/* * pci.c - Low-Level PCI Access in IA-64 * * Derived from bios32.c of i386 tree. * * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. * David Mosberger-Tang <davidm@hpl.hp.com> * Bjorn Helgaas <bjorn.helgaas@hp.com> * Copyright (C) 2004 Silicon Graphics, Inc. * * Note: Above list of copyright holders is incomplete... */ #include <linux/acpi.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/bootmem.h> #include <asm/machvec.h> #include <asm/page.h> #include <asm/system.h> #include <asm/io.h> #include <asm/sal.h> #include <asm/smp.h> #include <asm/irq.h> #include <asm/hw_irq.h> /* * Low-level SAL-based PCI configuration access functions. Note that SAL * calls are already serialized (via sal_lock), so we don't need another * synchronization mechanism here. */ #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) /* SAL 3.2 adds support for extended config space. */ #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 *value) { u64 addr, data = 0; int mode, result; if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) return -EINVAL; if ((seg | reg) <= 255) { addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); mode = 0; } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); mode = 1; } else { return -EINVAL; } result = ia64_sal_pci_config_read(addr, mode, len, &data); if (result != 0) return -EINVAL; *value = (u32) data; return 0; } int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 value) { u64 addr; int mode, result; if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) return -EINVAL; if ((seg | reg) <= 255) { addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); mode = 0; } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); mode = 1; } else { return -EINVAL; } result = ia64_sal_pci_config_write(addr, mode, len, value); if (result != 0) return -EINVAL; return 0; } static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { return raw_pci_read(pci_domain_nr(bus), bus->number, devfn, where, size, value); } static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { return raw_pci_write(pci_domain_nr(bus), bus->number, devfn, where, size, value); } struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; /* Called by ACPI when it finds a new root bus. */ static struct pci_controller * __devinit alloc_pci_controller (int seg) { struct pci_controller *controller; controller = kzalloc(sizeof(*controller), GFP_KERNEL); if (!controller) return NULL; controller->segment = seg; controller->node = -1; return controller; } struct pci_root_info { struct acpi_device *bridge; struct pci_controller *controller; char *name; }; static unsigned int new_space (u64 phys_base, int sparse) { u64 mmio_base; int i; if (phys_base == 0) return 0; /* legacy I/O port space */ mmio_base = (u64) ioremap(phys_base, 0); for (i = 0; i < num_io_spaces; i++) if (io_space[i].mmio_base == mmio_base && io_space[i].sparse == sparse) return i; if (num_io_spaces == MAX_IO_SPACES) { printk(KERN_ERR "PCI: Too many IO port spaces " "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); return ~0; } i = num_io_spaces++; io_space[i].mmio_base = mmio_base; io_space[i].sparse = sparse; return i; } static u64 __devinit add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) { struct resource *resource; char *name; unsigned long base, min, max, base_port; unsigned int sparse = 0, space_nr, len; resource = kzalloc(sizeof(*resource), GFP_KERNEL); if (!resource) { printk(KERN_ERR "PCI: No memory for %s I/O port space\n", info->name); goto out; } len = strlen(info->name) + 32; name = kzalloc(len, GFP_KERNEL); if (!name) { printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", info->name); goto free_resource; } min = addr->minimum; max = min + addr->address_length - 1; if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) sparse = 1; space_nr = new_space(addr->translation_offset, sparse); if (space_nr == ~0) goto free_name; base = __pa(io_space[space_nr].mmio_base); base_port = IO_SPACE_BASE(space_nr); snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, base_port + min, base_port + max); /* * The SDM guarantees the legacy 0-64K space is sparse, but if the * mapping is done by the processor (not the bridge), ACPI may not * mark it as sparse. */ if (space_nr == 0) sparse = 1; resource->name = name; resource->flags = IORESOURCE_MEM; resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); insert_resource(&iomem_resource, resource); return base_port; free_name: kfree(name); free_resource: kfree(resource); out: return ~0; } static acpi_status __devinit resource_to_window(struct acpi_resource *resource, struct acpi_resource_address64 *addr) { acpi_status status; /* * We're only interested in _CRS descriptors that are * - address space descriptors for memory or I/O space * - non-zero size * - producers, i.e., the address space is routed downstream, * not consumed by the bridge itself */ status = acpi_resource_to_address64(resource, addr); if (ACPI_SUCCESS(status) && (addr->resource_type == ACPI_MEMORY_RANGE || addr->resource_type == ACPI_IO_RANGE) && addr->address_length && addr->producer_consumer == ACPI_PRODUCER) return AE_OK; return AE_ERROR; } static acpi_status __devinit count_window (struct acpi_resource *resource, void *data) { unsigned int *windows = (unsigned int *) data; struct acpi_resource_address64 addr; acpi_status status; status = resource_to_window(resource, &addr); if (ACPI_SUCCESS(status)) (*windows)++; return AE_OK; } static __devinit acpi_status add_window(struct acpi_resource *res, void *data) { struct pci_root_info *info = data; struct pci_window *window; struct acpi_resource_address64 addr; acpi_status status; unsigned long flags, offset = 0; struct resource *root; /* Return AE_OK for non-window resources to keep scanning for more */ status = resource_to_window(res, &addr); if (!ACPI_SUCCESS(status)) return AE_OK; if (addr.resource_type == ACPI_MEMORY_RANGE) { flags = IORESOURCE_MEM; root = &iomem_resource; offset = addr.translation_offset; } else if (addr.resource_type == ACPI_IO_RANGE) { flags = IORESOURCE_IO; root = &ioport_resource; offset = add_io_space(info, &addr); if (offset == ~0) return AE_OK; } else return AE_OK; window = &info->controller->window[info->controller->windows++]; window->resource.name = info->name; window->resource.flags = flags; window->resource.start = addr.minimum + offset; window->resource.end = window->resource.start + addr.address_length - 1; window->resource.child = NULL; window->offset = offset; if (insert_resource(root, &window->resource)) { dev_err(&info->bridge->dev, "can't allocate host bridge window %pR\n", &window->resource); } else { if (offset) dev_info(&info->bridge->dev, "host bridge window %pR " "(PCI address [%#llx-%#llx])\n", &window->resource, window->resource.start - offset, window->resource.end - offset); else dev_info(&info->bridge->dev, "host bridge window %pR\n", &window->resource); } return AE_OK; } static void __devinit pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl) { int i; pci_bus_remove_resources(bus); for (i = 0; i < ctrl->windows; i++) { struct resource *res = &ctrl->window[i].resource; /* HP's firmware has a hack to work around a Windows bug. * Ignore these tiny memory ranges */ if ((res->flags & IORESOURCE_MEM) && (res->end - res->start < 16)) continue; pci_bus_add_resource(bus, res, 0); } } struct pci_bus * __devinit pci_acpi_scan_root(struct acpi_pci_root *root) { struct acpi_device *device = root->device; int domain = root->segment; int bus = root->secondary.start; struct pci_controller *controller; unsigned int windows = 0; struct pci_bus *pbus; char *name; int pxm; controller = alloc_pci_controller(domain); if (!controller) goto out1; controller->acpi_handle = device->handle; pxm = acpi_get_pxm(controller->acpi_handle); #ifdef CONFIG_NUMA if (pxm >= 0) controller->node = pxm_to_node(pxm); #endif acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, &windows); if (windows) { struct pci_root_info info; controller->window = kmalloc_node(sizeof(*controller->window) * windows, GFP_KERNEL, controller->node); if (!controller->window) goto out2; name = kmalloc(16, GFP_KERNEL); if (!name) goto out3; sprintf(name, "PCI Bus %04x:%02x", domain, bus); info.bridge = device; info.controller = controller; info.name = name; acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window, &info); } /* * See arch/x86/pci/acpi.c. * The desired pci bus might already be scanned in a quirk. We * should handle the case here, but it appears that IA64 hasn't * such quirk. So we just ignore the case now. */ pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller); return pbus; out3: kfree(controller->window); out2: kfree(controller); out1: return NULL; } void pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region, struct resource *res) { struct pci_controller *controller = PCI_CONTROLLER(dev); unsigned long offset = 0; int i; for (i = 0; i < controller->windows; i++) { struct pci_window *window = &controller->window[i]; if (!