/************************************************************************* * myri10ge.c: Myricom Myri-10G Ethernet driver. * * Copyright (C) 2005, 2006 Myricom, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Myricom, Inc. nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * If the eeprom on your board is not recent enough, you will need to get a * newer firmware image at: * http://www.myri.com/scs/download-Myri10GE.html * * Contact Information: * * Myricom, Inc., 325N Santa Anita Avenue, Arcadia, CA 91006 *************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTRR #include #endif #include "myri10ge_mcp.h" #include "myri10ge_mcp_gen_header.h" #define MYRI10GE_VERSION_STR "1.0.0" MODULE_DESCRIPTION("Myricom 10G driver (10GbE)"); MODULE_AUTHOR("Maintainer: help@myri.com"); MODULE_VERSION(MYRI10GE_VERSION_STR); MODULE_LICENSE("Dual BSD/GPL"); #define MYRI10GE_MAX_ETHER_MTU 9014 #define MYRI10GE_ETH_STOPPED 0 #define MYRI10GE_ETH_STOPPING 1 #define MYRI10GE_ETH_STARTING 2 #define MYRI10GE_ETH_RUNNING 3 #define MYRI10GE_ETH_OPEN_FAILED 4 #define MYRI10GE_EEPROM_STRINGS_SIZE 256 #define MYRI10GE_MAX_SEND_DESC_TSO ((65536 / 2048) * 2) #define MYRI10GE_NO_CONFIRM_DATA 0xffffffff #define MYRI10GE_NO_RESPONSE_RESULT 0xffffffff struct myri10ge_rx_buffer_state { struct sk_buff *skb; DECLARE_PCI_UNMAP_ADDR(bus) DECLARE_PCI_UNMAP_LEN(len) }; struct myri10ge_tx_buffer_state { struct sk_buff *skb; int last; DECLARE_PCI_UNMAP_ADDR(bus) DECLARE_PCI_UNMAP_LEN(len) }; struct myri10ge_cmd { u32 data0; u32 data1; u32 data2; }; struct myri10ge_rx_buf { struct mcp_kreq_ether_recv __iomem *lanai; /* lanai ptr for recv ring */ u8 __iomem *wc_fifo; /* w/c rx dma addr fifo address */ struct mcp_kreq_ether_recv *shadow; /* host shadow of recv ring */ struct myri10ge_rx_buffer_state *info; int cnt; int alloc_fail; int mask; /* number of rx slots -1 */ }; struct myri10ge_tx_buf { struct mcp_kreq_ether_send __iomem *lanai; /* lanai ptr for sendq */ u8 __iomem *wc_fifo; /* w/c send fifo address */ struct mcp_kreq_ether_send *req_list; /* host shadow of sendq */ char *req_bytes; struct myri10ge_tx_buffer_state *info; int mask; /* number of transmit slots -1 */ int boundary; /* boundary transmits cannot cross */ int req ____cacheline_aligned; /* transmit slots submitted */ int pkt_start; /* packets started */ int done ____cacheline_aligned; /* transmit slots completed */ int pkt_done; /* packets completed */ }; struct myri10ge_rx_done { struct mcp_slot *entry; dma_addr_t bus; int cnt; int idx; }; struct myri10ge_priv { int running; /* running? */ int csum_flag; /* rx_csums? */ struct myri10ge_tx_buf tx; /* transmit ring */ struct myri10ge_rx_buf rx_small; struct myri10ge_rx_buf rx_big; struct myri10ge_rx_done rx_done; int small_bytes; struct net_device *dev; struct net_device_stats stats; u8 __iomem *sram; int sram_size; unsigned long board_span; unsigned long iomem_base; u32 __iomem *irq_claim; u32 __iomem *irq_deassert; char *mac_addr_string; struct mcp_cmd_response *cmd; dma_addr_t cmd_bus; struct mcp_irq_data *fw_stats; dma_addr_t fw_stats_bus; struct pci_dev *pdev; int msi_enabled; unsigned int link_state; unsigned int rdma_tags_available; int intr_coal_delay; u32 __iomem *intr_coal_delay_ptr; int mtrr; int wake_queue; int stop_queue; int down_cnt; wait_queue_head_t down_wq; struct work_struct watchdog_work; struct timer_list watchdog_timer; int watchdog_tx_done; int watchdog_resets; int tx_linearized; int pause; char *fw_name; char eeprom_strings[MYRI10GE_EEPROM_STRINGS_SIZE]; char fw_version[128]; u8 mac_addr[6]; /* eeprom mac address */ unsigned long serial_number; int vendor_specific_offset; u32 devctl; u16 msi_flags; u32 read_dma; u32 write_dma; u32 read_write_dma; }; static char *myri10ge_fw_unaligned = "myri10ge_ethp_z8e.dat"; static char *myri10ge_fw_aligned = "myri10ge_eth_z8e.dat"; static char *myri10ge_fw_name = NULL; module_param(myri10ge_fw_name, charp, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(myri10ge_fw_name, "Firmware image name\n"); static int myri10ge_ecrc_enable = 1; module_param(myri10ge_ecrc_enable, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_ecrc_enable, "Enable Extended CRC on PCI-E\n"); static int myri10ge_max_intr_slots = 1024; module_param(myri10ge_max_intr_slots, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_max_intr_slots, "Interrupt queue slots\n"); static int myri10ge_small_bytes = -1; /* -1 == auto */ module_param(myri10ge_small_bytes, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(myri10ge_small_bytes, "Threshold of small packets\n"); static int myri10ge_msi = 1; /* enable msi by default */ module_param(myri10ge_msi, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_msi, "Enable Message Signalled Interrupts\n"); static int myri10ge_intr_coal_delay = 25; module_param(myri10ge_intr_coal_delay, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_intr_coal_delay, "Interrupt coalescing delay\n"); static int myri10ge_flow_control = 1; module_param(myri10ge_flow_control, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_flow_control, "Pause parameter\n"); static int myri10ge_deassert_wait = 1; module_param(myri10ge_deassert_wait, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(myri10ge_deassert_wait, "Wait when deasserting legacy interrupts\n"); static int myri10ge_force_firmware = 0; module_param(myri10ge_force_firmware, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_force_firmware, "Force firmware to assume aligned completions\n"); static int myri10ge_skb_cross_4k = 0; module_param(myri10ge_skb_cross_4k, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(myri10ge_skb_cross_4k, "Can a small skb cross a 4KB boundary?\n"); static int myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN; module_param(myri10ge_initial_mtu, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_initial_mtu, "Initial MTU\n"); static int myri10ge_napi_weight = 64; module_param(myri10ge_napi_weight, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_napi_weight, "Set NAPI weight\n"); static int myri10ge_watchdog_timeout = 1; module_param(myri10ge_watchdog_timeout, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_watchdog_timeout, "Set watchdog timeout\n"); static int myri10ge_max_irq_loops = 1048576; module_param(myri10ge_max_irq_loops, int, S_IRUGO); MODULE_PARM_DESC(myri10ge_max_irq_loops, "Set stuck legacy IRQ detection threshold\n"); #define MYRI10GE_FW_OFFSET 1024*1024 #define MYRI10GE_HIGHPART_TO_U32(X) \ (sizeof (X) == 8) ? ((u32)((u64)(X) >> 32)) : (0) #define MYRI10GE_LOWPART_TO_U32(X) ((u32)(X)) #define myri10ge_pio_copy(to,from,size) __iowrite64_copy(to,from,size/8) static int myri10ge_send_cmd(struct myri10ge_priv *mgp, u32 cmd, struct myri10ge_cmd *data, int atomic) { struct mcp_cmd *buf; char buf_bytes[sizeof(*buf) + 8]; struct mcp_cmd_response *response = mgp->cmd; char __iomem *cmd_addr = mgp->sram + MXGEFW_CMD_OFFSET; u32 dma_low, dma_high, result, value; int sleep_total = 0; /* ensure buf is aligned to 8 bytes */ buf = (struct mcp_cmd *)ALIGN((unsigned long)buf_bytes, 8); buf->data0 = htonl(data->data0); buf->data1 = htonl(data->data1); buf->data2 = htonl(data->data2); buf->cmd = htonl(cmd); dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus); dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus); buf->response_addr.low = htonl(dma_low); buf->response_addr.high = htonl(dma_high); response->result = MYRI10GE_NO_RESPONSE_RESULT; mb(); myri10ge_pio_copy(cmd_addr, buf, sizeof(*buf)); /* wait up to 15ms. Longest command is the DMA benchmark, * which is capped at 5ms, but runs from a timeout handler * that runs every 7.8ms. So a 15ms timeout leaves us with * a 2.2ms margin */ if (atomic) { /* if atomic is set, do not sleep, * and try to get the completion quickly * (1ms will be enough for those commands) */ for (sleep_total = 0; sleep_total < 1000 && response->result == MYRI10GE_NO_RESPONSE_RESULT; sleep_total += 10) udelay(10); } else { /* use msleep for most command */ for (sleep_total = 0; sleep_total < 15 && response->result == MYRI10GE_NO_RESPONSE_RESULT; sleep_total++) msleep(1); } result = ntohl(response->result); value = ntohl(response->data); if (result != MYRI10GE_NO_RESPONSE_RESULT) { if (result == 0) { data->data0 = value; return 0; } else { dev_err(&mgp->pdev->dev, "command %d failed, result = %d\n", cmd, result); return -ENXIO; } } dev_err(&mgp->pdev->dev, "command %d timed out, result = %d\n", cmd, result); return -EAGAIN; } /* * The eeprom strings on the lanaiX have the format * SN=x\0 * MAC=x:x:x:x:x:x\0 * PT:ddd mmm xx xx:xx:xx xx\0 * PV:ddd mmm xx xx:xx:xx xx\0 */ static int myri10ge_read_mac_addr(struct myri10ge_priv *mgp) { char *ptr, *limit; int i; ptr = mgp->eeprom_strings; limit = mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE; while (*ptr != '\0' && ptr < limit) { if (memcmp(ptr, "MAC=", 4) == 0) { ptr += 4; mgp->mac_addr_string = ptr; for (i = 0; i < 6; i++) { if ((ptr + 2) > limit) goto abort; mgp->mac_addr[i] = simple_strtoul(ptr, &ptr, 16); ptr += 1; } } if (memcmp((const void *)ptr, "SN=", 3) == 0) { ptr += 3; mgp->serial_number = simple_strtoul(ptr, &ptr, 10); } while (ptr < limit && *ptr++) ; } return 0; abort: dev_err(&mgp->pdev->dev, "failed to parse eeprom_strings\n"); return -ENXIO; } /* * Enable or disable periodic RDMAs from the host to make certain * chipsets resend dropped PCIe messages */ static void myri10ge_dummy_rdma(struct myri10ge_priv *mgp, int enable) { char __iomem *submit; u32 buf[16]; u32 dma_low, dma_high; int i; /* clear confirmation addr */ mgp->cmd->data = 0; mb(); /* send a rdma command to the PCIe engine, and wait for the * response in the confirmation address. The firmware should * write a -1 there to indicate it is alive and well */ dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus); dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus); buf[0] = htonl(dma_high); /* confirm addr MSW */ buf[1] = htonl(dma_low); /* confirm addr LSW */ buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */ buf[3] = htonl(dma_high); /* dummy addr MSW */ buf[4] = htonl(dma_low); /* dummy addr LSW */ buf[5] = htonl(enable); /* enable? */ submit = mgp->sram + 0xfc01c0; myri10ge_pio_copy(submit, &buf, sizeof(buf)); for (i = 0; mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20; i++) msleep(1); if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA) dev_err(&mgp->pdev->dev, "dummy rdma %s failed\n", (enable ? "enable" : "disable")); } static int myri10ge_validate_firmware(struct myri10ge_priv *mgp, struct mcp_gen_header *hdr) { struct device *dev = &mgp->pdev->dev; int major, minor; /* check firmware type */ if (ntohl(hdr->mcp_type) != MCP_TYPE_ETH) { dev_err(dev, "Bad firmware type: 0x%x\n", ntohl(hdr->mcp_type)); return -EINVAL; } /* save firmware version for ethtool */ strncpy(mgp->fw_version, hdr->version, sizeof(mgp->fw_version)); sscanf(mgp->fw_version, "%d.%d", &major, &minor); if (!(major == MXGEFW_VERSION_MAJOR && minor == MXGEFW_VERSION_MINOR)) { dev_err(dev, "Found firmware version %s\n", mgp->fw_version); dev_err(dev, "Driver needs %d.%d\n", MXGEFW_VERSION_MAJOR, MXGEFW_VERSION_MINOR); return -EINVAL; } return 0; } static int myri10ge_load_hotplug_firmware(struct myri10ge_priv *mgp, u32 * size) { unsigned crc, reread_crc; const struct firmware *fw; struct device *dev = &mgp->pdev->dev; struct mcp_gen_header *hdr; size_t hdr_offset; int status; if ((status = request_firmware(&fw, mgp->fw_name, dev)) < 0) { dev_err(dev, "Unable to load %s firmware image via hotplug\n", mgp->fw_name); status = -EINVAL; goto abort_with_nothing; } /* check size */ if (fw->size >= mgp->sram_size - MYRI10GE_FW_OFFSET || fw->size < MCP_HEADER_PTR_OFFSET + 4) { dev_err(dev, "Firmware size invalid:%d\n", (int)fw->size); status = -EINVAL; goto abort_with_fw; } /* check id */ hdr_offset = ntohl(*(u32 *) (fw->data + MCP_HEADER_PTR_OFFSET)); if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > fw->size) { dev_err(dev, "Bad firmware file\n"); status = -EINVAL; goto abort_with_fw; } hdr = (void *)(fw->data + hdr_offset); status = myri10ge_validate_firmware(mgp, hdr); if (status != 0) goto abort_with_fw; crc = crc32(~0, fw->data, fw->size); if (mgp->tx.boundary == 2048) { /* Avoid PCI burst on chipset with unaligned completions. */ int i; __iomem u32 *ptr = (__iomem u32 *) (mgp->sram + MYRI10GE_FW_OFFSET); for (i = 0; i < fw->size / 4; i++) { __raw_writel(((u32 *) fw->data)[i], ptr + i); wmb(); } } else { myri10ge_pio_copy(mgp->sram + MYRI10GE_FW_OFFSET, fw->data, fw->size); } /* corruption checking is good for parity recovery and buggy chipset */ memcpy_fromio(fw->data, mgp->sram + MYRI10GE_FW_OFFSET, fw->size); reread_crc = crc32(~0, fw->data, fw->size); if (crc != reread_crc) { dev_err(dev, "CRC failed(fw-len=%u), got 0x%x (expect 0x%x)\n", (unsigned)fw->size, reread_crc, crc); status = -EIO; goto abort_with_fw; } *size = (u32) fw->size; abort_with_fw: release_firmware(fw); abort_with_nothing: return status; } static int myri10ge_adopt_running_firmware(struct myri10ge_priv *mgp) { struct mcp_gen_header *hdr; struct device *dev = &mgp->pdev->dev; const size_t bytes = sizeof(struct mcp_gen_header); size_t hdr_offset; int status; /* find running firmware header */ hdr_offset = ntohl(__raw_readl(mgp->sram + MCP_HEADER_PTR_OFFSET)); if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > mgp->sram_size) { dev_err(dev, "Running firmware has bad header offset (%d)\n", (int)hdr_offset); return -EIO; } /* copy header of running firmware from SRAM to host memory to * validate firmware */ hdr = kmalloc(bytes, GFP_KERNEL); if (hdr == NULL) { dev_err(dev, "could not malloc firmware hdr\n"); return -ENOMEM; } memcpy_fromio(hdr, mgp->sram + hdr_offset, bytes); status = myri10ge_validate_firmware(mgp, hdr); kfree(hdr); return status; } static int myri10ge_load_firmware(struct myri10ge_priv *mgp) { char __iomem *submit; u32 buf[16]; u32 dma_low, dma_high, size; int status, i; size = 0; status = myri10ge_load_hotplug_firmware(mgp, &size); if (status) { dev_warn(&mgp->pdev->dev, "hotplug firmware loading failed\n"); /* Do not attempt to adopt firmware if there * was a bad crc */ if (status == -EIO) return status; status = myri10ge_adopt_running_firmware(mgp); if (status != 0) { dev_err(&mgp->pdev->dev, "failed to adopt running firmware\n"); return status; } dev_info(&mgp->pdev->dev, "Successfully adopted running firmware\n"); if (mgp->tx.boundary == 4096) { dev_warn(&mgp->pdev->dev, "Using firmware currently running on NIC" ". For optimal\n"); dev_warn(&mgp->pdev->dev, "performance consider loading optimized " "firmware\n"); dev_warn(&mgp->pdev->dev, "via hotplug\n"); } mgp->fw_name = "adopted"; mgp->tx.boundary = 2048; return status; } /* clear confirmation addr */ mgp->cmd->data = 0; mb(); /* send a reload command to the bootstrap MCP, and wait for the * response in the confirmation address. The firmware should * write a -1 there to indicate it is alive and well */ dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus); dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus); buf[0] = htonl(dma_high); /* confirm addr MSW */ buf[1] = htonl(dma_low); /* confirm addr LSW */ buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */ /* FIX: All newest firmware should un-protect the bottom of * the sram before handoff. However, the very first interfaces * do not. Therefore the handoff copy must skip the first 8 bytes */ buf[3] = htonl(MYRI10GE_FW_OFFSET + 8); /* where the code starts */ buf[4] = htonl(size - 8); /* length of code */ buf[5] = htonl(8); /* where to copy to */ buf[6] = htonl(0); /* where to jump to */ submit = mgp->sram + 0xfc0000; myri10ge_pio_copy(submit, &buf, sizeof(buf)); mb(); msleep(1); mb(); i = 0; while (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20) { msleep(1); i++; } if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA) { dev_err(&mgp->pdev->dev, "handoff failed\n"); return -ENXIO; } dev_info(&mgp->pdev->dev, "handoff confirmed\n"); myri10ge_dummy_rdma(mgp, mgp->tx.boundary != 4096); return 0; } static int myri10ge_update_mac_address(struct myri10ge_priv *mgp, u8 * addr) { struct myri10ge_cmd cmd; int status; cmd.data0 = ((addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]); cmd.data1 = ((addr[4] << 8) | (addr[5])); status = myri10ge_send_cmd(mgp, MXGEFW_SET_MAC_ADDRESS, &cmd, 0); return status; } static int myri10ge_change_pause(struct myri10ge_priv *mgp, int pause) { struct myri10ge_cmd cmd; int status, ctl; ctl = pause ? MXGEFW_ENABLE_FLOW_CONTROL : MXGEFW_DISABLE_FLOW_CONTROL; status = myri10ge_send_cmd(mgp, ctl, &cmd, 0); if (status) { printk(KERN_ERR "myri10ge: %s: Failed to set flow control mode\n", mgp->dev->name); return status; } mgp->pause = pause; return 0; } static void