/* * Copyright (C) 2001 Andrea Arcangeli SuSE * Copyright 2003 Andi Kleen, SuSE Labs. * * [ NOTE: this mechanism is now deprecated in favor of the vDSO. ] * * Thanks to hpa@transmeta.com for some useful hint. * Special thanks to Ingo Molnar for his early experience with * a different vsyscall implementation for Linux/IA32 and for the name. * * vsyscall 1 is located at -10Mbyte, vsyscall 2 is located * at virtual address -10Mbyte+1024bytes etc... There are at max 4 * vsyscalls. One vsyscall can reserve more than 1 slot to avoid * jumping out of line if necessary. We cannot add more with this * mechanism because older kernels won't return -ENOSYS. * * Note: the concept clashes with user mode linux. UML users should * use the vDSO. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "vsyscall_trace.h" DEFINE_VVAR(int, vgetcpu_mode); DEFINE_VVAR(struct vsyscall_gtod_data, vsyscall_gtod_data); static enum { EMULATE, NATIVE, NONE } vsyscall_mode = EMULATE; static int __init vsyscall_setup(char *str) { if (str) { if (!strcmp("emulate", str)) vsyscall_mode = EMULATE; else if (!strcmp("native", str)) vsyscall_mode = NATIVE; else if (!strcmp("none", str)) vsyscall_mode = NONE; else return -EINVAL; return 0; } return -EINVAL; } early_param("vsyscall", vsyscall_setup); void update_vsyscall_tz(void) { vsyscall_gtod_data.sys_tz = sys_tz; } void update_vsyscall(struct timekeeper *tk) { struct vsyscall_gtod_data *vdata = &vsyscall_gtod_data; write_seqcount_begin(&vdata->seq); /* copy vsyscall data */ vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; vdata->clock.cycle_last = tk->clock->cycle_last; vdata->clock.mask = tk->clock->mask; vdata->clock.mult = tk->mult; vdata->clock.shift = tk->shift; vdata->wall_time_sec = tk->xtime_sec; vdata->wall_time_snsec = tk->xtime_nsec; vdata->monotonic_time_sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; vdata->monotonic_time_snsec = tk->xtime_nsec + (tk->wall_to_monotonic.tv_nsec << tk->shift); while (vdata->monotonic_time_snsec >= (((u64)NSEC_PER_SEC) << tk->shift)) { vdata->monotonic_time_snsec -= ((u64)NSEC_PER_SEC) << tk->shift; vdata->monotonic_time_sec++; } vdata->wall_time_coarse.tv_sec = tk->xtime_sec; vdata->wall_time_coarse.tv_nsec = (long)(tk->xtime_nsec >> tk->shift); vdata->monotonic_time_coarse = timespec_add(vdata->wall_time_coarse, tk->wall_to_monotonic); write_seqcount_end(&vdata->seq); } static void warn_bad_vsyscall(const char *level, struct pt_regs *regs, const char *message) { if (!show_unhandled_signals) return; pr_notice_ratelimited("%s%s[%d] %s ip:%lx cs:%lx sp:%lx ax:%lx si:%lx di:%lx\n", level, current->comm, task_pid_nr(current), message, regs->ip, regs->cs, regs->sp, regs->ax, regs->si, regs->di); } static int addr_to_vsyscall_nr(unsigned long addr) { int nr; if ((addr & ~0xC00UL) != VSYSCALL_START) return -EINVAL; nr = (addr & 0xC00UL) >> 10; if (nr >= 3) return -EINVAL; return nr; } static bool write_ok_or_segv(unsigned long ptr, size_t size) { /* * XXX: if access_ok, get_user, and put_user handled * sig_on_uaccess_error, this could go away. */ if (!access_ok(VERIFY_WRITE, (void __user *)ptr, size)) { siginfo_t info; struct thread_struct *thread = ¤t->thread; thread->error_code = 6; /* user fault, no page, write */ thread->cr2 = ptr; thread->trap_nr = X86_TRAP_PF; memset(&info, 0, sizeof(info)); info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_MAPERR; info.si_addr = (void __user *)ptr; force_sig_info(SIGSEGV, &info, current); return false; } else { return true; } } bool emulate_vsyscall(struct pt_regs *regs, unsigned long address) { struct task_struct *tsk; unsigned long caller; int vsyscall_nr, syscall_nr, tmp; int prev_sig_on_uaccess_error; long ret; /* * No point in checking CS -- the only way to get here is a user mode * trap to a high address, which means that we're in 64-bit user code. */ WARN_ON_ONCE(address != regs->ip); if (vsyscall_mode == NONE) { warn_bad_vsyscall(KERN_INFO, regs, "vsyscall attempted with vsyscall=none"); return false; } vsyscall_nr = addr_to_vsyscall_nr(address); trace_emulate_vsyscall(vsyscall_nr); if (vsyscall_nr < 0) { warn_bad_vsyscall(KERN_WARNING, regs, "misaligned vsyscall (exploit attempt or buggy program) -- look up the vsyscall kernel parameter if you need a workaround"); goto sigsegv; } if (get_user(caller, (unsigned long __user *)regs->sp) != 0) { warn_bad_vsyscall(KERN_WARNING, regs, "vsyscall with bad stack (exploit attempt?)"); goto sigsegv; } tsk = current; /* * Check for