(window->resource.flags & res->flags)) continue; if (window->resource.start > res->start) continue; if (window->resource.end < res->end) continue; offset = window->offset; break; } region->start = res->start - offset; region->end = res->end - offset; } EXPORT_SYMBOL(pcibios_resource_to_bus); void pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res, struct pci_bus_region *region) { struct pci_controller *controller = PCI_CONTROLLER(dev); unsigned long offset = 0; int i; for (i = 0; i < controller->windows; i++) { struct pci_window *window = &controller->window[i]; if (!(window->resource.flags & res->flags)) continue; if (window->resource.start - window->offset > region->start) continue; if (window->resource.end - window->offset < region->end) continue; offset = window->offset; break; } res->start = region->start + offset; res->end = region->end + offset; } EXPORT_SYMBOL(pcibios_bus_to_resource); static int __devinit is_valid_resource(struct pci_dev *dev, int idx) { unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; struct resource *devr = &dev->resource[idx], *busr; if (!dev->bus) return 0; pci_bus_for_each_resource(dev->bus, busr, i) { if (!busr || ((busr->flags ^ devr->flags) & type_mask)) continue; if ((devr->start) && (devr->start >= busr->start) && (devr->end <= busr->end)) return 1; } return 0; } static void __devinit pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) { struct pci_bus_region region; int i; for (i = start; i < limit; i++) { if (!dev->resource[i].flags) continue; region.start = dev->resource[i].start; region.end = dev->resource[i].end; pcibios_bus_to_resource(dev, &dev->resource[i], ®ion); if ((is_valid_resource(dev, i))) pci_claim_resource(dev, i); } } void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) { pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); } EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev) { pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); } /* * Called after each bus is probed, but before its children are examined. */ void __devinit pcibios_fixup_bus (struct pci_bus *b) { struct pci_dev *dev; if (b->self) { pci_read_bridge_bases(b); pcibios_fixup_bridge_resources(b->self); } else { pcibios_setup_root_windows(b, b->sysdata); } list_for_each_entry(dev, &b->devices, bus_list) pcibios_fixup_device_resources(dev); platform_pci_fixup_bus(b); return; } void __devinit pcibios_update_irq (struct pci_dev *dev, int irq) { pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); /* ??? FIXME -- record old value for shutdown. */ } int pcibios_enable_device (struct pci_dev *dev, int mask) { int ret; ret = pci_enable_resources(dev, mask); if (ret < 0) return ret; if (!dev->msi_enabled) return acpi_pci_irq_enable(dev); return 0; } void pcibios_disable_device (struct pci_dev *dev) { BUG_ON(atomic_read(&dev->enable_cnt)); if (!dev->msi_enabled) acpi_pci_irq_disable(dev); } resource_size_t pcibios_align_resource (void *data, const struct resource *res, resource_size_t size, resource_size_t align) { return res->start; } /* * PCI BIOS setup, always defaults to SAL interface */ char * __init pcibios_setup (char *str) { return str; } int pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { unsigned long size = vma->vm_end - vma->vm_start; pgprot_t prot; /* * I/O space cannot be accessed via normal processor loads and * stores on this platform. */ if (mmap_state == pci_mmap_io) /* * XXX we could relax this for I/O spaces for which ACPI * indicates that the space is 1-to-1 mapped. But at the * moment, we don't support multiple PCI address spaces and * the legacy I/O space is not 1-to-1 mapped, so this is moot. */ return -EINVAL; if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) return -EINVAL; prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, vma->vm_page_prot); /* * If the user requested WC, the kernel uses UC or WC for this region, * and the chipset supports WC, we can use WC. Otherwise, we have to * use the same attribute the kernel uses. */ if (write_combine && ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); else