myri10ge_change_promisc(struct myri10ge_priv *mgp, int promisc, int atomic) { struct myri10ge_cmd cmd; int status, ctl; ctl = promisc ? MXGEFW_ENABLE_PROMISC : MXGEFW_DISABLE_PROMISC; status = myri10ge_send_cmd(mgp, ctl, &cmd, atomic); if (status) printk(KERN_ERR "myri10ge: %s: Failed to set promisc mode\n", mgp->dev->name); } static int myri10ge_reset(struct myri10ge_priv *mgp) { struct myri10ge_cmd cmd; int status; size_t bytes; u32 len; /* try to send a reset command to the card to see if it * is alive */ memset(&cmd, 0, sizeof(cmd)); status = myri10ge_send_cmd(mgp, MXGEFW_CMD_RESET, &cmd, 0); if (status != 0) { dev_err(&mgp->pdev->dev, "failed reset\n"); return -ENXIO; } /* Now exchange information about interrupts */ bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry); memset(mgp->rx_done.entry, 0, bytes); cmd.data0 = (u32) bytes; status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd, 0); cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus); cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus); status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_DMA, &cmd, 0); status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_IRQ_ACK_OFFSET, &cmd, 0); mgp->irq_claim = (__iomem u32 *) (mgp->sram + cmd.data0); if (!mgp->msi_enabled) { status |= myri10ge_send_cmd (mgp, MXGEFW_CMD_GET_IRQ_DEASSERT_OFFSET, &cmd, 0); mgp->irq_deassert = (__iomem u32 *) (mgp->sram + cmd.data0); } status |= myri10ge_send_cmd (mgp, MXGEFW_CMD_GET_INTR_COAL_DELAY_OFFSET, &cmd, 0); mgp->intr_coal_delay_ptr = (__iomem u32 *) (mgp->sram + cmd.data0); if (status != 0) { dev_err(&mgp->pdev->dev, "failed set interrupt parameters\n"); return status; } __raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr); /* Run a small DMA test. * The magic multipliers to the length tell the firmware * to do DMA read, write, or read+write tests. The * results are returned in cmd.data0. The upper 16 * bits or the return is the number of transfers completed. * The lower 16 bits is the time in 0.5us ticks that the * transfers took to complete. */ len = mgp->tx.boundary; cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus); cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus); cmd.data2 = len * 0x10000; status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0); if (status == 0) mgp->read_dma = ((cmd.data0 >> 16) * len * 2) / (cmd.data0 & 0xffff); else dev_warn(&mgp->pdev->dev, "DMA read benchmark failed: %d\n", status); cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus); cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus); cmd.data2 = len * 0x1; status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0); if (status == 0) mgp->write_dma = ((cmd.data0 >> 16) * len * 2) / (cmd.data0 & 0xffff); else dev_warn(&mgp->pdev->dev, "DMA write benchmark failed: %d\n", status); cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus); cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus); cmd.data2 = len * 0x10001; status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0); if (status == 0) mgp->read_write_dma = ((cmd.data0 >> 16) * len * 2 * 2) / (cmd.data0 & 0xffff); else dev_warn(&mgp->pdev->dev, "DMA read/write benchmark failed: %d\n", status); memset(mgp->rx_done.entry, 0, bytes); /* reset mcp/driver shared state back to 0 */ mgp->tx.req = 0; mgp->tx.done = 0; mgp->tx.pkt_start = 0; mgp->tx.pkt_done = 0; mgp->rx_big.cnt = 0; mgp->rx_small.cnt = 0; mgp->rx_done.idx = 0; mgp->rx_done.cnt = 0; status = myri10ge_update_mac_address(mgp, mgp->dev->dev_addr); myri10ge_change_promisc(mgp, 0, 0); myri10ge_change_pause(mgp, mgp->pause); return status; } static inline void myri10ge_submit_8rx(struct mcp_kreq_ether_recv __iomem * dst, struct mcp_kreq_ether_recv *src) { u32 low; low = src->addr_low; src->addr_low = DMA_32BIT_MASK; myri10ge_pio_copy(dst, src, 8 * sizeof(*src)); mb(); src->addr_low = low; __raw_writel(low, &dst->addr_low); mb(); } /* * Set of routines to get a new receive buffer. Any buffer which * crosses a 4KB boundary must start on a 4KB boundary due to PCIe * wdma restrictions. We also try to align any smaller allocation to * at least a 16 byte boundary for efficiency. We assume the linux * memory allocator works by powers of 2, and will not return memory * smaller than 2KB which crosses a 4KB boundary. If it does, we fall * back to allocating 2x as much space as required. * * We intend to replace large (>4KB) skb allocations by using * pages directly and building a fraglist in the near future. */ static inline struct sk_buff *myri10ge_alloc_big(int bytes) { struct sk_buff *skb; unsigned long data, roundup; skb = dev_alloc_skb(bytes + 4096 + MXGEFW_PAD); if (skb == NULL) return NULL; /* Correct skb->truesize so that socket buffer * accounting is not confused the rounding we must * do to satisfy alignment constraints. */ skb->truesize -= 4096; data = (unsigned long)(skb->data); roundup = (-data) & (4095); skb_reserve(skb, roundup); return skb; } /* Allocate 2x as much space as required and use whichever portion * does not cross a 4KB boundary */ static inline struct sk_buff *myri10ge_alloc_small_safe(unsigned int bytes) { struct sk_buff *skb; unsigned long data, boundary; skb = dev_alloc_skb(2 * (bytes + MXGEFW_PAD) - 1); if (unlikely(skb == NULL)) return NULL; /* Correct skb->truesize so that socket buffer * accounting is not confused the rounding we must * do to satisfy alignment constraints. */ skb->truesize -= bytes + MXGEFW_PAD; data = (unsigned long)(skb->data); boundary = (data + 4095UL) & ~4095UL; if ((boundary - data) >= (bytes + MXGEFW_PAD)) return skb; skb_reserve(skb, boundary - data); return skb; } /* Allocate just enough space, and verify that the allocated * space does not cross a 4KB boundary */ static inline struct sk_buff *myri10ge_alloc_small(int bytes) { struct sk_buff *skb; unsigned long roundup, data, end; skb = dev_alloc_skb(bytes + 16 + MXGEFW_PAD); if (unlikely(skb == NULL)) return NULL; /* Round allocated buffer to 16 byte boundary */ data = (unsigned long)(skb->data); roundup = (-data) & 15UL; skb_reserve(skb, roundup); /* Verify that the data buffer does not cross a page boundary */ data = (unsigned long)(skb->data); end = data + bytes + MXGEFW_PAD - 1; if (unlikely(((end >> 12) != (data >> 12)) && (data & 4095UL))) { printk(KERN_NOTICE "myri10ge_alloc_small: small skb crossed 4KB boundary\n"); myri10ge_skb_cross_4k = 1; dev_kfree_skb_any(skb); skb = myri10ge_alloc_small_safe(bytes); } return skb; } static inline int myri10ge_getbuf(struct myri10ge_rx_buf *rx, struct pci_dev *pdev, int bytes, int idx) { struct sk_buff *skb; dma_addr_t bus; int len, retval = 0; bytes += VLAN_HLEN; /* account for 802.1q vlan tag */ if ((bytes + MXGEFW_PAD) > (4096 - 16) /* linux overhead */ ) skb = myri10ge_alloc_big(bytes); else if (myri10ge_skb_cross_4k) skb = myri10ge_alloc_small_safe(bytes); else skb = myri10ge_alloc_small(bytes); if (unlikely(skb == NULL)) { rx->alloc_fail++; retval = -ENOBUFS; goto done; } /* set len so that it only covers the area we * need mapped for DMA */ len = bytes + MXGEFW_PAD; bus = pci_map_single(pdev, skb->data, len, PCI_DMA_FROMDEVICE); rx->info[idx].skb = skb; pci_unmap_addr_set(&rx->info[idx], bus, bus); pci_unmap_len_set(&rx->info[idx], len, len); rx->shadow[idx].addr_low = htonl(MYRI10GE_LOWPART_TO_U32(bus)); rx->shadow[idx].addr_high = htonl(MYRI10GE_HIGHPART_TO_U32(bus)); done: /* copy 8 descriptors (64-bytes) to the mcp at a time */ if ((idx & 7) == 7) { if (rx->wc_fifo == NULL) myri10ge_submit_8rx(&rx->lanai[idx - 7], &rx->shadow[idx - 7]); else { mb(); myri10ge_pio_copy(rx->wc_fifo, &rx->shadow[idx - 7], 64); } } return retval; } static inline void myri10ge_vlan_ip_csum(struct sk_buff *skb, u16 hw_csum) { struct vlan_hdr *vh = (struct vlan_hdr *)(skb->data); if ((skb->protocol == ntohs(ETH_P_8021Q)) && (vh->h_vlan_encapsulated_proto == htons(ETH_P_IP) || vh->h_vlan_encapsulated_proto == htons(ETH_P_IPV6))) { skb->csum = hw_csum; skb->ip_summed = CHECKSUM_HW; } } static inline unsigned long myri10ge_rx_done(struct myri10ge_priv *mgp, struct myri10ge_rx_buf *rx, int bytes, int len, int csum) { dma_addr_t bus; struct sk_buff *skb; int idx, unmap_len; idx = rx->cnt & rx->mask; rx->cnt++; /* save a pointer to the received skb */ skb = rx->info[idx].skb; bus = pci_unmap_addr(&rx->info[idx], bus); unmap_len = pci_unmap_len(&rx->info[idx], len); /* try to replace the