/* SPDX-License-Identifier: GPL-2.0 */ /* * Thunderbolt driver - bus logic (NHI independent) * * Copyright (c) 2014 Andreas Noever * Copyright (C) 2018, Intel Corporation */ #ifndef TB_H_ #define TB_H_ #include #include #include #include #include "tb_regs.h" #include "ctl.h" #include "dma_port.h" #define NVM_MIN_SIZE SZ_32K #define NVM_MAX_SIZE SZ_512K /* Intel specific NVM offsets */ #define NVM_DEVID 0x05 #define NVM_VERSION 0x08 #define NVM_FLASH_SIZE 0x45 /** * struct tb_nvm - Structure holding NVM information * @dev: Owner of the NVM * @major: Major version number of the active NVM portion * @minor: Minor version number of the active NVM portion * @id: Identifier used with both NVM portions * @active: Active portion NVMem device * @non_active: Non-active portion NVMem device * @buf: Buffer where the NVM image is stored before it is written to * the actual NVM flash device * @buf_data_size: Number of bytes actually consumed by the new NVM * image * @authenticating: The device is authenticating the new NVM * @flushed: The image has been flushed to the storage area * * The user of this structure needs to handle serialization of possible * concurrent access. */ struct tb_nvm { struct device *dev; u8 major; u8 minor; int id; struct nvmem_device *active; struct nvmem_device *non_active; void *buf; size_t buf_data_size; bool authenticating; bool flushed; }; #define TB_SWITCH_KEY_SIZE 32 #define TB_SWITCH_MAX_DEPTH 6 #define USB4_SWITCH_MAX_DEPTH 5 /** * enum tb_switch_tmu_rate - TMU refresh rate * @TB_SWITCH_TMU_RATE_OFF: %0 (Disable Time Sync handshake) * @TB_SWITCH_TMU_RATE_HIFI: %16 us time interval between successive * transmission of the Delay Request TSNOS * (Time Sync Notification Ordered Set) on a Link * @TB_SWITCH_TMU_RATE_NORMAL: %1 ms time interval between successive * transmission of the Delay Request TSNOS on * a Link */ enum tb_switch_tmu_rate { TB_SWITCH_TMU_RATE_OFF = 0, TB_SWITCH_TMU_RATE_HIFI = 16, TB_SWITCH_TMU_RATE_NORMAL = 1000, }; /** * struct tb_switch_tmu - Structure holding switch TMU configuration * @cap: Offset to the TMU capability (%0 if not found) * @has_ucap: Does the switch support uni-directional mode * @rate: TMU refresh rate related to upstream switch. In case of root * switch this holds the domain rate. * @unidirectional: Is the TMU in uni-directional or bi-directional mode * related to upstream switch. Don't case for root switch. */ struct tb_switch_tmu { int cap; bool has_ucap; enum tb_switch_tmu_rate rate; bool unidirectional; }; /** * struct tb_switch - a thunderbolt switch * @dev: Device for the switch * @config: Switch configuration * @ports: Ports in this switch * @dma_port: If the switch has port supporting DMA configuration based * mailbox this will hold the pointer to that (%NULL * otherwise). If set it also means the switch has * upgradeable NVM. * @tmu: The switch TMU configuration * @tb: Pointer to the domain the switch belongs to * @uid: Unique ID of the switch * @uuid: UUID of the switch (or %NULL if not supported) * @vendor: Vendor ID of the switch * @device: Device ID of the switch * @vendor_name: Name of the vendor (or %NULL if not known) * @device_name: Name of the device (or %NULL if not known) * @link_speed: Speed of the link in Gb/s * @link_width: Width of the link (1 or 2) * @link_usb4: Upstream link is USB4 * @generation: Switch Thunderbolt generation * @cap_plug_events: Offset to the plug events capability (%0 if not found) * @cap_lc: Offset to the link controller capability (%0 if not found) * @is_unplugged: The switch is going away * @drom: DROM of the switch (%NULL if not found) * @nvm: Pointer to the NVM if the switch has one (%NULL otherwise) * @no_nvm_upgrade: Prevent NVM upgrade of this switch * @safe_mode: The switch is in safe-mode * @boot: Whether the switch was already authorized on boot or not * @rpm: The switch supports runtime PM * @authorized: Whether the switch is authorized by user or policy * @security_level: Switch supported security level * @key: Contains the key used to challenge the device or %NULL if not * supported. Size of the key is %TB_SWITCH_KEY_SIZE. * @connection_id: Connection ID used with ICM messaging * @connection_key: Connection key used with ICM messaging * @link: Root switch link this switch is connected (ICM only) * @depth: Depth in the chain this switch is connected (ICM only) * @rpm_complete: Completion used to wait for runtime resume to * complete (ICM only) * @quirks: Quirks used for this Thunderbolt switch * * When the switch is being added or removed to the domain (other * switches) you need to have domain lock held. */ struct tb_switch { struct device dev; struct tb_regs_switch_header config; struct tb_port *ports; struct tb_dma_port *dma_port; struct tb_switch_tmu tmu; struct tb *tb; u64 uid; uuid_t *uuid; u16 vendor; u16 device; const char *vendor_name; const char *device_name; unsigned int link_speed; unsigned int link_width; bool link_usb4; unsigned int generation; int cap_plug_events; int cap_lc; bool is_unplugged; u8 *drom; struct tb_nvm *nvm; bool no_nvm_upgrade; bool safe_mode; bool boot; bool rpm; unsigned int authorized; enum tb_security_level security_level; u8 *key; u8 connection_id; u8 connection_key; u8 link; u8 depth; struct completion rpm_complete; unsigned long quirks; }; /** * struct tb_port - a thunderbolt port, part of a tb_switch * @config: Cached port configuration read from registers * @sw: Switch the port belongs to * @remote: Remote port (%NULL if not connected) * @xdomain: Remote host (%NULL if not connected) * @cap_phy: Offset, zero if not found * @cap_tmu: Offset of the adapter specific TMU capability (%0 if not present) * @cap_adap: Offset of the adapter specific capability (%0 if not present) * @cap_usb4: Offset to the USB4 port capability (%0 if not present) * @port: Port number on switch * @disabled: Disabled by eeprom * @bonded: true if the port is bonded (two lanes combined as one) * @dual_link_port: If the switch is connected using two ports, points * to the other port. * @link_nr: Is this primary or secondary port on the dual_link. * @in_hopids: Currently allocated input HopIDs * @out_hopids: Currently allocated output HopIDs * @list: Used to link ports to DP resources list */ struct tb_port { struct tb_regs_port_header config; struct tb_switch *sw; struct tb_port *remote; struct tb_xdomain *xdomain; int cap_phy; int cap_tmu; int cap_adap; int cap_usb4; u8 port; bool disabled; bool bonded; struct tb_port *dual_link_port; u8 link_nr:1; struct ida in_hopids; struct ida out_hopids; struct list_head list; }; /** * tb_retimer: Thunderbolt retimer * @dev: Device for the retimer * @tb: Pointer to the domain the retimer belongs to * @index: Retimer index facing the router USB4 port * @vendor: Vendor ID of the retimer * @device: Device ID of the retimer * @port: Pointer to the lane 0 adapter * @nvm: Pointer to the NVM if the retimer has one (%NULL otherwise) * @auth_status: Status of last NVM authentication */ struct tb_retimer { struct device dev; struct tb *tb; u8 index; u32 vendor; u32 device; struct tb_port *port; struct tb_nvm *nvm; u32 auth_status; }; /** * struct tb_path_hop - routing information for a tb_path * @in_port: Ingress port of a switch * @out_port: Egress port of a switch where the packet is routed out * (must be on the same switch than @in_port) * @in_hop_index: HopID where the path configuration entry is placed in * the path config space of @in_port. * @in_counter_index: