &op->crc, src_len >> 9, bio_sectors(src) - (src_len >> 9), op->crc.csum_type)) goto csum_err; crc.compressed_size = dst_len >> 9; crc.uncompressed_size = src_len >> 9; crc.live_size = src_len >> 9; swap(dst->bi_iter.bi_size, dst_len); ret = bch2_encrypt_bio(c, op->csum_type, extent_nonce(version, crc), dst); if (ret) goto err; crc.csum = bch2_checksum_bio(c, op->csum_type, extent_nonce(version, crc), dst); crc.csum_type = op->csum_type; swap(dst->bi_iter.bi_size, dst_len); } init_append_extent(op, wp, version, crc); if (dst != src) bio_advance(dst, dst_len); bio_advance(src, src_len); total_output += dst_len; total_input += src_len; } while (dst->bi_iter.bi_size && src->bi_iter.bi_size && wp->sectors_free && !bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), BKEY_EXTENT_U64s_MAX)); more = src->bi_iter.bi_size != 0; dst->bi_iter = saved_iter; if (dst == src && more) { BUG_ON(total_output != total_input); dst = bio_split(src, total_input >> 9, GFP_NOFS, &c->bio_write); wbio_init(dst)->put_bio = true; /* copy WRITE_SYNC flag */ dst->bi_opf = src->bi_opf; } dst->bi_iter.bi_size = total_output; do_write: *_dst = dst; return more; csum_err: bch_err_inum_offset_ratelimited(c, op->pos.inode, op->pos.offset << 9, "%s write error: error verifying existing checksum while rewriting existing data (memory corruption?)", op->flags & BCH_WRITE_MOVE ? "move" : "user"); ret = -EIO; err: if (to_wbio(dst)->bounce) bch2_bio_free_pages_pool(c, dst); if (to_wbio(dst)->put_bio) bio_put(dst); return ret; } static bool bch2_extent_is_writeable(struct bch_write_op *op, struct bkey_s_c k) { struct bch_fs *c = op->c; struct bkey_s_c_extent e; struct extent_ptr_decoded p; const union bch_extent_entry *entry; unsigned replicas = 0; if (k.k->type != KEY_TYPE_extent) return false; e = bkey_s_c_to_extent(k); rcu_read_lock(); extent_for_each_ptr_decode(e, p, entry) { if (crc_is_encoded(p.crc) || p.has_ec) { rcu_read_unlock(); return false; } replicas += bch2_extent_ptr_durability(c, &p); } rcu_read_unlock(); return replicas >= op->opts.data_replicas; } static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *orig, struct bkey_s_c k, u64 new_i_size) { if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { /* trace this */ return 0; } struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); int ret = PTR_ERR_OR_ZERO(new); if (ret) return ret; bch2_cut_front(bkey_start_pos(&orig->k), new); bch2_cut_back(orig->k.p, new); struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); bkey_for_each_ptr(ptrs, ptr) ptr->unwritten = 0; /* * Note that we're not calling bch2_subvol_get_snapshot() in this path - * that was done when we kicked off the write, and here it's important * that we update the extent that we wrote to - even if a snapshot has * since been created. The write is still outstanding, so we're ok * w.r.t. snapshot atomicity: */ return bch2_extent_update_i_size_sectors(trans, iter, min(new->k.p.offset << 9, new_i_size), 0) ?: bch2_trans_update(trans, iter, new, BTREE_UPDATE_internal_snapshot_node); } static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) { struct bch_fs *c = op->c; struct btree_trans *trans = bch2_trans_get(c); for_each_keylist_key(&op->insert_keys, orig) { int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents, bkey_start_pos(&orig->k), orig->k.p, BTREE_ITER_intent, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); })); if (ret && !bch2_err_matches(ret, EROFS)) { struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); bch_err_inum_offset_ratelimited(c, insert->k.p.inode, insert->k.p.offset << 9, "%s write error while doing btree update: %s", op->flags & BCH_WRITE_MOVE ? "move" : "user", bch2_err_str(ret)); } if (ret) { op->error = ret; break; } } bch2_trans_put(trans); } static void __bch2_nocow_write_done(struct bch_write_op *op) { if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { op->error = -EIO; } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN)) bch2_nocow_write_convert_unwritten(op); } static CLOSURE_CALLBACK(bch2_nocow_write_done) { closure_type(op, struct bch_write_op, cl); __bch2_nocow_write_done(op); bch2_write_done(cl); } struct bucket_to_lock { struct bpos b; unsigned gen; struct nocow_lock_bucket *l; }; static void bch2_nocow_write(struct bch_write_op *op) { struct bch_fs *c = op->c; struct btree_trans *trans; struct btree_iter iter; struct bkey_s_c k; DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets; u32 snapshot; struct bucket_to_lock *stale_at; int stale, ret; if (op->flags & BCH_WRITE_MOVE) return; darray_init(&buckets); trans = bch2_trans_get(c); retry: bch2_trans_begin(trans); ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); if (unlikely(ret)) goto err; bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, SPOS(op->pos.inode, op->pos.offset, snapshot), BTREE_ITER_slots); while (1) { struct bio *bio = &op->wbio.bio; buckets.nr = 0; ret = bch2_trans_relock(trans); if (ret) break; k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) break; /* fall back to normal cow write path? */ if (unlikely(k.k->p.snapshot != snapshot || !bch2_extent_is_writeable(op, k))) break; if (bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), k.k->u64s)) break; /* Get iorefs before dropping btree locks: */ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE); if (unlikely(!ca)) goto err_get_ioref; struct bpos b = PTR_BUCKET_POS(ca, ptr); struct nocow_lock_bucket *l = bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b)); prefetch(l); /* XXX allocating memory with btree locks held - rare */ darray_push_gfp(&buckets, ((struct bucket_to_lock) { .b = b, .gen = ptr->gen, .l = l, }), GFP_KERNEL|__GFP_NOFAIL); if (ptr->unwritten) op->flags |= BCH_WRITE_CONVERT_UNWRITTEN; } /* Unlock before taking nocow locks, doing IO: */ bkey_reassemble(op->insert_keys.top, k); bch2_trans_unlock(trans); bch2_cut_front(op->pos, op->insert_keys.top); if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN) bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); darray_for_each(buckets, i) { struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode); __bch2_bucket_nocow_lock(&c->nocow_locks, i->l, bucket_to_u64(i->b), BUCKET_NOCOW_LOCK_UPDATE); rcu_read_lock(); u8 *gen = bucket_gen(ca, i->b.offset); stale = !gen ? -1 : gen_after(*gen, i->gen); rcu_read_unlock(); if (unlikely(stale)) { stale_at = i; goto err_bucket_stale; } } bio = &op->wbio.bio; if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { bio = bio_split(bio, k.k->p.offset - op->pos.offset, GFP_KERNEL, &c->bio_write); wbio_init(bio)->put_bio = true; bio->bi_opf = op->wbio.bio.bi_opf; } else { op->flags |= BCH_WRITE_SUBMITTED; } op->pos.offset += bio_sectors(bio); op->written += bio_sectors(bio); bio->bi_end_io = bch2_write_endio; bio->bi_private = &op->cl; bio->bi_opf |= REQ_OP_WRITE; closure_get(&op->cl); bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, op->insert_keys.top, true); bch2_keylist_push(&op->insert_keys); if (op->flags & BCH_WRITE_SUBMITTED) break; bch2_btree_iter_advance(&iter); } out: bch2_trans_iter_exit(trans, &iter); err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; if (ret) { bch_err_inum_offset_ratelimited(c, op->pos.inode, op->pos.offset << 9, "%s: btree lookup error %s", __func__, bch2_err_str(ret)); op->error = ret; op->flags |= BCH_WRITE_SUBMITTED; } bch2_trans_put(trans); darray_exit(&buckets); /* fallback to cow write path? */ if (!