received skb */ if (myri10ge_getbuf(rx, mgp->pdev, bytes, idx)) { /* drop the frame -- the old skbuf is re-cycled */ mgp->stats.rx_dropped += 1; return 0; } /* unmap the recvd skb */ pci_unmap_single(mgp->pdev, bus, unmap_len, PCI_DMA_FROMDEVICE); /* mcp implicitly skips 1st bytes so that packet is properly * aligned */ skb_reserve(skb, MXGEFW_PAD); /* set the length of the frame */ skb_put(skb, len); skb->protocol = eth_type_trans(skb, mgp->dev); skb->dev = mgp->dev; if (mgp->csum_flag) { if ((skb->protocol == ntohs(ETH_P_IP)) || (skb->protocol == ntohs(ETH_P_IPV6))) { skb->csum = ntohs((u16) csum); skb->ip_summed = CHECKSUM_HW; } else myri10ge_vlan_ip_csum(skb, ntohs((u16) csum)); } netif_receive_skb(skb); mgp->dev->last_rx = jiffies; return 1; } static inline void myri10ge_tx_done(struct myri10ge_priv *mgp, int mcp_index) { struct pci_dev *pdev = mgp->pdev; struct myri10ge_tx_buf *tx = &mgp->tx; struct sk_buff *skb; int idx, len; int limit = 0; while (tx->pkt_done != mcp_index) { idx = tx->done & tx->mask; skb = tx->info[idx].skb; /* Mark as free */ tx->info[idx].skb = NULL; if (tx->info[idx].last) { tx->pkt_done++; tx->info[idx].last = 0; } tx->done++; len = pci_unmap_len(&tx->info[idx], len); pci_unmap_len_set(&tx->info[idx], len, 0); if (skb) { mgp->stats.tx_bytes += skb->len; mgp->stats.tx_packets++; dev_kfree_skb_irq(skb); if (len) pci_unmap_single(pdev, pci_unmap_addr(&tx->info[idx], bus), len, PCI_DMA_TODEVICE); } else { if (len) pci_unmap_page(pdev, pci_unmap_addr(&tx->info[idx], bus), len, PCI_DMA_TODEVICE); } /* limit potential for livelock by only handling * 2 full tx rings per call */ if (unlikely(++limit > 2 * tx->mask)) break; } /* start the queue if we've stopped it */ if (netif_queue_stopped(mgp->dev) && tx->req - tx->done < (tx->mask >> 1)) { mgp->wake_queue++; netif_wake_queue(mgp->dev); } } static inline void myri10ge_clean_rx_done(struct myri10ge_priv *mgp, int *limit) { struct myri10ge_rx_done *rx_done = &mgp->rx_done; unsigned long rx_bytes = 0; unsigned long rx_packets = 0; unsigned long rx_ok; int idx = rx_done->idx; int cnt = rx_done->cnt; u16 length; u16 checksum; while (rx_done->entry[idx].length != 0 && *limit != 0) { length = ntohs(rx_done->entry[idx].length); rx_done->entry[idx].length = 0; checksum = ntohs(rx_done->entry[idx].checksum); if (length <= mgp->small_bytes) rx_ok = myri10ge_rx_done(mgp, &mgp->rx_small, mgp->small_bytes, length, checksum); else rx_ok = myri10ge_rx_done(mgp, &mgp->rx_big, mgp->dev->mtu + ETH_HLEN, length, checksum); rx_packets += rx_ok; rx_bytes += rx_ok * (unsigned long)length; cnt++; idx = cnt & (myri10ge_max_intr_slots - 1); /* limit potential for livelock by only handling a * limited number of frames. */ (*limit)--; } rx_done->idx = idx; rx_done->cnt = cnt; mgp->stats.rx_packets += rx_packets; mgp->stats.rx_bytes += rx_bytes; } static inline void myri10ge_check_statblock(struct myri10ge_priv *mgp) { struct mcp_irq_data *stats = mgp->fw_stats; if (unlikely(stats->stats_updated)) { if (mgp->link_state != stats->link_up) { mgp->link_state = stats->link_up; if (mgp->link_state) { printk(KERN_INFO "myri10ge: %s: link up\n", mgp->dev->name); netif_carrier_on(mgp->dev); } else { printk(KERN_INFO "myri10ge: %s: link down\n", mgp->dev->name); netif_carrier_off(mgp->dev); } } if (mgp->rdma_tags_available != ntohl(mgp->fw_stats->rdma_tags_available)) { mgp->rdma_tags_available = ntohl(mgp->fw_stats->rdma_tags_available); printk(KERN_WARNING "myri10ge: %s: RDMA timed out! " "%d tags left\n", mgp->dev->name, mgp->rdma_tags_available); } mgp->down_cnt += stats->link_down; if (stats->link_down) wake_up(&mgp->down_wq); } } static int myri10ge_poll(struct net_device *netdev, int *budget) { struct myri10ge_priv *mgp = netdev_priv(netdev); struct myri10ge_rx_done *rx_done = &mgp->rx_done; int limit, orig_limit, work_done; /* process as many rx events as NAPI will allow */ limit = min(*budget, netdev->quota); orig_limit = limit; myri10ge_clean_rx_done(mgp, &limit); work_done = orig_limit - limit; *budget -= work_done; netdev->quota -= work_done; if (rx_done->entry[rx_done->idx].length == 0 || !netif_running(netdev)) { netif_rx_complete(netdev); __raw_writel(htonl(3), mgp->irq_claim); return 0; } return 1; } static irqreturn_t myri10ge_intr(int irq, void *arg, struct pt_regs *regs) { struct myri10ge_priv *mgp = arg; struct mcp_irq_data *stats = mgp->fw_stats; struct myri10ge_tx_buf *tx = &mgp->tx; u32 send_done_count; int i; /* make sure it is our IRQ, and that the DMA has finished */ if (unlikely(!stats->valid)) return (IRQ_NONE); /* low bit indicates receives are present, so schedule * napi poll handler */ if (stats->valid & 1) netif_rx_schedule(mgp->dev); if (!mgp->msi_enabled) { __raw_writel(0, mgp->irq_deassert); if (!myri10ge_deassert_wait) stats->valid = 0; mb(); } else stats->valid = 0; /* Wait for IRQ line to go low, if using INTx */ i = 0; while (1) { i++; /* check for transmit completes and receives */ send_done_count = ntohl(stats->send_done_count); if (send_done_count != tx->pkt_done) myri10ge_tx_done(mgp, (int)send_done_count); if (unlikely(i > myri10ge_max_irq_loops)) { printk(KERN_WARNING "myri10ge: %s: irq stuck?\n", mgp->dev->name); stats->valid = 0; schedule_work(&mgp->watchdog_work); } if (likely(stats->valid == 0)) break; cpu_relax(); barrier(); } myri10ge_check_statblock(mgp); __raw_writel(htonl(3), mgp->irq_claim + 1); return (IRQ_HANDLED); } static int myri10ge_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) { cmd->autoneg = AUTONEG_DISABLE; cmd->speed = SPEED_10000; cmd->duplex = DUPLEX_FULL; return 0; } static void myri10ge_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct myri10ge_priv *mgp = netdev_priv(netdev); strlcpy(info->driver, "myri10ge", sizeof(info->driver)); strlcpy(info->version, MYRI10GE_VERSION_STR, sizeof(info->version)); strlcpy(info->fw_version, mgp->fw_version, sizeof(info->fw_version)); strlcpy(info->bus_info, pci_name(mgp->pdev), sizeof(info->bus_info)); } static int myri10ge_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal) { struct myri10ge_priv *mgp = netdev_priv(netdev); coal->rx_coalesce_usecs = mgp->intr_coal_delay; return 0; } static int myri10ge_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal) { struct myri10ge_priv *mgp = netdev_priv(netdev); mgp->intr_coal_delay = coal->rx_coalesce_usecs; __raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr); return 0; } static void myri10ge_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct myri10ge_priv *mgp = netdev_priv(netdev); pause->autoneg = 0; pause->rx_pause = mgp->pause; pause->tx_pause = mgp->pause; } static int myri10ge_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct myri10ge_priv *mgp = netdev_priv(netdev); if (pause->tx_pause != mgp->pause) return myri10ge_change_pause(mgp, pause->tx_pause); if (pause->rx_pause != mgp->pause) return myri10ge_change_pause(mgp, pause->tx_pause); if (pause->autoneg != 0) return -EINVAL; return 0; } static void myri10ge_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct myri10ge_priv *mgp = netdev_priv(netdev); ring->rx_mini_max_pending = mgp->rx_small.mask + 1; ring->rx_max_pending = mgp->rx_big.mask + 1; ring->rx_jumbo_max_pending = 0; ring->tx_max_pending = mgp->rx_small.mask + 1; ring->rx_mini_pending = ring->rx_mini_max_pending; ring->rx_pending = ring->rx_max_pending; ring->rx_jumbo_pending = ring->rx_jumbo_max_pending; ring->tx_pending = ring->tx_max_pending; } static u32 myri10ge_get_rx_csum(struct net_device *netdev) { struct myri10ge_priv *mgp = netdev_priv(netdev); if (mgp->csum_flag) return 1; else return 0; } static int myri10ge_set_rx_csum(struct net_device *netdev, u32 csum_enabled) { struct myri10ge_priv *mgp = netdev_priv(netdev); if (csum_enabled) mgp->csum_flag = MXGEFW_FLAGS_CKSUM; else mgp->csum_flag = 0; return 0; } static const char myri10ge_gstrings_stats[][ETH_GSTRING_LEN] = { "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", "rx_length_errors", "rx_over_errors", "rx_crc_errors", "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", "tx_heartbeat_errors", "tx_window_errors", /* device-specific stats */ "read_dma_bw_MBs", "write_dma_bw_MBs", "read_write_dma_bw_MBs", "serial_number", "tx_pkt_start", "tx_pkt_done", "tx_req", "tx_done", "rx_small_cnt", "rx_big_cnt", "wake_queue", "stop_queue", "watchdog_resets", "tx_linearized", "link_up", "dropped_link_overflow", "dropped_link_error_or_filtered", "dropped_runt", "dropped_overrun", "dropped_no_small_buffer", "dropped_no_big_buffer" }; #define