Used counter index (not used in the driver * currently, %-1 to disable) * @next_hop_index: HopID of the packet when it is routed out from @out_port * @initial_credits: Number of initial flow control credits allocated for * the path * * Hop configuration is always done on the IN port of a switch. * in_port and out_port have to be on the same switch. Packets arriving on * in_port with "hop" = in_hop_index will get routed to through out_port. The * next hop to take (on out_port->remote) is determined by * next_hop_index. When routing packet to another switch (out->remote is * set) the @next_hop_index must match the @in_hop_index of that next * hop to make routing possible. * * in_counter_index is the index of a counter (in TB_CFG_COUNTERS) on the in * port. */ struct tb_path_hop { struct tb_port *in_port; struct tb_port *out_port; int in_hop_index; int in_counter_index; int next_hop_index; unsigned int initial_credits; }; /** * enum tb_path_port - path options mask * @TB_PATH_NONE: Do not activate on any hop on path * @TB_PATH_SOURCE: Activate on the first hop (out of src) * @TB_PATH_INTERNAL: Activate on the intermediate hops (not the first/last) * @TB_PATH_DESTINATION: Activate on the last hop (into dst) * @TB_PATH_ALL: Activate on all hops on the path */ enum tb_path_port { TB_PATH_NONE = 0, TB_PATH_SOURCE = 1, TB_PATH_INTERNAL = 2, TB_PATH_DESTINATION = 4, TB_PATH_ALL = 7, }; /** * struct tb_path - a unidirectional path between two ports * @tb: Pointer to the domain structure * @name: Name of the path (used for debugging) * @nfc_credits: Number of non flow controlled credits allocated for the path * @ingress_shared_buffer: Shared buffering used for ingress ports on the path * @egress_shared_buffer: Shared buffering used for egress ports on the path * @ingress_fc_enable: Flow control for ingress ports on the path * @egress_fc_enable: Flow control for egress ports on the path * @priority: Priority group if the path * @weight: Weight of the path inside the priority group * @drop_packages: Drop packages from queue tail or head * @activated: Is the path active * @clear_fc: Clear all flow control from the path config space entries * when deactivating this path * @hops: Path hops * @path_length: How many hops the path uses * * A path consists of a number of hops (see &struct tb_path_hop). To * establish a PCIe tunnel two paths have to be created between the two * PCIe ports. */ struct tb_path { struct tb *tb; const char *name; int nfc_credits; enum tb_path_port ingress_shared_buffer; enum tb_path_port egress_shared_buffer; enum tb_path_port ingress_fc_enable; enum tb_path_port egress_fc_enable; unsigned int priority:3; int weight:4; bool drop_packages; bool activated; bool clear_fc; struct tb_path_hop *hops; int path_length; }; /* HopIDs 0-7 are reserved by the Thunderbolt protocol */ #define TB_PATH_MIN_HOPID 8 /* * Support paths from the farthest (depth 6) router to the host and back * to the same level (not necessarily to the same router). */ #define TB_PATH_MAX_HOPS (7 * 2) /** * struct tb_cm_ops - Connection manager specific operations vector * @driver_ready: Called right after control channel is started. Used by * ICM to send driver ready message to the firmware. * @start: Starts the domain * @stop: Stops the domain * @suspend_noirq: Connection manager specific suspend_noirq * @resume_noirq: Connection manager specific resume_noirq * @suspend: Connection manager specific suspend * @complete: Connection manager specific complete * @runtime_suspend: Connection manager specific runtime_suspend * @runtime_resume: Connection manager specific runtime_resume * @runtime_suspend_switch: Runtime suspend a switch * @runtime_resume_switch: Runtime resume a switch * @handle_event: Handle thunderbolt event * @get_boot_acl: Get boot ACL list * @set_boot_acl: Set boot ACL list * @approve_switch: Approve switch * @add_switch_key: Add key to switch * @challenge_switch_key: Challenge switch using key * @disconnect_pcie_paths: Disconnects PCIe paths before NVM update * @approve_xdomain_paths: Approve (establish) XDomain DMA paths * @disconnect_xdomain_paths: Disconnect XDomain DMA paths */ struct tb_cm_ops { int (*driver_ready)(struct tb *tb); int (*start)(struct tb *tb); void (*stop)(struct tb *tb); int (*suspend_noirq)(struct tb *tb); int (*resume_noirq)(struct tb *tb); int (*suspend)(struct tb *tb); void (*complete)(struct tb *tb); int (*runtime_suspend)(struct tb *tb); int (*runtime_resume)(struct tb *tb); int (*runtime_suspend_switch)(struct tb_switch *sw); int (*runtime_resume_switch)(struct tb_switch *sw); void (*handle_event)(struct tb *tb, enum tb_cfg_pkg_type, const void *buf, size_t size); int (*get_boot_acl)(struct tb *tb, uuid_t *uuids, size_t nuuids); int (*set_boot_acl)(struct tb *tb, const uuid_t *uuids, size_t nuuids); int (*approve_switch)(struct tb *tb, struct tb_switch *sw); int (*add_switch_key)(struct tb *tb, struct tb_switch *sw); int (*challenge_switch_key)(struct tb *tb, struct tb_switch *sw, const u8 *challenge, u8 *response); int (*disconnect_pcie_paths)(struct tb *tb); int (*approve_xdomain_paths)(struct tb *tb, struct tb_xdomain *xd); int (*disconnect_xdomain_paths)(struct tb *tb, struct tb_xdomain *xd); }; static inline void *tb_priv(struct tb *tb) { return (void *)tb->privdata; } #define TB_AUTOSUSPEND_DELAY 15000 /* ms */ /* helper functions & macros */ /** * tb_upstream_port() - return the upstream port of a switch * * Every switch has an upstream port (for the root switch it is the NHI). * * During switch alloc/init tb_upstream_port()->remote may be NULL, even for * non root switches (on the NHI port remote is always NULL). * * Return: Returns the upstream port of the switch. */ static inline struct tb_port *tb_upstream_port(struct tb_switch *sw) { return &sw->ports[sw->config.upstream_port_number]; } /** * tb_is_upstream_port() - Is the port upstream facing * @port: Port to check * * Returns true if @port is upstream facing port. In case of dual link * ports both return true. */ static inline bool tb_is_upstream_port(const struct tb_port *port) { const struct tb_port *upstream_port = tb_upstream_port(port->sw); return port == upstream_port || port->dual_link_port == upstream_port; } static inline u64 tb_route(const struct tb_switch *sw) { return ((u64) sw->config.route_hi) << 32 | sw->config.route_lo; } static inline struct tb_port *tb_port_at(u64 route, struct tb_switch *sw) { u8 port; port = route >> (sw->config.depth * 8); if (WARN_ON(port > sw->config.max_port_number)) return NULL; return &sw->ports[port]; } /** * tb_port_has_remote() - Does the port have switch connected downstream * @port: Port to check * * Returns true only when the port is primary port and has remote set. */ static inline bool tb_port_has_remote(const struct tb_port *port) { if (tb_is_upstream_port(port)) return false; if (!port->remote) return false; if (port->dual_link_port && port->link_nr) return false; return true; } static inline bool tb_port_is_null(const struct tb_port *port) { return port && port->port && port->config.type == TB_TYPE_PORT; } static inline bool tb_port_is_pcie_down(const struct tb_port *port) { return port && port->config.type == TB_TYPE_PCIE_DOWN; } static inline bool tb_port_is_pcie_up(const struct tb_port *port) { return port && port->config.type == TB_TYPE_PCIE_UP; } static inline bool tb_port_is_dpin(const struct tb_port *port) { return port && port->config.type == TB_TYPE_DP_HDMI_IN; } static inline