#include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_MMU_GATHER_NO_GATHER static bool tlb_next_batch(struct mmu_gather *tlb) { struct mmu_gather_batch *batch; /* No more batching if we have delayed rmaps pending */ if (tlb->delayed_rmap) return false; batch = tlb->active; if (batch->next) { tlb->active = batch->next; return true; } if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) return false; batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); if (!batch) return false; tlb->batch_count++; batch->next = NULL; batch->nr = 0; batch->max = MAX_GATHER_BATCH; tlb->active->next = batch; tlb->active = batch; return true; } #ifdef CONFIG_SMP /** * tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB * @tlb: the current mmu_gather * * Note that because of how tlb_next_batch() above works, we will * never start new batches with pending delayed rmaps, so we only * need to walk through the current active batch. */ void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { struct mmu_gather_batch *batch; batch = tlb->active; for (int i = 0; i < batch->nr; i++) { struct encoded_page *enc = batch->encoded_pages[i]; if (encoded_page_flags(enc)) { struct page *page = encoded_page_ptr(enc); page_remove_rmap(page, vma, false); } } tlb->delayed_rmap = 0; } #endif static void tlb_batch_pages_flush(struct mmu_gather *tlb) { struct mmu_gather_batch *batch; for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { struct encoded_page **pages = batch->encoded_pages; do { /* * limit free batch count when PAGE_SIZE > 4K */ unsigned int nr = min(512U, batch->nr); free_pages_and_swap_cache(pages, nr); pages += nr; batch->nr -= nr; cond_resched(); } while (batch->nr); } tlb->active = &tlb->local; } static void tlb_batch_list_free(struct mmu_gather *tlb) { struct mmu_gather_batch *batch, *next; for (batch = tlb->local.next; batch; batch = next) { next = batch->next; free_pages((unsigned long)batch, 0); } tlb->local.next = NULL; } bool __tlb_remove_page_size(struct mmu_gather *tlb, struct encoded_page *page, int page_size) { struct mmu_gather_batch *batch; VM_BUG_ON(!tlb->end); #ifdef CONFIG_MMU_GATHER_PAGE_SIZE VM_WARN_ON(tlb->page_size != page_size); #endif batch = tlb->active; /* * Add the page and check if we are full. If so * force a flush. */ batch->encoded_pages[batch->nr++] = page; if (batch->nr == batch->max) { if (!tlb_next_batch(tlb)) return true; batch = tlb->active; } VM_BUG_ON_PAGE(batch->nr > batch->max, encoded_page_ptr(page)); return false; } #endif /* MMU_GATHER_NO_GATHER */ #ifdef CONFIG_MMU_GATHER_TABLE_FREE static void __tlb_remove_table_free(struct mmu_table_batch *batch) { int i; for (i = 0; i < batch->nr; i++) __tlb_remove_table(batch->tables[i]); free_page((unsigned long)batch); } #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE /* * Semi RCU freeing of the page directories. * * This is needed by some architectures to implement software pagetable walkers. * * gup_fast() and other software pagetable walkers do a lockless page-table * walk and therefore needs some synchronization with the freeing of the page * directories. The chosen means to accomplish that is by disabling IRQs over * the walk. * * Architectures that use IPIs to flush TLBs will then automagically DTRT, * since we unlink the page, flush TLBs, free the page. Since the disabling of * IRQs delays the completion of the TLB flush we can never observe an already * freed page. * * Architectures that do not have this (PPC) need to delay the freeing by some * other means, this is that means. * * What we do is batch the freed directory pages (tables) and RCU free them. * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling * holds off grace periods. * * However, in order to batch these pages we need to allocate storage, this * allocation is deep inside the MM code and can thus easily fail on memory * pressure. To guarantee progress we fall back to single table freeing, see * the implementation of tlb_remove_table_one(). * */ static void tlb_remove_table_smp_sync(void *arg) { /* Simply deliver the interrupt */ } void tlb_remove_table_sync_one(void) { /* * This isn't an RCU grace period and hence the page-tables cannot be * assumed to be actually RCU-freed. * * It is however sufficient for software page-table walkers that rely on * IRQ disabling. */ smp_call_function(tlb_remove_table_smp_sync, NULL, 1); } static void tlb_remove_table_rcu(struct rcu_head *head) { __tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu)); } static void tlb_remove_table_free(struct mmu_table_batch *batch) { call_rcu(&batch->rcu, tlb_remove_table_rcu); } #else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */ static void tlb_remove_table_free(struct