MYRI10GE_NET_STATS_LEN 21 #define MYRI10GE_STATS_LEN sizeof(myri10ge_gstrings_stats) / ETH_GSTRING_LEN static void myri10ge_get_strings(struct net_device *netdev, u32 stringset, u8 * data) { switch (stringset) { case ETH_SS_STATS: memcpy(data, *myri10ge_gstrings_stats, sizeof(myri10ge_gstrings_stats)); break; } } static int myri10ge_get_stats_count(struct net_device *netdev) { return MYRI10GE_STATS_LEN; } static void myri10ge_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 * data) { struct myri10ge_priv *mgp = netdev_priv(netdev); int i; for (i = 0; i < MYRI10GE_NET_STATS_LEN; i++) data[i] = ((unsigned long *)&mgp->stats)[i]; data[i++] = (unsigned int)mgp->read_dma; data[i++] = (unsigned int)mgp->write_dma; data[i++] = (unsigned int)mgp->read_write_dma; data[i++] = (unsigned int)mgp->serial_number; data[i++] = (unsigned int)mgp->tx.pkt_start; data[i++] = (unsigned int)mgp->tx.pkt_done; data[i++] = (unsigned int)mgp->tx.req; data[i++] = (unsigned int)mgp->tx.done; data[i++] = (unsigned int)mgp->rx_small.cnt; data[i++] = (unsigned int)mgp->rx_big.cnt; data[i++] = (unsigned int)mgp->wake_queue; data[i++] = (unsigned int)mgp->stop_queue; data[i++] = (unsigned int)mgp->watchdog_resets; data[i++] = (unsigned int)mgp->tx_linearized; data[i++] = (unsigned int)ntohl(mgp->fw_stats->link_up); data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_link_overflow); data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_link_error_or_filtered); data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_runt); data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_overrun); data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_small_buffer); data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_big_buffer); } static struct ethtool_ops myri10ge_ethtool_ops = { .get_settings = myri10ge_get_settings, .get_drvinfo = myri10ge_get_drvinfo, .get_coalesce = myri10ge_get_coalesce, .set_coalesce = myri10ge_set_coalesce, .get_pauseparam = myri10ge_get_pauseparam, .set_pauseparam = myri10ge_set_pauseparam, .get_ringparam = myri10ge_get_ringparam, .get_rx_csum = myri10ge_get_rx_csum, .set_rx_csum = myri10ge_set_rx_csum, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = ethtool_op_set_tx_hw_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, #ifdef NETIF_F_TSO .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, #endif .get_strings = myri10ge_get_strings, .get_stats_count = myri10ge_get_stats_count, .get_ethtool_stats = myri10ge_get_ethtool_stats }; static int myri10ge_allocate_rings(struct net_device *dev) { struct myri10ge_priv *mgp; struct myri10ge_cmd cmd; int tx_ring_size, rx_ring_size; int tx_ring_entries, rx_ring_entries; int i, status; size_t bytes; mgp = netdev_priv(dev); /* get ring sizes */ status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_RING_SIZE, &cmd, 0); tx_ring_size = cmd.data0; status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd, 0); rx_ring_size = cmd.data0; tx_ring_entries = tx_ring_size / sizeof(struct mcp_kreq_ether_send); rx_ring_entries = rx_ring_size / sizeof(struct mcp_dma_addr); mgp->tx.mask = tx_ring_entries - 1; mgp->rx_small.mask = mgp->rx_big.mask = rx_ring_entries - 1; /* allocate the host shadow rings */ bytes = 8 + (MYRI10GE_MAX_SEND_DESC_TSO + 4) * sizeof(*mgp->tx.req_list); mgp->tx.req_bytes = kzalloc(bytes, GFP_KERNEL); if (mgp->tx.req_bytes == NULL) goto abort_with_nothing; /* ensure req_list entries are aligned to 8 bytes */ mgp->tx.req_list = (struct mcp_kreq_ether_send *) ALIGN((unsigned long)mgp->tx.req_bytes, 8); bytes = rx_ring_entries * sizeof(*mgp->rx_small.shadow); mgp->rx_small.shadow = kzalloc(bytes, GFP_KERNEL); if (mgp->rx_small.shadow == NULL) goto abort_with_tx_req_bytes; bytes = rx_ring_entries * sizeof(*mgp->rx_big.shadow); mgp->rx_big.shadow = kzalloc(bytes, GFP_KERNEL); if (mgp->rx_big.shadow == NULL) goto abort_with_rx_small_shadow; /* allocate the host info rings */ bytes = tx_ring_entries * sizeof(*mgp->tx.info); mgp->tx.info = kzalloc(bytes, GFP_KERNEL); if (mgp->tx.info == NULL) goto abort_with_rx_big_shadow; bytes = rx_ring_entries * sizeof(*mgp->rx_small.info); mgp->rx_small.info = kzalloc(bytes, GFP_KERNEL); if (mgp->rx_small.info == NULL) goto abort_with_tx_info; bytes = rx_ring_entries * sizeof(*mgp->rx_big.info); mgp->rx_big.info = kzalloc(bytes, GFP_KERNEL); if (mgp->rx_big.info == NULL) goto abort_with_rx_small_info; /* Fill the receive rings */ for (i = 0; i <= mgp->rx_small.mask; i++) { status = myri10ge_getbuf(&mgp->rx_small, mgp->pdev, mgp->small_bytes, i); if (status) { printk(KERN_ERR "myri10ge: %s: alloced only %d small bufs\n", dev->name, i); goto abort_with_rx_small_ring; } } for (i = 0; i <= mgp->rx_big.mask; i++) { status = myri10ge_getbuf(&mgp->rx_big, mgp->pdev, dev->mtu + ETH_HLEN, i); if (status) { printk(KERN_ERR "myri10ge: %s: alloced only %d big bufs\n", dev->name, i); goto abort_with_rx_big_ring; } } return 0; abort_with_rx_big_ring: for (i = 0; i <= mgp->rx_big.mask; i++) { if (mgp->rx_big.info[i].skb != NULL) dev_kfree_skb_any(mgp->rx_big.info[i].skb); if (pci_unmap_len(&mgp->rx_big.info[i], len)) pci_unmap_single(mgp->pdev, pci_unmap_addr(&mgp->rx_big.info[i], bus), pci_unmap_len(&mgp->rx_big.info[i], len), PCI_DMA_FROMDEVICE); } abort_with_rx_small_ring: for (i = 0; i <= mgp->rx_small.mask; i++) { if (mgp->rx_small.info[i].skb != NULL) dev_kfree_skb_any(mgp->rx_small.info[i].skb); if (pci_unmap_len(&mgp->rx_small.info[i], len)) pci_unmap_single(mgp->pdev, pci_unmap_addr(&mgp->rx_small.info[i], bus), pci_unmap_len(&mgp->rx_small.info[i], len), PCI_DMA_FROMDEVICE); } kfree(mgp->rx_big.info); abort_with_rx_small_info: kfree(mgp->rx_small.info); abort_with_tx_info: kfree(mgp->tx.info); abort_with_rx_big_shadow: kfree(mgp->rx_big.shadow); abort_with_rx_small_shadow: kfree(mgp->rx_small.shadow); abort_with_tx_req_bytes: kfree(mgp->tx.req_bytes); mgp->tx.req_bytes = NULL; mgp->tx.req_list = NULL; abort_with_nothing: return status; } static void myri10ge_free_rings(struct net_device *dev) { struct myri10ge_priv *mgp; struct sk_buff *skb; struct myri10ge_tx_buf *tx; int i, len, idx; mgp = netdev_priv(dev); for (i = 0; i <= mgp->rx_big.mask; i++) { if (mgp->rx_big.info[i].skb != NULL) dev_kfree_skb_any(mgp->rx_big.info[i].skb); if (pci_unmap_len(&mgp->rx_big.info[i], len)) pci_unmap_single(mgp->pdev, pci_unmap_addr(&mgp->rx_big.info[i], bus), pci_unmap_len(&mgp->rx_big.info[i], len), PCI_DMA_FROMDEVICE); } for (i = 0; i <= mgp->rx_small.mask; i++) { if (mgp->rx_small.info[i].skb != NULL) dev_kfree_skb_any(mgp->rx_small.info[i].skb); if (pci_unmap_len(&mgp->rx_small.info[i], len)) pci_unmap_single(mgp->pdev, pci_unmap_addr(&mgp->rx_small.info[i], bus), pci_unmap_len(&mgp->rx_small.info[i], len), PCI_DMA_FROMDEVICE); } tx = &mgp->tx; while (tx->done != tx->req) { idx = tx->done & tx->mask; skb = tx->info[idx].skb; /* Mark as free */ tx->info[idx].skb = NULL; tx->done++; len = pci_unmap_len(&tx->info[idx], len); pci_unmap_len_set(&tx->info[idx], len, 0); if (skb) { mgp->stats.tx_dropped++; dev_kfree_skb_any(skb); if (len) pci_unmap_single(mgp->pdev, pci_unmap_addr(&tx->info[idx], bus), len, PCI_DMA_TODEVICE); } else { if (len) pci_unmap_page(mgp->pdev, pci_unmap_addr(&tx->info[idx], bus), len, PCI_DMA_TODEVICE); } } kfree(mgp->rx_big.info); kfree(mgp->rx_small.info); kfree(mgp->tx.info); kfree(mgp->rx_big.shadow); kfree(mgp->rx_small.shadow); kfree(mgp->tx.req_bytes); mgp->tx.req_bytes = NULL; mgp->tx.req_list = NULL; } static int myri10ge_open(struct net_device *dev) { struct myri10ge_priv *mgp; struct myri10ge_cmd cmd; int status, big_pow2; mgp = netdev_priv(dev); if (mgp->running != MYRI10GE_ETH_STOPPED) return -EBUSY; mgp->running = MYRI10GE_ETH_STARTING; status = myri10ge_reset(mgp); if (status != 0) { printk(KERN_ERR "myri10ge: %s: failed reset\n", dev->name); mgp->running = MYRI10GE_ETH_STOPPED; return -ENXIO; } /* decide what small buffer size to use. For good TCP rx * performance, it is important to not receive 1514 byte * frames into jumbo buffers, as it confuses the socket buffer * accounting code, leading to drops and erratic performance. */ if (dev->mtu <= ETH_DATA_LEN) mgp->small_bytes = 128; /* enough for a TCP header */ else mgp->small_bytes = ETH_FRAME_LEN; /* enough for