// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_cache.h" #include "btree_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "btree_update.h" #include "errcode.h" #include "error.h" #include "journal.h" #include "journal_reclaim.h" #include "trace.h" #include static inline bool btree_uses_pcpu_readers(enum btree_id id) { return id == BTREE_ID_subvolumes; } static struct kmem_cache *bch2_key_cache; static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg, const void *obj) { const struct bkey_cached *ck = obj; const struct bkey_cached_key *key = arg->key; return ck->key.btree_id != key->btree_id || !bpos_eq(ck->key.pos, key->pos); } static const struct rhashtable_params bch2_btree_key_cache_params = { .head_offset = offsetof(struct bkey_cached, hash), .key_offset = offsetof(struct bkey_cached, key), .key_len = sizeof(struct bkey_cached_key), .obj_cmpfn = bch2_btree_key_cache_cmp_fn, .automatic_shrinking = true, }; static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path, struct bkey_cached *ck, enum btree_node_locked_type lock_held) { path->l[0].lock_seq = six_lock_seq(&ck->c.lock); path->l[0].b = (void *) ck; mark_btree_node_locked(trans, path, 0, lock_held); } __flatten inline struct bkey_cached * bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos) { struct bkey_cached_key key = { .btree_id = btree_id, .pos = pos, }; return rhashtable_lookup_fast(&c->btree_key_cache.table, &key, bch2_btree_key_cache_params); } static bool bkey_cached_lock_for_evict(struct bkey_cached *ck) { if (!six_trylock_intent(&ck->c.lock)) return false; if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { six_unlock_intent(&ck->c.lock); return false; } if (!six_trylock_write(&ck->c.lock)) { six_unlock_intent(&ck->c.lock); return false; } return true; } static bool bkey_cached_evict(struct btree_key_cache *c, struct bkey_cached *ck) { bool ret = !rhashtable_remove_fast(&c->table, &ck->hash, bch2_btree_key_cache_params); if (ret) { memset(&ck->key, ~0, sizeof(ck->key)); atomic_long_dec(&c->nr_keys); } return ret; } static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu) { struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier); struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu); this_cpu_dec(*c->btree_key_cache.nr_pending); kmem_cache_free(bch2_key_cache, ck); } static void bkey_cached_free(struct btree_key_cache *bc, struct bkey_cached *ck) { kfree(ck->k); ck->k = NULL; ck->u64s = 0; six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); bool pcpu_readers = ck->c.lock.readers != NULL; rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu); this_cpu_inc(*bc->nr_pending); } static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp) { gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE; struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp); if (unlikely(!ck)) return NULL; ck->k = kmalloc(key_u64s * sizeof(u64), gfp); if (unlikely(!ck->k)) { kmem_cache_free(bch2_key_cache, ck); return NULL; } ck->u64s = key_u64s; return ck; } static struct bkey_cached * bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id); int ret; struct bkey_cached *ck = container_of_or_null( rcu_pending_dequeue(&bc->pending[pcpu_readers]), struct bkey_cached, rcu); if (ck) goto lock; ck = allocate_dropping_locks(trans, ret, __bkey_cached_alloc(key_u64s, _gfp)); if (ret) { if (ck) kfree(ck->k); kmem_cache_free(bch2_key_cache, ck); return ERR_PTR(ret); } if (ck) { bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0); ck->c.cached = true; goto lock; } ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]), struct bkey_cached, rcu); if (ck) goto lock; lock: six_lock_intent(&ck->c.lock, NULL, NULL); six_lock_write(&ck->c.lock, NULL, NULL); return ck; } static struct bkey_cached * bkey_cached_reuse(struct btree_key_cache *c) { struct bucket_table *tbl; struct rhash_head *pos; struct bkey_cached *ck; unsigned i; rcu_read_lock(); tbl = rht_dereference_rcu(c->table.tbl, &c->table); for (i = 0; i < tbl->size; i++) rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && bkey_cached_lock_for_evict(ck)) { if (bkey_cached_evict(c, ck)) goto out; six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); } } ck = NULL; out: rcu_read_unlock(); return ck; } static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; /* * bch2_varint_decode can read past the end of the buffer by at * most 7 bytes (it won't be used): */ unsigned key_u64s = k.k->u64s + 1; /* * Allocate some extra space so that the transaction commit path is less * likely to have to reallocate, since that requires a transaction * restart: */ key_u64s = min(256U, (key_u64s * 3) / 2); key_u64s = roundup_pow_of_two(key_u64s); struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s); int ret = PTR_ERR_OR_ZERO(ck); if (ret) return ret; if (unlikely(!ck)) { ck = bkey_cached_reuse(bc); if (unlikely(!ck)) { bch_err(c, "error allocating