access_ok violations and find the syscall nr. * * NULL is a valid user pointer (in the access_ok sense) on 32-bit and * 64-bit, so we don't need to special-case it here. For all the * vsyscalls, NULL means "don't write anything" not "write it at * address 0". */ switch (vsyscall_nr) { case 0: if (!write_ok_or_segv(regs->di, sizeof(struct timeval)) || !write_ok_or_segv(regs->si, sizeof(struct timezone))) { ret = -EFAULT; goto check_fault; } syscall_nr = __NR_gettimeofday; break; case 1: if (!write_ok_or_segv(regs->di, sizeof(time_t))) { ret = -EFAULT; goto check_fault; } syscall_nr = __NR_time; break; case 2: if (!write_ok_or_segv(regs->di, sizeof(unsigned)) || !write_ok_or_segv(regs->si, sizeof(unsigned))) { ret = -EFAULT; goto check_fault; } syscall_nr = __NR_getcpu; break; } /* * Handle seccomp. regs->ip must be the original value. * See seccomp_send_sigsys and Documentation/prctl/seccomp_filter.txt. * * We could optimize the seccomp disabled case, but performance * here doesn't matter. */ regs->orig_ax = syscall_nr; regs->ax = -ENOSYS; tmp = secure_computing(syscall_nr); if ((!tmp && regs->orig_ax != syscall_nr) || regs->ip != address) { warn_bad_vsyscall(KERN_DEBUG, regs, "seccomp tried to change syscall nr or ip"); do_exit(SIGSYS); } if (tmp) goto do_ret; /* skip requested */ /* * With a real vsyscall, page faults cause SIGSEGV. We want to * preserve that behavior to make writing exploits harder. */ prev_sig_on_uaccess_error = current_thread_info()->sig_on_uaccess_error; current_thread_info()->sig_on_uaccess_error = 1; ret = -EFAULT; switch (vsyscall_nr) { case 0: ret = sys_gettimeofday( (struct timeval __user *)regs->di, (struct timezone __user *)regs->si); break; case 1: ret = sys_time((time_t __user *)regs->di); break; case 2: ret = sys_getcpu((unsigned __user *)regs->di, (unsigned __user *)regs->si, NULL); break; } current_thread_info()->sig_on_uaccess_error = prev_sig_on_uaccess_error; check_fault: if (ret == -EFAULT) { /* Bad news -- userspace fed a bad pointer to a vsyscall. */ warn_bad_vsyscall(KERN_INFO, regs, "vsyscall fault (exploit attempt?)"); /* * If we failed to generate a signal for any reason, * generate one here. (This should be impossible.) */ if (WARN_ON_ONCE(!sigismember(&tsk->pending.signal, SIGBUS) && !sigismember(&tsk->pending.signal, SIGSEGV))) goto sigsegv; return true; /* Don't emulate the ret. */ } regs->ax = ret; do_ret: /* Emulate a ret instruction. */ regs->ip = caller; regs->sp += 8; return true; sigsegv: force_sig(SIGSEGV, current); return true; } /* * Assume __initcall executes before all user space. Hopefully kmod * doesn't violate that. We'll find out if it does. */ static void vsyscall_set_cpu(int cpu) { unsigned long d; unsigned long node = 0; #ifdef CONFIG_NUMA node = cpu_to_node(cpu); #endif if (cpu_has(&cpu_data(cpu), X86_FEATURE_RDTSCP)) write_rdtscp_aux((node << 12) | cpu); /* * Store cpu number in limit so that it can be loaded quickly * in user space in vgetcpu. (12 bits for the CPU and 8 bits for the node) */ d = 0x0f40000000000ULL; d |= cpu; d |= (node & 0xf) << 12; d |= (node >> 4) << 48; write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_PER_CPU, &d, DESCTYPE_S); } static void cpu_vsyscall_init(void *arg) { /* preemption should be already off */ vsyscall_set_cpu(raw_smp_processor_id()); } static int cpu_vsyscall_notifier(struct notifier_block *n, unsigned long action, void *arg) { long cpu = (long)arg; if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) smp_call_function_single(cpu, cpu_vsyscall_init, NULL, 1); return NOTIFY_DONE; } void __init map_vsyscall(void) { extern char __vsyscall_page; unsigned long physaddr_vsyscall = __pa_symbol(&__vsyscall_page); extern char __vvar_page; unsigned long physaddr_vvar_page = __pa_symbol(&__vvar_page); __set_fixmap(VSYSCALL_FIRST_PAGE, physaddr_vsyscall, vsyscall_mode == NATIVE ? PAGE_KERNEL_VSYSCALL : PAGE_KERNEL_VVAR); BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_FIRST_PAGE) != (unsigned long)VSYSCALL_START); __set_fixmap(VVAR_PAGE, physaddr_vvar_page, PAGE_KERNEL_VVAR); BUILD_BUG_ON((unsigned long)__fix_to_virt(VVAR_PAGE) != (unsigned long)VVAR_ADDRESS); } static int __init vsyscall_init(void) { BUG_ON(VSYSCALL_ADDR(0) != __fix_to_virt(VSYSCALL_FIRST_PAGE)); cpu_notifier_register_begin(); on_each_cpu(cpu_vsyscall_init, NULL, 1); /* notifier priority > KVM */ __hotcpu_notifier(cpu_vsyscall_notifier, 30); cpu_notifier_register_done(); return 0; } __initcall(vsyscall_init);