bool tb_port_is_dpout(const struct tb_port *port) { return port && port->config.type == TB_TYPE_DP_HDMI_OUT; } static inline bool tb_port_is_usb3_down(const struct tb_port *port) { return port && port->config.type == TB_TYPE_USB3_DOWN; } static inline bool tb_port_is_usb3_up(const struct tb_port *port) { return port && port->config.type == TB_TYPE_USB3_UP; } static inline int tb_sw_read(struct tb_switch *sw, void *buffer, enum tb_cfg_space space, u32 offset, u32 length) { if (sw->is_unplugged) return -ENODEV; return tb_cfg_read(sw->tb->ctl, buffer, tb_route(sw), 0, space, offset, length); } static inline int tb_sw_write(struct tb_switch *sw, const void *buffer, enum tb_cfg_space space, u32 offset, u32 length) { if (sw->is_unplugged) return -ENODEV; return tb_cfg_write(sw->tb->ctl, buffer, tb_route(sw), 0, space, offset, length); } static inline int tb_port_read(struct tb_port *port, void *buffer, enum tb_cfg_space space, u32 offset, u32 length) { if (port->sw->is_unplugged) return -ENODEV; return tb_cfg_read(port->sw->tb->ctl, buffer, tb_route(port->sw), port->port, space, offset, length); } static inline int tb_port_write(struct tb_port *port, const void *buffer, enum tb_cfg_space space, u32 offset, u32 length) { if (port->sw->is_unplugged) return -ENODEV; return tb_cfg_write(port->sw->tb->ctl, buffer, tb_route(port->sw), port->port, space, offset, length); } #define tb_err(tb, fmt, arg...) dev_err(&(tb)->nhi->pdev->dev, fmt, ## arg) #define tb_WARN(tb, fmt, arg...) dev_WARN(&(tb)->nhi->pdev->dev, fmt, ## arg) #define tb_warn(tb, fmt, arg...) dev_warn(&(tb)->nhi->pdev->dev, fmt, ## arg) #define tb_info(tb, fmt, arg...) dev_info(&(tb)->nhi->pdev->dev, fmt, ## arg) #define tb_dbg(tb, fmt, arg...) dev_dbg(&(tb)->nhi->pdev->dev, fmt, ## arg) #define __TB_SW_PRINT(level, sw, fmt, arg...) \ do { \ const struct tb_switch *__sw = (sw); \ level(__sw->tb, "%llx: " fmt, \ tb_route(__sw), ## arg); \ } while (0) #define tb_sw_WARN(sw, fmt, arg...) __TB_SW_PRINT(tb_WARN, sw, fmt, ##arg) #define tb_sw_warn(sw, fmt, arg...) __TB_SW_PRINT(tb_warn, sw, fmt, ##arg) #define tb_sw_info(sw, fmt, arg...) __TB_SW_PRINT(tb_info, sw, fmt, ##arg) #define tb_sw_dbg(sw, fmt, arg...) __TB_SW_PRINT(tb_dbg, sw, fmt, ##arg) #define __TB_PORT_PRINT(level, _port, fmt, arg...) \ do { \ const struct tb_port *__port = (_port); \ level(__port->sw->tb, "%llx:%x: " fmt, \ tb_route(__port->sw), __port->port, ## arg); \ } while (0) #define tb_port_WARN(port, fmt, arg...) \ __TB_PORT_PRINT(tb_WARN, port, fmt, ##arg) #define tb_port_warn(port, fmt, arg...) \ __TB_PORT_PRINT(tb_warn, port, fmt, ##arg) #define tb_port_info(port, fmt, arg...) \ __TB_PORT_PRINT(tb_info, port, fmt, ##arg) #define tb_port_dbg(port, fmt, arg...) \ __TB_PORT_PRINT(tb_dbg, port, fmt, ##arg) struct tb *icm_probe(struct tb_nhi *nhi); struct tb *tb_probe(struct tb_nhi *nhi); extern struct device_type tb_domain_type; extern struct device_type tb_retimer_type; extern struct device_type tb_switch_type; int tb_domain_init(void); void tb_domain_exit(void); int tb_xdomain_init(void); void tb_xdomain_exit(void); struct tb *tb_domain_alloc(struct tb_nhi *nhi, size_t privsize); int tb_domain_add(struct tb *tb); void tb_domain_remove(struct tb *tb); int tb_domain_suspend_noirq(struct tb *tb); int tb_domain_resume_noirq(struct tb *tb); int tb_domain_suspend(struct tb *tb); void tb_domain_complete(struct tb *tb); int tb_domain_runtime_suspend(struct tb *tb); int tb_domain_runtime_resume(struct tb *tb); int tb_domain_approve_switch(struct tb *tb, struct tb_switch *sw); int tb_domain_approve_switch_key(struct tb *tb, struct tb_switch *sw); int tb_domain_challenge_switch_key(struct tb *tb, struct tb_switch *sw); int tb_domain_disconnect_pcie_paths(struct