// SPDX-License-Identifier: GPL-2.0-only /* * fs/eventfd.c * * Copyright (C) 2007 Davide Libenzi * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_IDA(eventfd_ida); struct eventfd_ctx { struct kref kref; wait_queue_head_t wqh; /* * Every time that a write(2) is performed on an eventfd, the * value of the __u64 being written is added to "count" and a * wakeup is performed on "wqh". If EFD_SEMAPHORE flag was not * specified, a read(2) will return the "count" value to userspace, * and will reset "count" to zero. The kernel side eventfd_signal() * also, adds to the "count" counter and issue a wakeup. */ __u64 count; unsigned int flags; int id; }; /** * eventfd_signal_mask - Increment the event counter * @ctx: [in] Pointer to the eventfd context. * @mask: [in] poll mask * * This function is supposed to be called by the kernel in paths that do not * allow sleeping. In this function we allow the counter to reach the ULLONG_MAX * value, and we signal this as overflow condition by returning a EPOLLERR * to poll(2). */ void eventfd_signal_mask(struct eventfd_ctx *ctx, __poll_t mask) { unsigned long flags; /* * Deadlock or stack overflow issues can happen if we recurse here * through waitqueue wakeup handlers. If the caller users potentially * nested waitqueues with custom wakeup handlers, then it should * check eventfd_signal_allowed() before calling this function. If * it returns false, the eventfd_signal() call should be deferred to a * safe context. */ if (WARN_ON_ONCE(current->in_eventfd)) return; spin_lock_irqsave(&ctx->wqh.lock, flags); current->in_eventfd = 1; if (ctx->count < ULLONG_MAX) ctx->count++; if (waitqueue_active(&ctx->wqh)) wake_up_locked_poll(&ctx->wqh, EPOLLIN | mask); current->in_eventfd = 0; spin_unlock_irqrestore(&ctx->wqh.lock, flags); } EXPORT_SYMBOL_GPL(eventfd_signal_mask); static void eventfd_free_ctx(struct eventfd_ctx *ctx) { if (ctx->id >= 0) ida_free(&eventfd_ida, ctx->id); kfree(ctx); } static void eventfd_free(struct kref *kref) { struct eventfd_ctx *ctx = container_of(kref, struct eventfd_ctx, kref); eventfd_free_ctx(ctx); } /** * eventfd_ctx_put - Releases a reference to the internal eventfd context. * @ctx: [in] Pointer to eventfd context. * * The eventfd context reference must have been previously acquired either * with eventfd_ctx_fdget() or eventfd_ctx_fileget(). */ void eventfd_ctx_put(struct eventfd_ctx *ctx) { kref_put(&ctx->kref, eventfd_free); } EXPORT_SYMBOL_GPL(eventfd_ctx_put); static int eventfd_release(struct inode *inode, struct file *file) { struct eventfd_ctx *ctx = file->private_data; wake_up_poll(&ctx->wqh, EPOLLHUP); eventfd_ctx_put(ctx); return 0; } static __poll_t eventfd_poll(struct file *file, poll_table *wait) { struct eventfd_ctx *ctx = file->private_data; __poll_t events = 0; u64 count; poll_wait(file, &ctx->wqh, wait); /* * All writes to ctx->count occur within ctx->wqh.lock. This read * can be done outside ctx->wqh.lock because we know that poll_wait * takes that lock (through add_wait_queue) if our caller will sleep. * * The read _can_ therefore seep into add_wait_queue's critical * section, but cannot move above it! add_wait_queue's spin_lock acts * as an acquire barrier and ensures that the read be ordered properly * against the writes. The following CAN happen and is safe: * * poll write * ----------------- ------------ * lock ctx->wqh.lock (in poll_wait) * count = ctx->count * __add_wait_queue * unlock ctx->wqh.lock * lock ctx->qwh.lock * ctx->count += n * if (waitqueue_active) * wake_up_locked_poll * unlock ctx->qwh.lock * eventfd_poll returns 0 * * but the following, which would miss a wakeup, cannot happen: * * poll write * ----------------- ------------ * count = ctx->count (INVALID!) * lock ctx->qwh.lock * ctx->count += n * **waitqueue_active is false** * **no wake_up_locked_poll!