memory for key cache item, btree %s", bch2_btree_id_str(path->btree_id)); return -BCH_ERR_ENOMEM_btree_key_cache_create; } } ck->c.level = 0; ck->c.btree_id = path->btree_id; ck->key.btree_id = path->btree_id; ck->key.pos = path->pos; ck->flags = 1U << BKEY_CACHED_ACCESSED; if (unlikely(key_u64s > ck->u64s)) { mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); struct bkey_i *new_k = allocate_dropping_locks(trans, ret, kmalloc(key_u64s * sizeof(u64), _gfp)); if (unlikely(!new_k)) { bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u", bch2_btree_id_str(ck->key.btree_id), key_u64s); ret = -BCH_ERR_ENOMEM_btree_key_cache_fill; } else if (ret) { kfree(new_k); goto err; } kfree(ck->k); ck->k = new_k; ck->u64s = key_u64s; } bkey_reassemble(ck->k, k); ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params); if (unlikely(ret)) /* raced with another fill? */ goto err; atomic_long_inc(&bc->nr_keys); six_unlock_write(&ck->c.lock); enum six_lock_type lock_want = __btree_lock_want(path, 0); if (lock_want == SIX_LOCK_read) six_lock_downgrade(&ck->c.lock); btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want); path->uptodate = BTREE_ITER_UPTODATE; return 0; err: bkey_cached_free(bc, ck); mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); return ret; } static noinline int btree_key_cache_fill(struct btree_trans *trans, struct btree_path *ck_path, unsigned flags) { if (flags & BTREE_ITER_cached_nofill) { ck_path->uptodate = BTREE_ITER_UPTODATE; return 0; } struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; int ret; bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos, BTREE_ITER_key_cache_fill| BTREE_ITER_cached_nofill); iter.flags &= ~BTREE_ITER_with_journal; k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto err; /* Recheck after btree lookup, before allocating: */ ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0; if (unlikely(ret)) goto out; ret = btree_key_cache_create(trans, ck_path, k); if (ret) goto err; out: /* We're not likely to need this iterator again: */ bch2_set_btree_iter_dontneed(&iter); err: bch2_trans_iter_exit(trans, &iter); return ret; } static inline int btree_path_traverse_cached_fast(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; struct bkey_cached *ck; retry: ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); if (!ck) return -ENOENT; enum six_lock_type lock_want = __btree_lock_want(path, 0); int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_); if (ret) return ret; if (ck->key.btree_id != path->btree_id || !bpos_eq(ck->key.pos, path->pos)) { six_unlock_type(&ck->c.lock, lock_want); goto retry; } if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) set_bit(BKEY_CACHED_ACCESSED, &ck->flags); btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want); path->uptodate = BTREE_ITER_UPTODATE; return 0; } int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path, unsigned flags) { EBUG_ON(path->level); path->l[1].b = NULL; int ret; do { ret = btree_path_traverse_cached_fast(trans, path); if (unlikely(ret == -ENOENT)) ret = btree_key_cache_fill(trans, path, flags); } while (ret == -EEXIST); if (unlikely(ret)) { path->uptodate = BTREE_ITER_NEED_TRAVERSE; if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) { btree_node_unlock(trans, path, 0); path->l[0].b = ERR_PTR(ret); } } return ret; } static int btree_key_cache_flush_pos(struct btree_trans *trans, struct bkey_cached_key key, u64 journal_seq, unsigned commit_flags, bool evict) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree_iter c_iter, b_iter; struct bkey_cached *ck = NULL; int ret; bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos, BTREE_ITER_slots| BTREE_ITER_intent| BTREE_ITER_all_snapshots); bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos, BTREE_ITER_cached| BTREE_ITER_intent); b_iter.flags &= ~BTREE_ITER_with_key_cache; ret = bch2_btree_iter_traverse(&c_iter); if (ret) goto out; ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b; if (!ck) goto out; if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { if (evict) goto evict; goto out; } if (journal_seq && ck->journal.seq != journal_seq) goto out; trans->journal_res.seq = ck->journal.seq; /* * If we're at the end of the journal, we really want to free up space * in the journal right away - we don't want to pin that old journal * sequence number with a new btree node write, we want to re-journal * the update */ if (ck->journal.seq == journal_last_seq(j)) commit_flags |= BCH_WATERMARK_reclaim; if (ck->journal.seq != journal_last_seq(j) || !test_bit(JOURNAL_space_low, &c->journal.flags)) commit_flags |= BCH_TRANS_COMMIT_no_journal_res; ret = bch2_btree_iter_traverse(&b_iter) ?: bch2_trans_update(trans, &b_iter, ck->k, BTREE_UPDATE_key_cache_reclaim| BTREE_UPDATE_internal_snapshot_node| BTREE_TRIGGER_norun) ?: bch2_trans_commit(trans, NULL, NULL, BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc| commit_flags); bch2_fs_fatal_err_on(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart) && !