vma->vm_page_prot = prot; if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0; } /** * ia64_pci_get_legacy_mem - generic legacy mem routine * @bus: bus to get legacy memory base address for * * Find the base of legacy memory for @bus. This is typically the first * megabyte of bus address space for @bus or is simply 0 on platforms whose * chipsets support legacy I/O and memory routing. Returns the base address * or an error pointer if an error occurred. * * This is the ia64 generic version of this routine. Other platforms * are free to override it with a machine vector. */ char *ia64_pci_get_legacy_mem(struct pci_bus *bus) { return (char *)__IA64_UNCACHED_OFFSET; } /** * pci_mmap_legacy_page_range - map legacy memory space to userland * @bus: bus whose legacy space we're mapping * @vma: vma passed in by mmap * * Map legacy memory space for this device back to userspace using a machine * vector to get the base address. */ int pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, enum pci_mmap_state mmap_state) { unsigned long size = vma->vm_end - vma->vm_start; pgprot_t prot; char *addr; /* We only support mmap'ing of legacy memory space */ if (mmap_state != pci_mmap_mem) return -ENOSYS; /* * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt * for more details. */ if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) return -EINVAL; prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, vma->vm_page_prot); addr = pci_get_legacy_mem(bus); if (IS_ERR(addr)) return PTR_ERR(addr); vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; vma->vm_page_prot = prot; if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, size, vma->vm_page_prot)) return -EAGAIN; return 0; } /** * ia64_pci_legacy_read - read from legacy I/O space * @bus: bus to read * @port: legacy port value * @val: caller allocated storage for returned value * @size: number of bytes to read * * Simply reads @size bytes from @port and puts the result in @val. * * Again, this (and the write routine) are generic versions that can be * overridden by the platform. This is necessary on platforms that don't * support legacy I/O routing or that hard fail on legacy I/O timeouts. */ int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) { int ret = size; switch (size) { case 1: *val = inb(port); break; case 2: *val = inw(port); break; case 4: *val = inl(port); break; default: ret = -EINVAL; break; } return ret; } /** * ia64_pci_legacy_write - perform a legacy I/O write * @bus: bus pointer * @port: port to write * @val: value to write * @size: number of bytes to write from @val * * Simply writes @size bytes of @val to @port. */ int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) { int ret = size; switch (size) { case 1: outb(val, port); break; case 2: outw(val, port); break; case 4: outl(val, port); break; default: ret = -EINVAL; break; } return ret; } /** * set_pci_cacheline_size - determine cacheline size for PCI devices * * We want to use the line-size of the outer-most cache. We assume * that this line-size is the same for all CPUs. * * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). */ static void __init set_pci_dfl_cacheline_size(void) { unsigned long levels, unique_caches; long status; pal_cache_config_info_t cci; status = ia64_pal_cache_summary(&levels, &unique_caches); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " "(status=%ld)\n", __func__, status); return; } status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " "(status=%ld)\n", __func__, status); return; } pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; } u64 ia64_dma_get_required_mask(struct device *dev) { u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); u64 mask; if (!high_totalram) { /* convert to mask just covering totalram */ low_totalram = (1 << (fls(low_totalram) - 1)); low_totalram += low_totalram - 1; mask = low_totalram; } else { high_totalram = (1 << (fls(high_totalram) - 1)); high_totalram += high_totalram - 1; mask = (((u64)high_totalram) << 32) + 0xffffffff; } return mask; } EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); u64 dma_get_required_mask(struct device *dev) { return platform_dma_get_required_mask(dev); } EXPORT_SYMBOL_GPL(dma_get_required_mask); static int __init pcibios_init(void) { set_pci_dfl_cacheline_size(); return 0; } subsys_initcall(pcibios_init);