** * unlock ctx->qwh.lock * lock ctx->wqh.lock (in poll_wait) * __add_wait_queue * unlock ctx->wqh.lock * eventfd_poll returns 0 */ count = READ_ONCE(ctx->count); if (count > 0) events |= EPOLLIN; if (count == ULLONG_MAX) events |= EPOLLERR; if (ULLONG_MAX - 1 > count) events |= EPOLLOUT; return events; } void eventfd_ctx_do_read(struct eventfd_ctx *ctx, __u64 *cnt) { lockdep_assert_held(&ctx->wqh.lock); *cnt = ((ctx->flags & EFD_SEMAPHORE) && ctx->count) ? 1 : ctx->count; ctx->count -= *cnt; } EXPORT_SYMBOL_GPL(eventfd_ctx_do_read); /** * eventfd_ctx_remove_wait_queue - Read the current counter and removes wait queue. * @ctx: [in] Pointer to eventfd context. * @wait: [in] Wait queue to be removed. * @cnt: [out] Pointer to the 64-bit counter value. * * Returns %0 if successful, or the following error codes: * * -EAGAIN : The operation would have blocked. * * This is used to atomically remove a wait queue entry from the eventfd wait * queue head, and read/reset the counter value. */ int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait, __u64 *cnt) { unsigned long flags; spin_lock_irqsave(&ctx->wqh.lock, flags); eventfd_ctx_do_read(ctx, cnt); __remove_wait_queue(&ctx->wqh, wait); if (*cnt != 0 && waitqueue_active(&ctx->wqh)) wake_up_locked_poll(&ctx->wqh, EPOLLOUT); spin_unlock_irqrestore(&ctx->wqh.lock, flags); return *cnt != 0 ? 0 : -EAGAIN; } EXPORT_SYMBOL_GPL(eventfd_ctx_remove_wait_queue); static ssize_t eventfd_read(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct eventfd_ctx *ctx = file->private_data; __u64 ucnt = 0; if (iov_iter_count(to) < sizeof(ucnt)) return -EINVAL; spin_lock_irq(&ctx->wqh.lock); if (!ctx->count) { if ((file->f_flags & O_NONBLOCK) || (iocb->ki_flags & IOCB_NOWAIT)) { spin_unlock_irq(&ctx->wqh.lock); return -EAGAIN; } if (wait_event_interruptible_locked_irq(ctx->wqh, ctx->count)) { spin_unlock_irq(&ctx->wqh.lock); return -ERESTARTSYS; } } eventfd_ctx_do_read(ctx, &ucnt); current->in_eventfd = 1; if (waitqueue_active(&ctx->wqh)) wake_up_locked_poll(&ctx->wqh, EPOLLOUT); current->in_eventfd = 0; spin_unlock_irq(&ctx->wqh.lock); if (unlikely(copy_to_iter(&ucnt, sizeof(ucnt), to) != sizeof(ucnt))) return -EFAULT; return sizeof(ucnt); } static ssize_t eventfd_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct eventfd_ctx *ctx = file->private_data; ssize_t res; __u64 ucnt; if (count != sizeof(ucnt)) return -EINVAL; if (copy_from_user(&ucnt, buf, sizeof(ucnt))) return -EFAULT; if (ucnt == ULLONG_MAX) return -EINVAL; spin_lock_irq(&ctx->wqh.lock); res = -EAGAIN; if (ULLONG_MAX - ctx->count > ucnt) res = sizeof(ucnt); else if (!