an ETH_DATA_LEN frame */ /* Override the small buffer size? */ if (myri10ge_small_bytes > 0) mgp->small_bytes = myri10ge_small_bytes; /* If the user sets an obscenely small MTU, adjust the small * bytes down to nearly nothing */ if (mgp->small_bytes >= (dev->mtu + ETH_HLEN)) mgp->small_bytes = 64; /* get the lanai pointers to the send and receive rings */ status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_OFFSET, &cmd, 0); mgp->tx.lanai = (struct mcp_kreq_ether_send __iomem *)(mgp->sram + cmd.data0); status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SMALL_RX_OFFSET, &cmd, 0); mgp->rx_small.lanai = (struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0); status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_BIG_RX_OFFSET, &cmd, 0); mgp->rx_big.lanai = (struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0); if (status != 0) { printk(KERN_ERR "myri10ge: %s: failed to get ring sizes or locations\n", dev->name); mgp->running = MYRI10GE_ETH_STOPPED; return -ENXIO; } if (mgp->mtrr >= 0) { mgp->tx.wc_fifo = (u8 __iomem *) mgp->sram + 0x200000; mgp->rx_small.wc_fifo = (u8 __iomem *) mgp->sram + 0x300000; mgp->rx_big.wc_fifo = (u8 __iomem *) mgp->sram + 0x340000; } else { mgp->tx.wc_fifo = NULL; mgp->rx_small.wc_fifo = NULL; mgp->rx_big.wc_fifo = NULL; } status = myri10ge_allocate_rings(dev); if (status != 0) goto abort_with_nothing; /* Firmware needs the big buff size as a power of 2. Lie and * tell him the buffer is larger, because we only use 1 * buffer/pkt, and the mtu will prevent overruns. */ big_pow2 = dev->mtu + ETH_HLEN + MXGEFW_PAD; while ((big_pow2 & (big_pow2 - 1)) != 0) big_pow2++; /* now give firmware buffers sizes, and MTU */ cmd.data0 = dev->mtu + ETH_HLEN + VLAN_HLEN; status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_MTU, &cmd, 0); cmd.data0 = mgp->small_bytes; status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_SMALL_BUFFER_SIZE, &cmd, 0); cmd.data0 = big_pow2; status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_BIG_BUFFER_SIZE, &cmd, 0); if (status) { printk(KERN_ERR "myri10ge: %s: Couldn't set buffer sizes\n", dev->name); goto abort_with_rings; } cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->fw_stats_bus); cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->fw_stats_bus); status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_STATS_DMA, &cmd, 0); if (status) { printk(KERN_ERR "myri10ge: %s: Couldn't set stats DMA\n", dev->name); goto abort_with_rings; } mgp->link_state = -1; mgp->rdma_tags_available = 15; netif_poll_enable(mgp->dev); /* must happen prior to any irq */ status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_UP, &cmd, 0); if (status) { printk(KERN_ERR "myri10ge: %s: Couldn't bring up link\n", dev->name); goto abort_with_rings; } mgp->wake_queue = 0; mgp->stop_queue = 0; mgp->running = MYRI10GE_ETH_RUNNING; mgp->watchdog_timer.expires = jiffies + myri10ge_watchdog_timeout * HZ; add_timer(&mgp->watchdog_timer); netif_wake_queue(dev); return 0; abort_with_rings: myri10ge_free_rings(dev); abort_with_nothing: mgp->running = MYRI10GE_ETH_STOPPED; return -ENOMEM; } static int myri10ge_close(struct net_device *dev) { struct myri10ge_priv *mgp; struct myri10ge_cmd cmd; int status, old_down_cnt; mgp = netdev_priv(dev); if (mgp->running != MYRI10GE_ETH_RUNNING) return 0; if (mgp->tx.req_bytes == NULL) return 0; del_timer_sync(&mgp->watchdog_timer); mgp->running = MYRI10GE_ETH_STOPPING; netif_poll_disable(mgp->dev); netif_carrier_off(dev); netif_stop_queue(dev); old_down_cnt = mgp->down_cnt; mb(); status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_DOWN, &cmd, 0); if (status) printk(KERN_ERR "myri10ge: %s: Couldn't bring down link\n", dev->name); wait_event_timeout(mgp->down_wq, old_down_cnt != mgp->down_cnt, HZ); if (old_down_cnt == mgp->down_cnt) printk(KERN_ERR "myri10ge: %s never got down irq\n", dev->name); netif_tx_disable(dev); myri10ge_free_rings(dev); mgp->running = MYRI10GE_ETH_STOPPED; return 0; } /* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy * backwards one at a time and handle ring wraps */ static inline void myri10ge_submit_req_backwards(struct myri10ge_tx_buf *tx, struct mcp_kreq_ether_send *src, int cnt) { int idx, starting_slot; starting_slot = tx->req; while (cnt > 1) { cnt--; idx = (starting_slot + cnt) & tx->mask; myri10ge_pio_copy(&tx->lanai[idx], &src[cnt], sizeof(*src)); mb(); } } /* * copy an array of struct mcp_kreq_ether_send's to the mcp. Copy * at most 32 bytes at a time, so as to avoid involving the software * pio handler in the nic. We re-write the first segment's flags * to mark them valid only after writing the entire chain. */ static inline void myri10ge_submit_req(struct myri10ge_tx_buf *tx, struct mcp_kreq_ether_send *src, int cnt) { int idx, i; struct mcp_kreq_ether_send __iomem *dstp, *dst; struct mcp_kreq_ether_send *srcp; u8 last_flags; idx = tx->req & tx->mask; last_flags = src->flags; src->flags = 0; mb(); dst = dstp = &tx->lanai[idx]; srcp = src; if ((idx + cnt) < tx->mask) { for (i = 0; i < (cnt - 1); i += 2) { myri10ge_pio_copy(dstp, srcp, 2 * sizeof(*src)); mb(); /* force write every 32 bytes */ srcp += 2; dstp += 2; } } else { /* submit all but the first request, and ensure * that it is submitted below */ myri10ge_submit_req_backwards(tx, src, cnt); i = 0; } if (i < cnt) { /* submit the first request */ myri10ge_pio_copy(dstp, srcp, sizeof(*src)); mb(); /* barrier before setting valid flag */ } /* re-write the last 32-bits with the valid flags */ src->flags = last_flags; __raw_writel(*((u32 *) src + 3), (u32 __iomem *) dst + 3); tx->req += cnt; mb(); } static inline void myri10ge_submit_req_wc(struct myri10ge_tx_buf *tx, struct mcp_kreq_ether_send *src, int cnt) { tx->req += cnt; mb(); while (cnt >= 4) { myri10ge_pio_copy(tx->wc_fifo, src, 64); mb(); src += 4; cnt -= 4; } if (cnt > 0) { /* pad it to 64 bytes. The src is 64 bytes bigger than it * needs to be so that we don't overrun it */ myri10ge_pio_copy(tx->wc_fifo + (cnt << 18), src, 64); mb(); } } /* * Transmit a packet. We need to split the packet so that a single * segment does not cross myri10ge->tx.boundary, so this makes segment * counting tricky. So rather than try to count segments up front, we * just give up if there are too few segments to hold a reasonably * fragmented packet currently available. If we run * out of segments while preparing a packet for DMA, we just linearize * it and try again. */ static int myri10ge_xmit(struct sk_buff *skb, struct net_device *dev) { struct myri10ge_priv *mgp = netdev_priv(dev); struct mcp_kreq_ether_send *req; struct myri10ge_tx_buf *tx = &mgp->tx; struct skb_frag_struct *frag; dma_addr_t bus; u32 low, high_swapped; unsigned int len; int idx, last_idx, avail, frag_cnt, frag_idx, count, mss, max_segments; u16 pseudo_hdr_offset, cksum_offset; int cum_len, seglen, boundary, rdma_count; u8 flags, odd_flag; again: req = tx->req_list; avail = tx->mask - 1 - (tx->req - tx->done); mss = 0; max_segments = MXGEFW_MAX_SEND_DESC; #ifdef NETIF_F_TSO if (skb->len > (dev->mtu + ETH_HLEN)) { mss = skb_shinfo(skb)->gso_size; if (mss != 0) max_segments = MYRI10GE_MAX_SEND_DESC_TSO; } #endif /*NETIF_F_TSO */ if ((unlikely(avail < max_segments))) { /* we are out of transmit resources */ mgp->stop_queue++; netif_stop_queue(dev); return 1; } /* Setup checksum offloading, if needed */ cksum_offset = 0; pseudo_hdr_offset = 0; odd_flag = 0; flags = (MXGEFW_FLAGS_NO_TSO | MXGEFW_FLAGS_FIRST); if (likely(skb->ip_summed == CHECKSUM_HW)) { cksum_offset = (skb->h.raw - skb->data); pseudo_hdr_offset = (skb->h.raw + skb->csum) - skb->data; /* If the headers are excessively large, then we must * fall back to a software checksum */ if (unlikely(cksum_offset > 255 || pseudo_hdr_offset > 127)) { if (skb_checksum_help(skb, 0)) goto drop; cksum_offset = 0; pseudo_hdr_offset = 0; } else { pseudo_hdr_offset = htons(pseudo_hdr_offset); odd_flag = MXGEFW_FLAGS_ALIGN_ODD; flags |= MXGEFW_FLAGS_CKSUM; } } cum_len = 0; #ifdef NETIF_F_TSO if (mss) { /* TSO */ /* this removes any CKSUM flag from before */ flags = (MXGEFW_FLAGS_TSO_HDR | MXGEFW_FLAGS_FIRST); /* negative cum_len signifies to the * send loop that we are still in the * header portion of the TSO packet. * TSO header must be at most 134 bytes long */ cum_len = -((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); /* for TSO, pseudo_hdr_offset