(op->flags & BCH_WRITE_SUBMITTED)) { closure_sync(&op->cl); __bch2_nocow_write_done(op); op->insert_keys.top = op->insert_keys.keys; } else if (op->flags & BCH_WRITE_SYNC) { closure_sync(&op->cl); bch2_nocow_write_done(&op->cl.work); } else { /* * XXX * needs to run out of process context because ei_quota_lock is * a mutex */ continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); } return; err_get_ioref: darray_for_each(buckets, i) percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref); /* Fall back to COW path: */ goto out; err_bucket_stale: darray_for_each(buckets, i) { bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE); if (i == stale_at) break; } struct printbuf buf = PRINTBUF; if (bch2_fs_inconsistent_on(stale < 0, c, "pointer to invalid bucket in nocow path on device %llu\n %s", stale_at->b.inode, (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ret = -EIO; } else { /* We can retry this: */ ret = -BCH_ERR_transaction_restart; } printbuf_exit(&buf); goto err_get_ioref; } static void __bch2_write(struct bch_write_op *op) { struct bch_fs *c = op->c; struct write_point *wp = NULL; struct bio *bio = NULL; unsigned nofs_flags; int ret; nofs_flags = memalloc_nofs_save(); if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { bch2_nocow_write(op); if (op->flags & BCH_WRITE_SUBMITTED) goto out_nofs_restore; } again: memset(&op->failed, 0, sizeof(op->failed)); do { struct bkey_i *key_to_write; unsigned key_to_write_offset = op->insert_keys.top_p - op->insert_keys.keys_p; /* +1 for possible cache device: */ if (op->open_buckets.nr + op->nr_replicas + 1 > ARRAY_SIZE(op->open_buckets.v)) break; if (bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), BKEY_EXTENT_U64s_MAX)) break; /* * The copygc thread is now global, which means it's no longer * freeing up space on specific disks, which means that * allocations for specific disks may hang arbitrarily long: */ ret = bch2_trans_do(c, NULL, NULL, 0, bch2_alloc_sectors_start_trans(trans, op->target, op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED), op->write_point, &op->devs_have, op->nr_replicas, op->nr_replicas_required, op->watermark, op->flags, &op->cl, &wp)); if (unlikely(ret)) { if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) break; goto err; } EBUG_ON(!wp); bch2_open_bucket_get(c, wp, &op->open_buckets); ret = bch2_write_extent(op, wp, &bio); bch2_alloc_sectors_done_inlined(c, wp); err: if (ret <= 0) { op->flags |= BCH_WRITE_SUBMITTED; if (ret < 0) { if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT)) bch_err_inum_offset_ratelimited(c, op->pos.inode, op->pos.offset << 9, "%s(): %s error: %s", __func__, op->flags & BCH_WRITE_MOVE ? "move" : "user", bch2_err_str(ret)); op->error = ret; break; } } bio->bi_end_io = bch2_write_endio; bio->bi_private = &op->cl; bio->bi_opf |= REQ_OP_WRITE; closure_get(bio->bi_private); key_to_write = (void *) (op->insert_keys.keys_p + key_to_write_offset); bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, key_to_write, false); } while (ret); /* * Sync or no? * * If we're running asynchronously, wne may still want to block * synchronously here if we weren't able to submit all of the IO at * once, as that signals backpressure to the caller. */ if ((op->flags & BCH_WRITE_SYNC) || (!(op->flags & BCH_WRITE_SUBMITTED) && !(op->flags & BCH_WRITE_IN_WORKER))) { bch2_wait_on_allocator(c, &op->cl); __bch2_write_index(op); if (!(op->flags & BCH_WRITE_SUBMITTED)) goto again; bch2_write_done(&op->cl); } else { bch2_write_queue(op, wp); continue_at(&op->cl, bch2_write_index, NULL); } out_nofs_restore: memalloc_nofs_restore(nofs_flags); } static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) { struct bio *bio = &op->wbio.bio; struct bvec_iter iter; struct bkey_i_inline_data *id; unsigned sectors; int ret; memset(&op->failed, 0, sizeof(op->failed)); op->flags |= BCH_WRITE_WROTE_DATA_INLINE; op->flags |= BCH_WRITE_SUBMITTED; bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), BKEY_U64s + DIV_ROUND_UP(data_len, 8)); if (ret) { op->error = ret; goto err; } sectors = bio_sectors(bio); op->pos.offset += sectors; id = bkey_inline_data_init(op->insert_keys.top); id->k.p = op->pos; id->k.bversion = op->version; id->k.size = sectors; iter = bio->bi_iter; iter.bi_size = data_len; memcpy_from_bio(id->v.data, bio, iter); while (data_len & 7) id->v.data[data_len++] = '\0'; set_bkey_val_bytes(&id->k, data_len); bch2_keylist_push(&op->insert_keys); __bch2_write_index(op); err: bch2_write_done(&op->cl); } /** * bch2_write() - handle a write to a cache device or flash only volume * @cl: &bch_write_op->cl * * This is the starting point for any data to end up in a cache device; it could * be from a normal write, or a writeback write, or a write to a flash only * volume - it's also used by the moving garbage collector to compact data in * mostly empty buckets. * * It first writes the data to the cache, creating a list of keys to be inserted * (if the data won't fit in a single open bucket, there will be multiple keys); * after the data is written it calls bch_journal, and after the keys have been * added to the next journal write they're inserted into the btree. * * If op->discard is true, instead of inserting the data it invalidates the * region of the cache represented by op->bio and op->inode. */ CLOSURE_CALLBACK(bch2_write) { closure_type(op, struct bch_write_op, cl); struct bio *bio = &op->wbio.bio; struct bch_fs *c = op->c; unsigned data_len; EBUG_ON(op->cl.parent); BUG_ON(!op->nr_replicas); BUG_ON(!op->write_point.v); BUG_ON(bkey_eq(op->pos, POS_MAX)); if (op->flags & BCH_WRITE_ONLY_SPECIFIED_DEVS) op->flags |= BCH_WRITE_ALLOC_NOWAIT; op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas); op->start_time = local_clock(); bch2_keylist_init(&op->insert_keys, op->inline_keys); wbio_init(bio)->put_bio = false; if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) { bch_err_inum_offset_ratelimited(c, op->pos.inode, op->pos.offset << 9, "%s write error: misaligned write", op->flags & BCH_WRITE_MOVE ? "move" : "user"); op->error = -EIO; goto err; } if (c->opts.nochanges) { op->error = -BCH_ERR_erofs_no_writes; goto err; } if (!(op->flags & BCH_WRITE_MOVE) && !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { op->error = -BCH_ERR_erofs_no_writes; goto err; } this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); bch2_increment_clock(c, bio_sectors(bio), WRITE); data_len = min_t(u64, bio->bi_iter.bi_size, op->new_i_size - (op->pos.offset << 9)); if (c->opts.inline_data && data_len <= min(block_bytes(c) / 2, 1024U)) { bch2_write_data_inline(op, data_len); return; } __bch2_write(op); return; err: bch2_disk_reservation_put(c, &op->res); closure_debug_destroy(&op->cl); if (op->end_io) op->end_io(op); } static const char * const bch2_write_flags[] = { #define x(f) #f, BCH_WRITE_FLAGS() #undef x NULL }; void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) { prt_str(out, "pos: "); bch2_bpos_to_text(out, op->pos); prt_newline(out); printbuf_indent_add(out, 2); prt_str(out, "started: "); bch2_pr_time_units(out, local_clock() - op->start_time); prt_newline(out); prt_str(out, "flags: "); prt_bitflags(out, bch2_write_flags, op->flags); prt_newline(out); prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl)); printbuf_indent_sub(out, 2); } void bch2_fs_io_write_exit(struct bch_fs *c) { mempool_exit(&c->bio_bounce_pages); bioset_exit(&c->replica_set); bioset_exit(&c->bio_write); } int bch2_fs_io_write_init(struct bch_fs *c) { if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) || bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0)) return -BCH_ERR_ENOMEM_bio_write_init; if (mempool_init_page_pool(&c->bio_bounce_pages, max_t(unsigned, c->opts.btree_node_size, c->opts.encoded_extent_max) / PAGE_SIZE, 0)) return -BCH_ERR_ENOMEM_bio_bounce_pages_init; return 0; }