(file->f_flags & O_NONBLOCK)) { res = wait_event_interruptible_locked_irq(ctx->wqh, ULLONG_MAX - ctx->count > ucnt); if (!res) res = sizeof(ucnt); } if (likely(res > 0)) { ctx->count += ucnt; current->in_eventfd = 1; if (waitqueue_active(&ctx->wqh)) wake_up_locked_poll(&ctx->wqh, EPOLLIN); current->in_eventfd = 0; } spin_unlock_irq(&ctx->wqh.lock); return res; } #ifdef CONFIG_PROC_FS static void eventfd_show_fdinfo(struct seq_file *m, struct file *f) { struct eventfd_ctx *ctx = f->private_data; __u64 cnt; spin_lock_irq(&ctx->wqh.lock); cnt = ctx->count; spin_unlock_irq(&ctx->wqh.lock); seq_printf(m, "eventfd-count: %16llx\n" "eventfd-id: %d\n" "eventfd-semaphore: %d\n", cnt, ctx->id, !!(ctx->flags & EFD_SEMAPHORE)); } #endif static const struct file_operations eventfd_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = eventfd_show_fdinfo, #endif .release = eventfd_release, .poll = eventfd_poll, .read_iter = eventfd_read, .write = eventfd_write, .llseek = noop_llseek, }; /** * eventfd_fget - Acquire a reference of an eventfd file descriptor. * @fd: [in] Eventfd file descriptor. * * Returns a pointer to the eventfd file structure in case of success, or the * following error pointer: * * -EBADF : Invalid @fd file descriptor. * -EINVAL : The @fd file descriptor is not an eventfd file. */ struct file *eventfd_fget(int fd) { struct file *file; file = fget(fd); if (!file) return ERR_PTR(-EBADF); if (file->f_op != &eventfd_fops) { fput(file); return ERR_PTR(-EINVAL); } return file; } EXPORT_SYMBOL_GPL(eventfd_fget); /** * eventfd_ctx_fdget - Acquires a reference to the internal eventfd context. * @fd: [in] Eventfd file descriptor. * * Returns a pointer to the internal eventfd context, otherwise the error * pointers returned by the following functions: * * eventfd_fget */ struct eventfd_ctx *eventfd_ctx_fdget(int fd) { CLASS(fd, f)(fd); if (fd_empty(f)) return ERR_PTR(-EBADF); return eventfd_ctx_fileget(fd_file(f)); } EXPORT_SYMBOL_GPL(eventfd_ctx_fdget); /** * eventfd_ctx_fileget - Acquires a reference to the internal eventfd context. * @file: [in] Eventfd file pointer. * * Returns a pointer to the internal eventfd context, otherwise the error * pointer: * * -EINVAL : The @fd file descriptor is not an eventfd file. */ struct eventfd_ctx *eventfd_ctx_fileget(struct file *file) { struct eventfd_ctx *ctx; if (file->f_op != &eventfd_fops) return ERR_PTR(-EINVAL); ctx = file->private_data; kref_get(&ctx->kref); return ctx; } EXPORT_SYMBOL_GPL(eventfd_ctx_fileget); static int do_eventfd(unsigned int count, int flags) { struct eventfd_ctx *ctx; struct file *file; int fd; /* Check the EFD_* constants for consistency. */ BUILD_BUG_ON(EFD_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON(EFD_NONBLOCK != O_NONBLOCK); BUILD_BUG_ON(EFD_SEMAPHORE != (1 << 0)); if (flags & ~EFD_FLAGS_SET) return -EINVAL; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; kref_init(&ctx->kref); init_waitqueue_head(&ctx->wqh); ctx->count = count; ctx->flags = flags; ctx->id = ida_alloc(&eventfd_ida, GFP_KERNEL); flags &= EFD_SHARED_FCNTL_FLAGS; flags |= O_RDWR; fd = get_unused_fd_flags(flags); if (fd < 0) goto err; file = anon_inode_getfile("[eventfd]", &eventfd_fops, ctx, flags); if (IS_ERR(file)) { put_unused_fd(fd); fd = PTR_ERR(file); goto err; } file->f_mode |= FMODE_NOWAIT; fd_install(fd, file); return fd; err: eventfd_free_ctx(ctx); return fd; } SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags) { return do_eventfd(count, flags); } SYSCALL_DEFINE1(eventfd, unsigned int, count) { return do_eventfd(count, 0); }