holds mss. * The firmware figures out where to put * the checksum by parsing the header. */ pseudo_hdr_offset = htons(mss); } else #endif /*NETIF_F_TSO */ /* Mark small packets, and pad out tiny packets */ if (skb->len <= MXGEFW_SEND_SMALL_SIZE) { flags |= MXGEFW_FLAGS_SMALL; /* pad frames to at least ETH_ZLEN bytes */ if (unlikely(skb->len < ETH_ZLEN)) { if (skb_padto(skb, ETH_ZLEN)) { /* The packet is gone, so we must * return 0 */ mgp->stats.tx_dropped += 1; return 0; } /* adjust the len to account for the zero pad * so that the nic can know how long it is */ skb->len = ETH_ZLEN; } } /* map the skb for DMA */ len = skb->len - skb->data_len; idx = tx->req & tx->mask; tx->info[idx].skb = skb; bus = pci_map_single(mgp->pdev, skb->data, len, PCI_DMA_TODEVICE); pci_unmap_addr_set(&tx->info[idx], bus, bus); pci_unmap_len_set(&tx->info[idx], len, len); frag_cnt = skb_shinfo(skb)->nr_frags; frag_idx = 0; count = 0; rdma_count = 0; /* "rdma_count" is the number of RDMAs belonging to the * current packet BEFORE the current send request. For * non-TSO packets, this is equal to "count". * For TSO packets, rdma_count needs to be reset * to 0 after a segment cut. * * The rdma_count field of the send request is * the number of RDMAs of the packet starting at * that request. For TSO send requests with one ore more cuts * in the middle, this is the number of RDMAs starting * after the last cut in the request. All previous * segments before the last cut implicitly have 1 RDMA. * * Since the number of RDMAs is not known beforehand, * it must be filled-in retroactively - after each * segmentation cut or at the end of the entire packet. */ while (1) { /* Break the SKB or Fragment up into pieces which * do not cross mgp->tx.boundary */ low = MYRI10GE_LOWPART_TO_U32(bus); high_swapped = htonl(MYRI10GE_HIGHPART_TO_U32(bus)); while (len) { u8 flags_next; int cum_len_next; if (unlikely(count == max_segments)) goto abort_linearize; boundary = (low + tx->boundary) & ~(tx->boundary - 1); seglen = boundary - low; if (seglen > len) seglen = len; flags_next = flags & ~MXGEFW_FLAGS_FIRST; cum_len_next = cum_len + seglen; #ifdef NETIF_F_TSO if (mss) { /* TSO */ (req - rdma_count)->rdma_count = rdma_count + 1; if (likely(cum_len >= 0)) { /* payload */ int next_is_first, chop; chop = (cum_len_next > mss); cum_len_next = cum_len_next % mss; next_is_first = (cum_len_next == 0); flags |= chop * MXGEFW_FLAGS_TSO_CHOP; flags_next |= next_is_first * MXGEFW_FLAGS_FIRST; rdma_count |= -(chop | next_is_first); rdma_count += chop & !next_is_first; } else if (likely(cum_len_next >= 0)) { /* header ends */ int small; rdma_count = -1; cum_len_next = 0; seglen = -cum_len; small = (mss <= MXGEFW_SEND_SMALL_SIZE); flags_next = MXGEFW_FLAGS_TSO_PLD | MXGEFW_FLAGS_FIRST | (small * MXGEFW_FLAGS_SMALL); } } #endif /* NETIF_F_TSO */ req->addr_high = high_swapped; req->addr_low = htonl(low); req->pseudo_hdr_offset = pseudo_hdr_offset; req->pad = 0; /* complete solid 16-byte block; does this matter? */ req->rdma_count = 1; req->length = htons(seglen); req->cksum_offset = cksum_offset; req->flags = flags | ((cum_len & 1) * odd_flag); low += seglen; len -= seglen; cum_len = cum_len_next; flags = flags_next; req++; count++; rdma_count++; if (unlikely(cksum_offset > seglen)) cksum_offset -= seglen; else cksum_offset = 0; } if (frag_idx == frag_cnt) break; /* map next fragment for DMA */ idx = (count + tx->req) & tx->mask; frag = &skb_shinfo(skb)->frags[frag_idx]; frag_idx++; len = frag->size; bus = pci_map_page(mgp->pdev, frag->page, frag->page_offset, len, PCI_DMA_TODEVICE); pci_unmap_addr_set(&tx->info[idx], bus, bus); pci_unmap_len_set(&tx->info[idx], len, len); } (req - rdma_count)->rdma_count = rdma_count; #ifdef NETIF_F_TSO if (mss) do { req--; req->flags |= MXGEFW_FLAGS_TSO_LAST; } while (!(req->flags & (MXGEFW_FLAGS_TSO_CHOP | MXGEFW_FLAGS_FIRST))); #endif idx = ((count - 1) + tx->req) & tx->mask; tx->info[idx].last = 1; if (tx->wc_fifo == NULL) myri10ge_submit_req(tx, tx->req_list, count); else myri10ge_submit_req_wc(tx, tx->req_list, count); tx->pkt_start++; if ((avail - count) < MXGEFW_MAX_SEND_DESC) { mgp->stop_queue++; netif_stop_queue(dev); } dev->trans_start = jiffies; return 0; abort_linearize: /* Free any DMA resources we've alloced and clear out the skb * slot so as to not trip up assertions, and to avoid a * double-free if linearizing fails */ last_idx = (idx + 1) & tx->mask; idx = tx->req & tx->mask; tx->info[idx].skb = NULL; do { len = pci_unmap_len(&tx->info[idx], len); if (len) { if (tx->info[idx].skb != NULL) pci_unmap_single(mgp->pdev, pci_unmap_addr(&tx->info[idx], bus), len, PCI_DMA_TODEVICE); else pci_unmap_page(mgp->pdev, pci_unmap_addr(&tx->info[idx], bus), len, PCI_DMA_TODEVICE); pci_unmap_len_set(&tx->info[idx], len, 0); tx->info[idx].skb = NULL; } idx = (idx + 1) & tx->mask; } while (idx != last_idx); if (skb_shinfo(skb)->gso_size) { printk(KERN_ERR "myri10ge: %s: TSO but wanted to linearize?!?!?\n", mgp->dev->name); goto drop; } if (skb_linearize(skb)) goto drop; mgp->tx_linearized++; goto again; drop: dev_kfree_skb_any(skb); mgp->stats.tx_dropped += 1; return 0; } static struct net_device_stats *myri10ge_get_stats(struct net_device *dev) { struct myri10ge_priv *mgp = netdev_priv(dev); return &mgp->stats; } static void myri10ge_set_multicast_list(struct net_device *dev) { /* can be called from atomic contexts, * pass 1 to force atomicity in myri10ge_send_cmd() */ myri10ge_change_promisc(netdev_priv(dev), dev->flags & IFF_PROMISC, 1); } static int myri10ge_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = addr; struct myri10ge_priv *mgp = netdev_priv(dev); int status; if (!is_valid_ether_addr(sa->sa_data)) return -EADDRNOTAVAIL; status = myri10ge_update_mac_address(mgp, sa->sa_data); if (status != 0) { printk(KERN_ERR "myri10ge: %s: changing mac address failed with %d\n", dev->name, status); return status; } /* change the dev structure */ memcpy(dev->dev_addr, sa->sa_data, 6); return 0; } static int myri10ge_change_mtu(struct net_device *dev, int new_mtu) { struct myri10ge_priv *mgp = netdev_priv(dev); int error = 0; if ((new_mtu < 68) || (ETH_HLEN + new_mtu > MYRI10GE_MAX_ETHER_MTU)) { printk(KERN_ERR "myri10ge: %s: new mtu (%d) is not valid\n", dev->name, new_mtu); return -EINVAL; } printk(KERN_INFO "%s: changing mtu from %d to %d\n", dev->name, dev->mtu, new_mtu); if (mgp->running) { /* if we change the mtu on an active device, we must * reset the device so the firmware sees the change */ myri10ge_close(dev); dev->mtu = new_mtu; myri10ge_open(dev); } else dev->mtu = new_mtu; return error; } /* * Enable ECRC to align PCI-E Completion packets on an 8-byte boundary. * Only do it if the bridge is a root port since we don't want to disturb * any other device, except if forced with myri10ge_ecrc_enable > 1. */ static void myri10ge_enable_ecrc(struct myri10ge_priv *mgp) { struct pci_dev *bridge = mgp->pdev->bus->self; struct device *dev = &mgp->pdev->dev; unsigned cap; unsigned err_cap; u16 val; u8 ext_type; int ret; if (!myri10ge_ecrc_enable || !bridge) return; /* check that the bridge is a root port */ cap = pci_find_capability(bridge, PCI_CAP_ID_EXP); pci_read_config_word(bridge, cap + PCI_CAP_FLAGS, &val); ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4; if (ext_type != PCI_EXP_TYPE_ROOT_PORT) { if (myri10ge_ecrc_enable > 1) { struct pci_dev *old_bridge = bridge; /* Walk the hierarchy up to the root port * where ECRC has to be enabled */ do { bridge = bridge->bus->self; if (!bridge) { dev_err(dev, "Failed to find root port" " to force ECRC\n"); return; } cap = pci_find_capability(bridge, PCI_CAP_ID_EXP); pci_read_config_word(bridge, cap + PCI_CAP_FLAGS, &val); ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4; } while (ext_type != PCI_EXP_TYPE_ROOT_PORT); dev_info(dev, "Forcing ECRC on non-root port %s" " (enabling on root port %s)\n", pci_name(old_bridge), pci_name(bridge)); } else { dev_err(dev, "Not enabling ECRC on non-root port %s\n", pci_name(bridge)); return; } } cap = pci_find_ext_capability(bridge, PCI_EXT_CAP_ID_ERR); if (!cap) return; ret = pci_read_config_dword(bridge, cap + PCI_ERR_CAP, &err_cap); if (ret) { dev_err(dev, "failed reading ext-conf-space of %s\n", pci_name(bridge)); dev_err(dev, "\t pci=nommconf in use? " "or buggy/incomplete/absent ACPI MCFG attr?\n"); return; } if (!