tb *tb); int tb_domain_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd); int tb_domain_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd); int tb_domain_disconnect_all_paths(struct tb *tb); static inline struct tb *tb_domain_get(struct tb *tb) { if (tb) get_device(&tb->dev); return tb; } static inline void tb_domain_put(struct tb *tb) { put_device(&tb->dev); } struct tb_nvm *tb_nvm_alloc(struct device *dev); int tb_nvm_add_active(struct tb_nvm *nvm, size_t size, nvmem_reg_read_t reg_read); int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val, size_t bytes); int tb_nvm_add_non_active(struct tb_nvm *nvm, size_t size, nvmem_reg_write_t reg_write); void tb_nvm_free(struct tb_nvm *nvm); void tb_nvm_exit(void); struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, u64 route); struct tb_switch *tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route); int tb_switch_configure(struct tb_switch *sw); int tb_switch_add(struct tb_switch *sw); void tb_switch_remove(struct tb_switch *sw); void tb_switch_suspend(struct tb_switch *sw); int tb_switch_resume(struct tb_switch *sw); int tb_switch_reset(struct tb_switch *sw); void tb_sw_set_unplugged(struct tb_switch *sw); struct tb_port *tb_switch_find_port(struct tb_switch *sw, enum tb_port_type type); struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth); struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid); struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route); /** * tb_switch_for_each_port() - Iterate over each switch port * @sw: Switch whose ports to iterate * @p: Port used as iterator * * Iterates over each switch port skipping the control port (port %0). */ #define tb_switch_for_each_port(sw, p) \ for ((p) = &(sw)->ports[1]; \ (p) <= &(sw)->ports[(sw)->config.max_port_number]; (p)++) static inline struct tb_switch *tb_switch_get(struct tb_switch *sw) { if (sw) get_device(&sw->dev); return sw; } static inline void tb_switch_put(struct tb_switch *sw) { put_device(&sw->dev); } static inline bool tb_is_switch(const struct device *dev) { return dev->type == &tb_switch_type; } static inline struct tb_switch *tb_to_switch(struct device *dev) { if (tb_is_switch(dev)) return container_of(dev, struct tb_switch, dev); return NULL; } static inline struct tb_switch *tb_switch_parent(struct tb_switch *sw) { return tb_to_switch(sw->dev.parent); } static inline bool tb_switch_is_light_ridge(const struct tb_switch *sw) { return sw->config.device_id == PCI_DEVICE_ID_INTEL_LIGHT_RIDGE; } static inline bool tb_switch_is_eagle_ridge(const struct tb_switch *sw) { return sw->config.device_id == PCI_DEVICE_ID_INTEL_EAGLE_RIDGE; } static inline bool tb_switch_is_cactus_ridge(const struct tb_switch *sw) { switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: return true; default: return false; } } static inline bool tb_switch_is_falcon_ridge(const struct tb_switch *sw) { switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: return true; default: return false; } } static inline bool tb_switch_is_alpine_ridge(const struct tb_switch *sw) { switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: return true; default: return false; } } static inline bool tb_switch_is_titan_ridge(const struct tb_switch *sw) { switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: return true; default: return false; } } /** * tb_switch_is_usb4() - Is the switch USB4 compliant * @sw: Switch to check * * Returns true if the @sw is USB4 compliant router, false otherwise. */ static inline bool tb_switch_is_usb4(const struct tb_switch *sw) { return sw->config.thunderbolt_version == USB4_VERSION_1_0; } /** * tb_switch_is_icm() - Is the switch handled by ICM firmware * @sw: Switch to check * * In case there