// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "debug.h" #include "extents.h" #include "journal.h" #include "journal_reclaim.h" #include "keylist.h" #include "trace.h" #include /* Inserting into a given leaf node (last stage of insert): */ /* Handle overwrites and do insert, for non extents: */ bool bch2_btree_bset_insert_key(struct btree_iter *iter, struct btree *b, struct btree_node_iter *node_iter, struct bkey_i *insert) { const struct bkey_format *f = &b->format; struct bkey_packed *k; struct bset_tree *t; unsigned clobber_u64s; EBUG_ON(btree_node_just_written(b)); EBUG_ON(bset_written(b, btree_bset_last(b))); EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k)); EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 || bkey_cmp(insert->k.p, b->data->max_key) > 0); k = bch2_btree_node_iter_peek_all(node_iter, b); if (k && !bkey_cmp_packed(b, k, &insert->k)) { BUG_ON(bkey_whiteout(k)); t = bch2_bkey_to_bset(b, k); if (!bkey_written(b, k) && bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k) && !bkey_whiteout(&insert->k)) { k->type = insert->k.type; memcpy_u64s(bkeyp_val(f, k), &insert->v, bkey_val_u64s(&insert->k)); return true; } insert->k.needs_whiteout = k->needs_whiteout; btree_keys_account_key_drop(&b->nr, t - b->set, k); if (t == bset_tree_last(b)) { clobber_u64s = k->u64s; /* * If we're deleting, and the key we're deleting doesn't * need a whiteout (it wasn't overwriting a key that had * been written to disk) - just delete it: */ if (bkey_whiteout(&insert->k) && !k->needs_whiteout) { bch2_bset_delete(b, k, clobber_u64s); bch2_btree_node_iter_fix(iter, b, node_iter, t, k, clobber_u64s, 0); bch2_btree_iter_verify(iter, b); return true; } goto overwrite; } k->type = KEY_TYPE_DELETED; bch2_btree_node_iter_fix(iter, b, node_iter, t, k, k->u64s, k->u64s); bch2_btree_iter_verify(iter, b); if (bkey_whiteout(&insert->k)) { reserve_whiteout(b, k); return true; } else { k->needs_whiteout = false; } } else { /* * Deleting, but the key to delete wasn't found - nothing to do: */ if (bkey_whiteout(&insert->k)) return false; insert->k.needs_whiteout = false; } t = bset_tree_last(b); k = bch2_btree_node_iter_bset_pos(node_iter, b, t); clobber_u64s = 0; overwrite: bch2_bset_insert(b, node_iter, k, insert, clobber_u64s); if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k)) bch2_btree_node_iter_fix(iter, b, node_iter, t, k, clobber_u64s, k->u64s); bch2_btree_iter_verify(iter, b); return true; } static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin, unsigned i, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct btree_write *w = container_of(pin, struct btree_write, journal); struct btree *b = container_of(w, struct btree, writes[i]); btree_node_lock_type(c, b, SIX_LOCK_read); bch2_btree_node_write_cond(c, b, (btree_current_write(b) == w && w->journal.seq == seq)); six_unlock_read(&b->lock); } static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 0, seq); } static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 1, seq); } void bch2_btree_journal_key(struct btree_insert *trans, struct btree_iter *iter, struct bkey_i *insert) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree *b = iter->l[0].b; struct btree_write *w = btree_current_write(b); EBUG_ON(iter->level || b->level); EBUG_ON(trans->journal_res.ref != !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)); if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { u64 seq = trans->journal_res.seq; bool needs_whiteout = insert->k.needs_whiteout; /* ick */ insert->k.needs_whiteout = false; bch2_journal_add_keys(j, &trans->journal_res, iter->btree_id, insert); insert->k.needs_whiteout = needs_whiteout; bch2_journal_set_has_inode(j, &trans->journal_res, insert->k.p.inode); if (trans->journal_seq) *trans->journal_seq = seq; btree_bset_last(b)->journal_seq = cpu_to_le64(seq); } if (unlikely(!journal_pin_active(&w->journal))) { u64 seq = likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) ? trans->journal_res.seq : j->replay_journal_seq; bch2_journal_pin_add(j, seq, &w->journal, btree_node_write_idx(b) == 0 ? btree_node_flush0 : btree_node_flush1); } if (unlikely(!btree_node_dirty(b))) set_btree_node_dirty(b); } static