/* * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * Cloned from linux/arch/arm/mach-vexpress/platsmp.c * * Copyright (C) 2002 ARM Ltd. * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "regs-pmu.h" extern void exynos4_secondary_startup(void); static inline void __iomem *cpu_boot_reg_base(void) { if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1) return pmu_base_addr + S5P_INFORM5; return sysram_base_addr; } static inline void __iomem *cpu_boot_reg(int cpu) { void __iomem *boot_reg; boot_reg = cpu_boot_reg_base(); if (!boot_reg) return ERR_PTR(-ENODEV); if (soc_is_exynos4412()) boot_reg += 4*cpu; else if (soc_is_exynos5420() || soc_is_exynos5800()) boot_reg += 4; return boot_reg; } /* * Write pen_release in a way that is guaranteed to be visible to all * observers, irrespective of whether they're taking part in coherency * or not. This is necessary for the hotplug code to work reliably. */ static void write_pen_release(int val) { pen_release = val; smp_wmb(); sync_cache_w(&pen_release); } static void __iomem *scu_base_addr(void) { return (void __iomem *)(S5P_VA_SCU); } static DEFINE_SPINLOCK(boot_lock); static void exynos_secondary_init(unsigned int cpu) { /* * let the primary processor know we're out of the * pen, then head off into the C entry point */ write_pen_release(-1); /* * Synchronise with the boot thread. */ spin_lock(&boot_lock); spin_unlock(&boot_lock); } static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long timeout; u32 mpidr = cpu_logical_map(cpu); u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); int ret = -ENOSYS; /* * Set synchronisation state between this boot processor * and the secondary one */ spin_lock(&boot_lock); /* * The secondary processor is waiting to be released from * the holding pen - release it, then wait for it to flag * that it has been released by resetting pen_release. * * Note that "pen_release" is the hardware CPU core ID, whereas * "cpu" is Linux's internal ID. */ write_pen_release(core_id); if (!exynos_cpu_power_state(core_id)) { exynos_cpu_power_up(core_id); timeout = 10; /* wait max 10 ms until cpu1 is on */ while (exynos_cpu_power_state(core_id) != S5P_CORE_LOCAL_PWR_EN) { if (timeout-- == 0) break; mdelay(1); } if (timeout == 0) { printk(KERN_ERR "cpu1 power enable failed"); spin_unlock(&boot_lock); return -ETIMEDOUT; } } /* * Send the secondary CPU a soft interrupt, thereby causing * the boot monitor to read the system wide flags register, * and branch to the address found there. */ timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { unsigned long boot_addr; smp_rmb(); boot_addr = virt_to_phys(exynos4_secondary_startup); /* * Try to set boot address using firmware first * and fall back to boot register if it fails. */ ret = call_firmware_op(set_cpu_boot_addr, core_id, boot_addr); if (ret && ret != -ENOSYS) goto fail; if (ret == -ENOSYS) { void __iomem *boot_reg = cpu_boot_reg(core_id); if (IS_ERR(boot_reg)) { ret = PTR_ERR(boot_reg); goto fail; } __raw_writel(boot_addr, cpu_boot_reg(core_id)); } call_firmware_op(cpu_boot, core_id); arch_send_wakeup_ipi_mask(cpumask_of(cpu)); if (pen_release == -1) break; udelay(10); } /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ fail: spin_unlock(&boot_lock); return pen_release != -1 ? ret : 0; } /* * Initialise the CPU possible map early - this describes the CPUs * which may be present or become present in the system. */ static void __init exynos_smp_init_cpus(void) { void __iomem *scu_base = scu_base_addr(); unsigned int i, ncores; if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9) ncores = scu_base ? scu_get_core_count(scu_base) : 1; else /* * CPU Nodes are passed thru DT and set_cpu_possible * is set by "arm_dt_init_cpu_maps". */ return; /* sanity check */ if (ncores > nr_cpu_ids) { pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", ncores, nr_cpu_ids); ncores = nr_cpu_ids; } for (i = 0; i < ncores; i++) set_cpu_possible(i, true); } static void __init exynos_smp_prepare_cpus(unsigned int max_cpus) { int i; exynos_sysram_init(); if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9) scu_enable(scu_base_addr()); /* * Write the address of secondary startup into the * system-wide flags register. The boot monitor waits * until it receives a soft interrupt, and then the * secondary CPU branches to this address. * * Try using firmware operation first and fall back to * boot register if it fails. */ for (i = 1; i < max_cpus; ++i) { unsigned long boot_addr; u32 mpidr; u32 core_id; int ret; mpidr = cpu_logical_map(i); core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); boot_addr = virt_to_phys(exynos4_secondary_startup); ret = call_firmware_op(set_cpu_boot_addr, core_id, boot_addr); if (ret && ret != -ENOSYS) break; if (ret == -ENOSYS) { void __iomem *boot_reg = cpu_boot_reg(core_id); if (IS_ERR(boot_reg)) break; __raw_writel(boot_addr, cpu_boot_reg(core_id)); } } } struct smp_operations exynos_smp_ops __initdata = { .smp_init_cpus = exynos_smp_init_cpus, .smp_prepare_cpus = exynos_smp_prepare_cpus, .smp_secondary_init = exynos_secondary_init, .smp_boot_secondary = exynos_boot_secondary, #ifdef CONFIG_HOTPLUG_CPU .cpu_die = exynos_cpu_die, #endif };