mmu_table_batch *batch) { __tlb_remove_table_free(batch); } #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ /* * If we want tlb_remove_table() to imply TLB invalidates. */ static inline void tlb_table_invalidate(struct mmu_gather *tlb) { if (tlb_needs_table_invalidate()) { /* * Invalidate page-table caches used by hardware walkers. Then * we still need to RCU-sched wait while freeing the pages * because software walkers can still be in-flight. */ tlb_flush_mmu_tlbonly(tlb); } } static void tlb_remove_table_one(void *table) { tlb_remove_table_sync_one(); __tlb_remove_table(table); } static void tlb_table_flush(struct mmu_gather *tlb) { struct mmu_table_batch **batch = &tlb->batch; if (*batch) { tlb_table_invalidate(tlb); tlb_remove_table_free(*batch); *batch = NULL; } } void tlb_remove_table(struct mmu_gather *tlb, void *table) { struct mmu_table_batch **batch = &tlb->batch; if (*batch == NULL) { *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); if (*batch == NULL) { tlb_table_invalidate(tlb); tlb_remove_table_one(table); return; } (*batch)->nr = 0; } (*batch)->tables[(*batch)->nr++] = table; if ((*batch)->nr == MAX_TABLE_BATCH) tlb_table_flush(tlb); } static inline void tlb_table_init(struct mmu_gather *tlb) { tlb->batch = NULL; } #else /* !CONFIG_MMU_GATHER_TABLE_FREE */ static inline void tlb_table_flush(struct mmu_gather *tlb) { } static inline void tlb_table_init(struct mmu_gather *tlb) { } #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ static void tlb_flush_mmu_free(struct mmu_gather *tlb) { tlb_table_flush(tlb); #ifndef CONFIG_MMU_GATHER_NO_GATHER tlb_batch_pages_flush(tlb); #endif } void tlb_flush_mmu(struct mmu_gather *tlb) { tlb_flush_mmu_tlbonly(tlb); tlb_flush_mmu_free(tlb); } static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) { /* * struct mmu_gather contains 7 1-bit fields packed into a 32-bit * unsigned int value. The remaining 25 bits remain uninitialized * and are never used, but KMSAN updates the origin for them in * zap_pXX_range() in mm/memory.c, thus creating very long origin * chains. This is technically correct, but consumes too much memory. * Unpoisoning the whole structure will prevent creating such chains. */ kmsan_unpoison_memory(tlb, sizeof(*tlb)); tlb->mm = mm; tlb->fullmm = fullmm; #ifndef CONFIG_MMU_GATHER_NO_GATHER tlb->need_flush_all = 0; tlb->local.next = NULL; tlb->local.nr = 0; tlb->local.max = ARRAY_SIZE(tlb->__pages); tlb->active = &tlb->local; tlb->batch_count = 0; #endif tlb->delayed_rmap = 0; tlb_table_init(tlb); #ifdef CONFIG_MMU_GATHER_PAGE_SIZE tlb->page_size = 0; #endif __tlb_reset_range(tlb); inc_tlb_flush_pending(tlb->mm); } /** * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down * @tlb: the mmu_gather structure to initialize * @mm: the mm_struct of the target address space * * Called to initialize an (on-stack) mmu_gather structure for page-table * tear-down from @mm. */ void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm) { __tlb_gather_mmu(tlb, mm, false); } /** * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down * @tlb: the mmu_gather structure to initialize * @mm: the mm_struct of the target address space * * In this case, @mm is without users and we're going to destroy the * full address space (exit/execve). * * Called to initialize an (on-stack) mmu_gather structure for page-table * tear-down from @mm. */ void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm) { __tlb_gather_mmu(tlb, mm, true); } /** * tlb_finish_mmu - finish an mmu_gather structure * @tlb: the mmu_gather structure to finish * * Called at the end of the shootdown operation to free up any resources that * were required. */ void tlb_finish_mmu(struct mmu_gather *tlb) { /* * If there are parallel threads are doing PTE changes on same range * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB * flush by batching, one thread may end up seeing inconsistent PTEs * and result in having stale TLB entries. So flush TLB forcefully * if we detect parallel PTE batching threads. * * However, some syscalls, e.g. munmap(), may free page tables, this * needs force flush everything in the given range. Otherwise this * may result in having stale TLB entries for some architectures, * e.g. aarch64, that could specify flush what level TLB. */ if (mm_tlb_flush_nested(tlb->mm)) { /* * The aarch64 yields better performance with fullmm by * avoiding multiple CPUs spamming TLBI messages at the * same time. * * On x86 non-fullmm doesn't yield significant difference * against fullmm. */ tlb->fullmm = 1; __tlb_reset_range(tlb); tlb->freed_tables = 1; } tlb_flush_mmu(tlb); #ifndef CONFIG_MMU_GATHER_NO_GATHER tlb_batch_list_free(tlb); #endif dec_tlb_flush_pending(tlb->mm); }