enum btree_insert_ret bch2_insert_fixup_key(struct btree_insert *trans, struct btree_insert_entry *insert) { struct btree_iter *iter = insert->iter; struct btree_iter_level *l = &iter->l[0]; EBUG_ON(iter->level); EBUG_ON(insert->k->k.u64s > bch_btree_keys_u64s_remaining(trans->c, l->b)); if (bch2_btree_bset_insert_key(iter, l->b, &l->iter, insert->k)) bch2_btree_journal_key(trans, iter, insert->k); trans->did_work = true; return BTREE_INSERT_OK; } /** * btree_insert_key - insert a key one key into a leaf node */ static enum btree_insert_ret btree_insert_key_leaf(struct btree_insert *trans, struct btree_insert_entry *insert) { struct bch_fs *c = trans->c; struct btree_iter *iter = insert->iter; struct btree *b = iter->l[0].b; enum btree_insert_ret ret; int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; ret = !btree_node_is_extents(b) ? bch2_insert_fixup_key(trans, insert) : bch2_insert_fixup_extent(trans, insert); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(c, b)) bch2_btree_iter_reinit_node(iter, b); trace_btree_insert_key(c, b, insert->k); return ret; } #define trans_for_each_entry(trans, i) \ for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++) /* * We sort transaction entries so that if multiple iterators point to the same * leaf node they'll be adjacent: */ static bool same_leaf_as_prev(struct btree_insert *trans, struct btree_insert_entry *i) { return i != trans->entries && i[0].iter->l[0].b == i[-1].iter->l[0].b; } static inline struct btree_insert_entry *trans_next_leaf(struct btree_insert *trans, struct btree_insert_entry *i) { struct btree *b = i->iter->l[0].b; do { i++; } while (i < trans->entries + trans->nr && b == i->iter->l[0].b); return i; } #define trans_for_each_leaf(trans, i) \ for ((i) = (trans)->entries; \ (i) < (trans)->entries + (trans)->nr; \ (i) = trans_next_leaf(trans, i)) inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { bch2_btree_node_lock_write(b, iter); if (btree_node_just_written(b) && bch2_btree_post_write_cleanup(c, b)) bch2_btree_iter_reinit_node(iter, b); /* * If the last bset has been written, or if it's gotten too big - start * a new bset to insert into: */ if (want_new_bset(c, b)) bch2_btree_init_next(c, b, iter); } static void multi_lock_write(struct bch_fs *c, struct btree_insert *trans) { struct btree_insert_entry *i; trans_for_each_leaf(trans, i) bch2_btree_node_lock_for_insert(c, i->iter->l[0].b, i->iter); } static void multi_unlock_write(struct btree_insert *trans) { struct btree_insert_entry *i; trans_for_each_leaf(trans, i) bch2_btree_node_unlock_write(i->iter->l[0].b, i->iter); } static inline int btree_trans_cmp(struct btree_insert_entry l, struct btree_insert_entry r) { return btree_iter_cmp(l.iter, r.iter); } /* Normal update interface: */ static enum btree_insert_ret btree_key_can_insert(struct btree_insert *trans, struct btree_insert_entry *insert, unsigned *u64s) { struct bch_fs *c = trans->c; struct btree *b = insert->iter->l[0].b; static enum btree_insert_ret ret; if (unlikely(btree_node_fake(b))) return BTREE_INSERT_BTREE_NODE_FULL; ret = !btree_node_is_extents(b) ? BTREE_INSERT_OK : bch2_extent_can_insert(trans, insert, u64s); if (ret) return ret; if (*u64s > bch_btree_keys_u64s_remaining(c, b)) return BTREE_INSERT_BTREE_NODE_FULL; return BTREE_INSERT_OK; } /* * Get journal reservation, take write locks, and attempt to do btree update(s): */ static inline int do_btree_insert_at(struct btree_insert *trans, struct btree_iter **split, bool *cycle_gc_lock) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; unsigned u64s; int ret; trans_for_each_entry(trans, i) { BUG_ON(i->done); BUG_ON(i->iter->uptodate >= BTREE_ITER_NEED_RELOCK); } u64s = 0; trans_for_each_entry(trans, i) u64s += jset_u64s(i->k->k.u64s + i->extra_res); memset(&trans->journal_res, 0, sizeof(trans->journal_res)); ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY) ? bch2_journal_res_get(&c->journal, &trans->journal_res, u64s, u64s) : 0; if (ret) return ret; multi_lock_write(c, trans); if (race_fault()) { ret = -EINTR; trans_restart(" (race)"); goto out; } /* * Check if the insert will fit in the leaf node with the write lock * held, otherwise another thread could write the node changing the * amount of space available: */ u64s = 0; trans_for_each_entry(trans, i) { /* Multiple inserts might go to same leaf: */ if (!same_leaf_as_prev(trans, i)) u64s = 0; u64s += i->k->k.u64s + i->extra_res; switch (btree_key_can_insert(trans, i, &u64s)) { case BTREE_INSERT_OK: break; case BTREE_INSERT_BTREE_NODE_FULL: ret = -EINTR; *split = i->iter; goto out; case BTREE_INSERT_ENOSPC: ret = -ENOSPC; goto out; case BTREE_INSERT_NEED_GC_LOCK: ret = -EINTR; *cycle_gc_lock = true; goto out; default: BUG(); } } if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) { if (journal_seq_verify(c)) trans_for_each_entry(trans, i) i->k->k.version.lo = trans->journal_res.seq; else if (inject_invalid_keys(c)) trans_for_each_entry(trans, i) i->k->k.version = MAX_VERSION; } trans_for_each_entry(trans, i) { switch (btree_insert_key_leaf(trans, i)) { case BTREE_INSERT_OK: i->done = true; break; case BTREE_INSERT_NEED_TRAVERSE: ret = -EINTR; break; case BTREE_INSERT_BTREE_NODE_FULL: ret = -EINTR; *split = i->iter; break; case BTREE_INSERT_ENOSPC: ret = -ENOSPC; break; default: BUG(); } /* * If we did some work (i.e. inserted part of an extent), * we have to do all the other updates as well: */ if (!trans->did_work && (ret || *split)) break; } out: multi_unlock_write(trans); bch2_journal_res_put(&c->journal, &trans->journal_res); return ret; } static inline void btree_insert_entry_checks(struct bch_fs *c, struct btree_insert_entry *i) { BUG_ON(i->iter->level); BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos)); BUG_ON(debug_check_bkeys(c) && !bkey_deleted(&i->k->k) && bch2_bkey_invalid(c, (enum bkey_type) i->iter->btree_id, bkey_i_to_s_c(i->k))); } /** * __bch_btree_insert_at - insert keys at given iterator positions * * This is main entry point for btree updates. * * Return values: * -EINTR: locking changed, this function should be called again. Only returned * if passed BTREE_INSERT_ATOMIC. * -EROFS: filesystem read only * -EIO: journal or btree node IO error */ int __bch2_btree_insert_at(struct btree_insert *trans) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; struct btree_iter *linked, *split = NULL; bool cycle_gc_lock = false; unsigned flags; int ret; BUG_ON(!trans->nr); for_each_btree_iter(trans->entries[0].iter, linked) bch2_btree_iter_verify_locks(linked); /* for the sake of sanity: */ BUG_ON(trans->nr > 1 && !(trans->flags & BTREE_INSERT_ATOMIC)); trans_for_each_entry(trans, i) btree_insert_entry_checks(c, i); bubble_sort(trans->entries, trans->nr, btree_trans_cmp); if (unlikely(!percpu_ref_tryget(&c->writes))) return -EROFS; retry: split = NULL; cycle_gc_lock = false; trans_for_each_entry(trans, i) { unsigned old_locks_want = i->iter->locks_want; unsigned old_uptodate = i->iter->uptodate; if (!bch2_btree_iter_upgrade(i->iter, 1, true)) { trans_restart(" (failed upgrade, locks_want %u uptodate %u)", old_locks_want, old_uptodate); ret = -EINTR; goto err; } if (i->iter->flags & BTREE_ITER_ERROR) { ret = -EIO; goto err; } } ret = do_btree_insert_at(trans, &split, &cycle_gc_lock); if (unlikely(ret)) goto err; trans_for_each_leaf(trans, i) bch2_foreground_maybe_merge(c, i->iter, 0, trans->flags); trans_for_each_entry(trans, i) bch2_btree_iter_downgrade(i->iter); out: percpu_ref_put(&c->writes); if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) { /* make sure we didn't drop or screw up locks: */ for_each_btree_iter(trans->entries[0].iter, linked) { bch2_btree_iter_verify_locks(linked); BUG_ON((trans->flags & BTREE_INSERT_NOUNLOCK) && trans->did_work && !btree_node_locked(linked, 0)); } /* make sure we didn't lose an error: */ if (!ret) trans_for_each_entry(trans, i) BUG_ON(!i->done); } BUG_ON(!