is a need to differentiate whether ICM firmware or SW CM * is handling @sw this function can be called. It is valid to call this * after tb_switch_alloc() and tb_switch_configure() has been called * (latter only for SW CM case). */ static inline bool tb_switch_is_icm(const struct tb_switch *sw) { return !sw->config.enabled; } int tb_switch_lane_bonding_enable(struct tb_switch *sw); void tb_switch_lane_bonding_disable(struct tb_switch *sw); bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in); int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in); void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in); int tb_switch_tmu_init(struct tb_switch *sw); int tb_switch_tmu_post_time(struct tb_switch *sw); int tb_switch_tmu_disable(struct tb_switch *sw); int tb_switch_tmu_enable(struct tb_switch *sw); static inline bool tb_switch_tmu_is_enabled(const struct tb_switch *sw) { return sw->tmu.rate == TB_SWITCH_TMU_RATE_HIFI && !sw->tmu.unidirectional; } int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged); int tb_port_add_nfc_credits(struct tb_port *port, int credits); int tb_port_set_initial_credits(struct tb_port *port, u32 credits); int tb_port_clear_counter(struct tb_port *port, int counter); int tb_port_unlock(struct tb_port *port); int tb_port_alloc_in_hopid(struct tb_port *port, int hopid, int max_hopid); void tb_port_release_in_hopid(struct tb_port *port, int hopid); int tb_port_alloc_out_hopid(struct tb_port *port, int hopid, int max_hopid); void tb_port_release_out_hopid(struct tb_port *port, int hopid); struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, struct tb_port *prev); /** * tb_for_each_port_on_path() - Iterate over each port on path * @src: Source port * @dst: Destination port * @p: Port used as iterator * * Walks over each port on path from @src to @dst. */ #define tb_for_each_port_on_path(src, dst, p) \ for ((p) = tb_next_port_on_path((src), (dst), NULL); (p); \ (p) = tb_next_port_on_path((src), (dst), (p))) int tb_port_get_link_speed(struct tb_port *port); int tb_switch_find_vse_cap(struct tb_switch *sw, enum tb_switch_vse_cap vsec); int tb_switch_find_cap(struct tb_switch *sw, enum tb_switch_cap cap); int tb_port_find_cap(struct tb_port *port, enum tb_port_cap cap); bool tb_port_is_enabled(struct tb_port *port); bool tb_usb3_port_is_enabled(struct tb_port *port); int tb_usb3_port_enable(struct tb_port *port, bool enable); bool tb_pci_port_is_enabled(struct tb_port *port); int tb_pci_port_enable(struct tb_port *port, bool enable); int tb_dp_port_hpd_is_active(struct tb_port *port); int tb_dp_port_hpd_clear(struct tb_port *port); int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, unsigned int aux_tx, unsigned int aux_rx); bool tb_dp_port_is_enabled(struct tb_port *port); int tb_dp_port_enable(struct tb_port *port, bool enable); struct tb_path *tb_path_discover(struct tb_port *src, int src_hopid, struct tb_port *dst, int dst_hopid, struct tb_port **last, const char *name); struct tb_path *tb_path_alloc(struct tb *tb, struct tb_port *src, int src_hopid, struct tb_port *dst, int dst_hopid, int link_nr, const char *name); void tb_path_free(struct tb_path *path); int tb_path_activate(struct tb_path *path); void tb_path_deactivate(struct tb_path *path); bool tb_path_is_invalid(struct tb_path *path); bool tb_path_port_on_path(const struct tb_path *path, const struct tb_port *port); int tb_drom_read(struct tb_switch *sw); int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid); int tb_lc_read_uuid(struct tb_switch *sw, u32 *uuid); int tb_lc_configure_link(struct tb_switch *sw); void tb_lc_unconfigure_link(struct tb_switch *sw); int tb_lc_set_sleep(struct tb_switch *sw); bool tb_lc_lane_bonding_possible(struct tb_switch *sw); bool tb_lc_dp_sink_query(struct tb_switch *sw, struct tb_port *in); int tb_lc_dp_sink_alloc(struct tb_switch *sw, struct tb_port *in); int tb_lc_dp_sink_dealloc(struct tb_switch *sw, struct tb_port *in); int tb_lc_force_power(struct tb_switch *sw); static inline int tb_route_length(u64 route) { return (fls64(route) + TB_ROUTE_SHIFT - 1) / TB_ROUTE_SHIFT; } /** * tb_downstream_route() - get route to downstream switch * * Port must not be the upstream port (otherwise a loop is created). * * Return: Returns a route to the switch behind @port. */ static inline u64 tb_downstream_route(struct tb_port *port) { return tb_route(port->sw) | ((u64) port->port << (port->sw->config.depth * 8)); } bool tb_xdomain_handle_request(struct tb *tb, enum tb_cfg_pkg_type type, const void *buf, size_t size); struct tb_xdomain *tb_xdomain_alloc(struct tb *tb, struct device *parent, u64 route, const uuid_t *local_uuid, const uuid_t *remote_uuid); void tb_xdomain_add(struct tb_xdomain *xd); void tb_xdomain_remove(struct tb_xdomain *xd); struct tb_xdomain *tb_xdomain_find_by_link_depth(struct tb *tb, u8 link, u8 depth); int tb_retimer_scan(struct tb_port *port); void tb_retimer_remove_all(struct tb_port *port); static inline bool tb_is_retimer(const struct device *dev) { return dev->type == &tb_retimer_type; } static inline struct tb_retimer *tb_to_retimer(struct device *dev) { if (tb_is_retimer(dev)) return container_of(dev, struct tb_retimer, dev); return NULL; } int usb4_switch_setup(struct tb_switch *sw); int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid); int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, size_t size); int usb4_switch_configure_link(struct tb_switch *sw); void usb4_switch_unconfigure_link(struct tb_switch *sw); bool usb4_switch_lane_bonding_possible(struct tb_switch *sw); int usb4_switch_set_sleep(struct tb_switch *sw); int usb4_switch_nvm_sector_size(struct tb_switch *sw); int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, size_t size); int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, const void *buf, size_t size); int usb4_switch_nvm_authenticate(struct tb_switch *sw); bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in); int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in); int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in); struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, const struct tb_port *port); struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, const struct tb_port *port); int usb4_port_unlock(struct tb_port *port); int usb4_port_enumerate_retimers(struct tb_port *port); int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf, u8 size); int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg, const void *buf, u8 size); int usb4_port_retimer_is_last(struct tb_port *port, u8 index); int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index); int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address, const void *buf, size_t size); int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index); int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index, u32 *status); int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index, unsigned int address, void *buf, size_t size); int usb4_usb3_port_max_link_rate(struct tb_port *port); int usb4_usb3_port_actual_link_rate(struct tb_port *port); int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw, int *downstream_bw); int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw, int *downstream_bw); int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw, int *downstream_bw); /* keep link controller awake during update */ #define QUIRK_FORCE_POWER_LINK_CONTROLLER BIT(0) void tb_check_quirks(struct tb_switch *sw); #endif