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) && !bch2_journal_error(j), c, "flushing key cache: %s", bch2_err_str(ret)); if (ret) goto out; bch2_journal_pin_drop(j, &ck->journal); struct btree_path *path = btree_iter_path(trans, &c_iter); BUG_ON(!btree_node_locked(path, 0)); if (!evict) { if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); } } else { struct btree_path *path2; unsigned i; evict: trans_for_each_path(trans, path2, i) if (path2 != path) __bch2_btree_path_unlock(trans, path2); bch2_btree_node_lock_write_nofail(trans, path, &ck->c); if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); } mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); if (bkey_cached_evict(&c->btree_key_cache, ck)) { bkey_cached_free(&c->btree_key_cache, ck); } else { six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); } } out: bch2_trans_iter_exit(trans, &b_iter); bch2_trans_iter_exit(trans, &c_iter); return ret; } int bch2_btree_key_cache_journal_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bkey_cached *ck = container_of(pin, struct bkey_cached, journal); struct bkey_cached_key key; struct btree_trans *trans = bch2_trans_get(c); int srcu_idx = srcu_read_lock(&c->btree_trans_barrier); int ret = 0; btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read); key = ck->key; if (ck->journal.seq != seq || !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { six_unlock_read(&ck->c.lock); goto unlock; } if (ck->seq != seq) { bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal, bch2_btree_key_cache_journal_flush); six_unlock_read(&ck->c.lock); goto unlock; } six_unlock_read(&ck->c.lock); ret = lockrestart_do(trans, btree_key_cache_flush_pos(trans, key, seq, BCH_TRANS_COMMIT_journal_reclaim, false)); unlock: srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); bch2_trans_put(trans); return ret; } bool bch2_btree_insert_key_cached(struct btree_trans *trans, unsigned flags, struct btree_insert_entry *insert_entry) { struct bch_fs *c = trans->c; struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b; struct bkey_i *insert = insert_entry->k; bool kick_reclaim = false; BUG_ON(insert->k.u64s > ck->u64s); bkey_copy(ck->k, insert); if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags)); set_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_inc(&c->btree_key_cache.nr_dirty); if (bch2_nr_btree_keys_need_flush(c)) kick_reclaim = true; } /* * To minimize lock contention, we only add the journal pin here and * defer pin updates to the flush callback via ->seq. Be careful not to * update ->seq on nojournal commits because we don't want to update the * pin to a seq that doesn't include journal updates on disk. Otherwise * we risk losing the update after a crash. * * The only exception is if the pin is not active in the first place. We * have to add the pin because journal reclaim drives key cache * flushing. The flush callback will not proceed unless ->seq matches * the latest pin, so make sure it starts with a consistent value. */ if (!(insert_entry->flags & BTREE_UPDATE_nojournal) || !journal_pin_active(&ck->journal)) { ck->seq = trans->journal_res.seq; } bch2_journal_pin_add(&c->journal, trans->journal_res.seq, &ck->journal, bch2_btree_key_cache_journal_flush); if (kick_reclaim) journal_reclaim_kick(&c->journal); return true; } void bch2_btree_key_cache_drop(struct btree_trans *trans, struct btree_path *path) { struct bch_fs *c = trans->c; struct btree_key_cache *bc = &c->btree_key_cache; struct bkey_cached *ck = (void *) path->l[0].b; /* * We just did an update to the btree, bypassing the key cache: the key * cache key is now stale and must be dropped, even if dirty: */ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { clear_bit(BKEY_CACHED_DIRTY, &ck->flags); atomic_long_dec(&c->btree_key_cache.nr_dirty); bch2_journal_pin_drop(&c->journal, &ck->journal); } bkey_cached_evict(bc, ck); bkey_cached_free(bc, ck); mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED); btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); path->should_be_locked = false; } static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink, struct shrink_control *sc) { struct bch_fs *c = shrink->private_data; struct btree_key_cache *bc = &c->btree_key_cache; struct bucket_table *tbl; struct bkey_cached *ck; size_t scanned = 0, freed = 0, nr = sc->nr_to_scan; unsigned iter, start; int srcu_idx; srcu_idx = srcu_read_lock(&c->btree_trans_barrier); rcu_read_lock(); tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); /* * Scanning is expensive while a rehash is in progress - most elements * will be on the new hashtable, if it's in progress * * A rehash could still start while we're scanning - that's ok, we'll * still see most elements. */ if (unlikely(tbl->nest)) { rcu_read_unlock(); srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); return SHRINK_STOP; } iter = bc->shrink_iter; if (iter >= tbl->size) iter = 0; start = iter; do { struct rhash_head *pos, *next; pos = rht_ptr_rcu(&tbl->buckets[iter]); while (!rht_is_a_nulls(pos)) { next = rht_dereference_bucket_rcu(pos->next, tbl, iter); ck = container_of(pos, struct bkey_cached, hash); if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { bc->skipped_dirty++; } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) { clear_bit(BKEY_CACHED_ACCESSED, &ck->flags); bc->skipped_accessed++; } else if (!bkey_cached_lock_for_evict(ck)) { bc->skipped_lock_fail++; } else if (bkey_cached_evict(bc, ck)) { bkey_cached_free(bc, ck); bc->freed++; freed++; } else { six_unlock_write(&ck->c.lock); six_unlock_intent(&ck->c.lock); } scanned++; if (scanned >= nr) goto out; pos = next; } iter++; if (iter >= tbl->size) iter = 0; } while (scanned < nr && iter != start); out: bc->shrink_iter = iter; rcu_read_unlock(); srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); return freed; } static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink, struct shrink_control *sc) { struct bch_fs *c = shrink->private_data; struct btree_key_cache *bc = &c->btree_key_cache; long nr = atomic_long_read(&bc->nr_keys) - atomic_long_read(&bc->nr_dirty); /* * Avoid hammering our shrinker too much if it's nearly empty - the * shrinker code doesn't take into account how big our cache is, if it's * mostly empty but the system is under memory pressure it causes nasty * lock contention: */ nr -= 128; return max(0L, nr); } void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); struct bucket_table *tbl; struct bkey_cached *ck; struct rhash_head *pos; LIST_HEAD(items); unsigned i; shrinker_free(bc->shrink); /* * The loop is needed to guard against racing with rehash: */ while (atomic_long_read(&bc->nr_keys)) { rcu_read_lock(); tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); if (tbl) { if (tbl->nest) { /* wait for in progress rehash */ rcu_read_unlock(); mutex_lock(&bc->table.mutex); mutex_unlock(&bc->table.mutex); rcu_read_lock(); continue; } for (i = 0; i < tbl->size; i++) while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) { ck = container_of(pos, struct bkey_cached, hash); BUG_ON(!bkey_cached_evict(bc, ck)); kfree(ck->k); kmem_cache_free(bch2_key_cache, ck); } } rcu_read_unlock(); } if (atomic_long_read(&bc->nr_dirty) && !bch2_journal_error(&c->journal) && test_bit(BCH_FS_was_rw, &c->flags)) panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n", atomic_long_read(&bc->nr_dirty)); if (atomic_long_read(&bc->nr_keys)) panic("btree key cache shutdown error: nr_keys nonzero (%li)\n", atomic_long_read(&bc->nr_keys)); if (bc->table_init_done) rhashtable_destroy(&bc->table); rcu_pending_exit(&bc->pending[0]); rcu_pending_exit(&bc->pending[1]); free_percpu(bc->nr_pending); } void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c) { } int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc) { struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); struct shrinker *shrink; bc->nr_pending = alloc_percpu(size_t); if (!bc->nr_pending) return -BCH_ERR_ENOMEM_fs_btree_cache_init; if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) || rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free)) return -BCH_ERR_ENOMEM_fs_btree_cache_init; if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params)) return -BCH_ERR_ENOMEM_fs_btree_cache_init; bc->table_init_done = true; shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name); if (!shrink) return -BCH_ERR_ENOMEM_fs_btree_cache_init; bc->shrink = shrink; shrink->count_objects = bch2_btree_key_cache_count; shrink->scan_objects = bch2_btree_key_cache_scan; shrink->batch = 1 << 14; shrink->seeks = 0; shrink->private_data = c; shrinker_register(shrink); return 0; } void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc) { printbuf_tabstop_push(out, 24); printbuf_tabstop_push(out, 12); prt_printf(out, "keys:\t%lu\r\n", atomic_long_read(&bc->nr_keys)); prt_printf(out, "dirty:\t%lu\r\n", atomic_long_read(&bc->nr_dirty)); prt_printf(out, "table size:\t%u\r\n", bc->table.tbl->size); prt_newline(out); prt_printf(out, "shrinker:\n"); prt_printf(out, "requested_to_free:\t%lu\r\n", bc->requested_to_free); prt_printf(out, "freed:\t%lu\r\n", bc->freed); prt_printf(out, "skipped_dirty:\t%lu\r\n", bc->skipped_dirty); prt_printf(out, "skipped_accessed:\t%lu\r\n", bc->skipped_accessed); prt_printf(out, "skipped_lock_fail:\t%lu\r\n", bc->skipped_lock_fail); prt_newline(out); prt_printf(out, "pending:\t%zu\r\n", per_cpu_sum(bc->nr_pending)); } void bch2_btree_key_cache_exit(void) { kmem_cache_destroy(bch2_key_cache); } int __init bch2_btree_key_cache_init(void) { bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT); if (!bch2_key_cache) return -ENOMEM; return 0; }