(trans->flags & BTREE_INSERT_ATOMIC) && ret == -EINTR); return ret; err: flags = trans->flags; /* * BTREE_INSERT_NOUNLOCK means don't unlock _after_ successful btree * update; if we haven't done anything yet it doesn't apply */ if (!trans->did_work) flags &= ~BTREE_INSERT_NOUNLOCK; if (split) { ret = bch2_btree_split_leaf(c, split, flags); /* * if the split succeeded without dropping locks the insert will * still be atomic (in the BTREE_INSERT_ATOMIC sense, what the * caller peeked() and is overwriting won't have changed) */ #if 0 /* * XXX: * split -> btree node merging (of parent node) might still drop * locks when we're not passing it BTREE_INSERT_NOUNLOCK */ if (!ret && !trans->did_work) goto retry; #endif /* * don't care if we got ENOSPC because we told split it * couldn't block: */ if (!ret || (flags & BTREE_INSERT_NOUNLOCK)) { trans_restart(" (split)"); ret = -EINTR; } } if (cycle_gc_lock) { if (!down_read_trylock(&c->gc_lock)) { if (flags & BTREE_INSERT_NOUNLOCK) goto out; bch2_btree_iter_unlock(trans->entries[0].iter); down_read(&c->gc_lock); } up_read(&c->gc_lock); } if (ret == -EINTR) { if (flags & BTREE_INSERT_NOUNLOCK) { trans_restart(" (can't unlock)"); goto out; } trans_for_each_entry(trans, i) { int ret2 = bch2_btree_iter_traverse(i->iter); if (ret2) { ret = ret2; trans_restart(" (traverse)"); goto out; } BUG_ON(i->iter->uptodate > BTREE_ITER_NEED_PEEK); } /* * BTREE_ITER_ATOMIC means we have to return -EINTR if we * dropped locks: */ if (!(flags & BTREE_INSERT_ATOMIC)) goto retry; trans_restart(" (atomic)"); } goto out; } int bch2_trans_commit(struct btree_trans *trans, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq, unsigned flags) { struct btree_insert insert = { .c = trans->c, .disk_res = disk_res, .journal_seq = journal_seq, .flags = flags, .nr = trans->nr_updates, .entries = trans->updates, }; if (!trans->nr_updates) return 0; trans->nr_updates = 0; return __bch2_btree_insert_at(&insert); } int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags) { struct bkey_i k; bkey_init(&k.k); k.k.p = iter->pos; return bch2_btree_insert_at(iter->c, NULL, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE|flags, BTREE_INSERT_ENTRY(iter, &k)); } int bch2_btree_insert_list_at(struct btree_iter *iter, struct keylist *keys, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq, unsigned flags) { BUG_ON(flags & BTREE_INSERT_ATOMIC); BUG_ON(bch2_keylist_empty(keys)); bch2_verify_keylist_sorted(keys); while (!bch2_keylist_empty(keys)) { int ret = bch2_btree_insert_at(iter->c, disk_res, hook, journal_seq, flags, BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys))); if (ret) return ret; bch2_keylist_pop_front(keys); } return 0; } /** * bch_btree_insert - insert keys into the extent btree * @c: pointer to struct bch_fs * @id: btree to insert into * @insert_keys: list of keys to insert * @hook: insert callback */ int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq, int flags) { struct btree_iter iter; int ret; bch2_btree_iter_init(&iter, c, id, bkey_start_pos(&k->k), BTREE_ITER_INTENT); ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, flags, BTREE_INSERT_ENTRY(&iter, k)); bch2_btree_iter_unlock(&iter); return ret; } /* * bch_btree_delete_range - delete everything within a given range * * Range is a half open interval - [start, end) */ int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, struct bpos start, struct bpos end, struct bversion version, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq) { struct btree_iter iter; struct bkey_s_c k; int ret = 0; bch2_btree_iter_init(&iter, c, id, start, BTREE_ITER_INTENT); while ((k = bch2_btree_iter_peek(&iter)).k && !(ret = btree_iter_err(k))) { unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits); /* really shouldn't be using a bare, unpadded bkey_i */ struct bkey_i delete; if (bkey_cmp(iter.pos, end) >= 0) break; bkey_init(&delete.k); /* * For extents, iter.pos won't necessarily be the same as * bkey_start_pos(k.k) (for non extents they always will be the * same). It's important that we delete starting from iter.pos * because the range we want to delete could start in the middle * of k. * * (bch2_btree_iter_peek() does guarantee that iter.pos >= * bkey_start_pos(k.k)). */ delete.k.p = iter.pos; delete.k.version = version; if (iter.flags & BTREE_ITER_IS_EXTENTS) { /* create the biggest key we can */ bch2_key_resize(&delete.k, max_sectors); bch2_cut_back(end, &delete.k); } ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&iter, &delete)); if (ret) break; bch2_btree_iter_cond_resched(&iter); } bch2_btree_iter_unlock(&iter); return ret; }