(err_cap & PCI_ERR_CAP_ECRC_GENC)) return; err_cap |= PCI_ERR_CAP_ECRC_GENE; pci_write_config_dword(bridge, cap + PCI_ERR_CAP, err_cap); dev_info(dev, "Enabled ECRC on upstream bridge %s\n", pci_name(bridge)); mgp->tx.boundary = 4096; mgp->fw_name = myri10ge_fw_aligned; } /* * The Lanai Z8E PCI-E interface achieves higher Read-DMA throughput * when the PCI-E Completion packets are aligned on an 8-byte * boundary. Some PCI-E chip sets always align Completion packets; on * the ones that do not, the alignment can be enforced by enabling * ECRC generation (if supported). * * When PCI-E Completion packets are not aligned, it is actually more * efficient to limit Read-DMA transactions to 2KB, rather than 4KB. * * If the driver can neither enable ECRC nor verify that it has * already been enabled, then it must use a firmware image which works * around unaligned completion packets (myri10ge_ethp_z8e.dat), and it * should also ensure that it never gives the device a Read-DMA which is * larger than 2KB by setting the tx.boundary to 2KB. If ECRC is * enabled, then the driver should use the aligned (myri10ge_eth_z8e.dat) * firmware image, and set tx.boundary to 4KB. */ #define PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE 0x0132 static void myri10ge_select_firmware(struct myri10ge_priv *mgp) { struct pci_dev *bridge = mgp->pdev->bus->self; mgp->tx.boundary = 2048; mgp->fw_name = myri10ge_fw_unaligned; if (myri10ge_force_firmware == 0) { myri10ge_enable_ecrc(mgp); /* Check to see if the upstream bridge is known to * provide aligned completions */ if (bridge /* ServerWorks HT2000/HT1000 */ && bridge->vendor == PCI_VENDOR_ID_SERVERWORKS && bridge->device == PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE) { dev_info(&mgp->pdev->dev, "Assuming aligned completions (0x%x:0x%x)\n", bridge->vendor, bridge->device); mgp->tx.boundary = 4096; mgp->fw_name = myri10ge_fw_aligned; } } else { if (myri10ge_force_firmware == 1) { dev_info(&mgp->pdev->dev, "Assuming aligned completions (forced)\n"); mgp->tx.boundary = 4096; mgp->fw_name = myri10ge_fw_aligned; } else { dev_info(&mgp->pdev->dev, "Assuming unaligned completions (forced)\n"); mgp->tx.boundary = 2048; mgp->fw_name = myri10ge_fw_unaligned; } } if (myri10ge_fw_name != NULL) { dev_info(&mgp->pdev->dev, "overriding firmware to %s\n", myri10ge_fw_name); mgp->fw_name = myri10ge_fw_name; } } static void myri10ge_save_state(struct myri10ge_priv *mgp) { struct pci_dev *pdev = mgp->pdev; int cap; pci_save_state(pdev); /* now save PCIe and MSI state that Linux will not * save for us */ cap = pci_find_capability(pdev, PCI_CAP_ID_EXP); pci_read_config_dword(pdev, cap + PCI_EXP_DEVCTL, &mgp->devctl); cap = pci_find_capability(pdev, PCI_CAP_ID_MSI); pci_read_config_word(pdev, cap + PCI_MSI_FLAGS, &mgp->msi_flags); } static void myri10ge_restore_state(struct myri10ge_priv *mgp) { struct pci_dev *pdev = mgp->pdev; int cap; /* restore PCIe and MSI state that linux will not */ cap = pci_find_capability(pdev, PCI_CAP_ID_EXP); pci_write_config_dword(pdev, cap + PCI_CAP_ID_EXP, mgp->devctl); cap = pci_find_capability(pdev, PCI_CAP_ID_MSI); pci_write_config_word(pdev, cap + PCI_MSI_FLAGS, mgp->msi_flags); pci_restore_state(pdev); } #ifdef CONFIG_PM static int myri10ge_suspend(struct pci_dev *pdev, pm_message_t state) { struct myri10ge_priv *mgp; struct net_device *netdev; mgp = pci_get_drvdata(pdev); if (mgp == NULL) return -EINVAL; netdev = mgp->dev; netif_device_detach(netdev); if (netif_running(netdev)) { printk(KERN_INFO "myri10ge: closing %s\n", netdev->name); rtnl_lock(); myri10ge_close(netdev); rtnl_unlock(); } myri10ge_dummy_rdma(mgp, 0); free_irq(pdev->irq, mgp); myri10ge_save_state(mgp); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int myri10ge_resume(struct pci_dev *pdev) { struct myri10ge_priv *mgp; struct net_device *netdev; int status; u16 vendor; mgp = pci_get_drvdata(pdev); if (mgp == NULL) return -EINVAL; netdev = mgp->dev; pci_set_power_state(pdev, 0); /* zeros conf space as a side effect */ msleep(5); /* give card time to respond */ pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor); if (vendor == 0xffff) { printk(KERN_ERR "myri10ge: %s: device disappeared!\n", mgp->dev->name); return -EIO; } myri10ge_restore_state(mgp); pci_enable_device(pdev); pci_set_master(pdev); status = request_irq(pdev->irq, myri10ge_intr, IRQF_SHARED, netdev->name, mgp); if (status != 0) { dev_err(&pdev->dev, "failed to allocate IRQ\n"); goto abort_with_msi; } myri10ge_reset(mgp); myri10ge_dummy_rdma(mgp, mgp->tx.boundary != 4096); /* Save configuration space to be restored if the * nic resets due to a parity error */ myri10ge_save_state(mgp); if (netif_running(netdev)) { rtnl_lock(); myri10ge_open(netdev); rtnl_unlock(); } netif_device_attach(netdev); return 0; abort_with_msi: return -EIO; } #endif /* CONFIG_PM */ static u32 myri10ge_read_reboot(struct myri10ge_priv *mgp) { struct pci_dev *pdev = mgp->pdev; int vs = mgp->vendor_specific_offset; u32 reboot; /*enter read32 mode */ pci_write_config_byte(pdev, vs + 0x10, 0x3); /*read REBOOT_STATUS (0xfffffff0) */ pci_write_config_dword(pdev, vs + 0x18, 0xfffffff0); pci_read_config_dword(pdev, vs + 0x14, &reboot); return reboot; } /* * This watchdog is used to check whether the board has suffered * from a parity error and needs to be recovered. */ static void myri10ge_watchdog(void *arg) { struct myri10ge_priv *mgp = arg; u32 reboot; int status; u16 cmd, vendor; mgp->watchdog_resets++; pci_read_config_word(mgp->pdev, PCI_COMMAND, &cmd); if ((cmd & PCI_COMMAND_MASTER) == 0) { /* Bus master DMA disabled? Check to see * if the card rebooted due to a parity error * For now, just report it */ reboot = myri10ge_read_reboot(mgp); printk(KERN_ERR "myri10ge: %s: NIC rebooted (0x%x), resetting\n", mgp->dev->name, reboot); /* * A rebooted nic will come back with config space as * it was after power was applied to PCIe bus. * Attempt to restore config space which was saved * when the driver was loaded, or the last time the * nic was resumed from power saving mode. */ myri10ge_restore_state(mgp); } else { /* if we get back -1's from our slot, perhaps somebody * powered off our card. Don't try to reset it in * this case */ if (cmd == 0xffff) { pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor); if (vendor == 0xffff) { printk(KERN_ERR "myri10ge: %s: device disappeared!\n", mgp->dev->name); return; } } /* Perhaps it is a software error. Try to reset */ printk(KERN_ERR "myri10ge: %s: device timeout, resetting\n", mgp->dev->name); printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n", mgp->dev->name, mgp->tx.req, mgp->tx.done, mgp->tx.pkt_start, mgp->tx.pkt_done, (int)ntohl(mgp->fw_stats->send_done_count)); msleep(2000); printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n", mgp->dev->name, mgp->tx.req, mgp->tx.done, mgp->tx.pkt_start, mgp->tx.pkt_done, (int)ntohl(mgp->fw_stats->send_done_count)); } rtnl_lock(); myri10ge_close(mgp->dev); status = myri10ge_load_firmware(mgp); if (status != 0) printk(KERN_ERR "myri10ge: %s: failed to load firmware\n", mgp->dev->name); else myri10ge_open(mgp->dev); rtnl_unlock(); } /* * We use our own timer routine rather than relying upon * netdev->tx_timeout because we have a very large hardware transmit * queue. Due to the large queue, the netdev->tx_timeout function * cannot detect a NIC with a parity error in a timely fashion if the * NIC is lightly loaded. */ static void myri10ge_watchdog_timer(unsigned long arg) { struct myri10ge_priv *mgp; mgp = (struct myri10ge_priv *)arg; if (mgp->tx.req != mgp->tx.done && mgp->tx.done == mgp->watchdog_tx_done) /* nic seems like it might be stuck.. */ schedule_work(&mgp->watchdog_work); else /* rearm timer */ mod_timer(&mgp->watchdog_timer, jiffies + myri10ge_watchdog_timeout * HZ); mgp->watchdog_tx_done = mgp->tx.done; } static int myri10ge_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct myri10ge_priv *mgp; struct device *dev = &pdev->dev; size_t bytes; int i; int status = -ENXIO; int cap; int dac_enabled; u16 val; netdev = alloc_etherdev(sizeof(*mgp)); if (netdev == NULL) { dev_err(dev, "Could not allocate ethernet device\n"); return -ENOMEM; } mgp = netdev_priv(netdev); memset(mgp, 0, sizeof(*mgp)); mgp->dev = netdev; mgp->pdev = pdev; mgp->csum_flag = MXGEFW_FLAGS_CKSUM; mgp->pause = myri10ge_flow_control; mgp->intr_coal_delay = myri10ge_intr_coal_delay; init_waitqueue_head(&mgp->down_wq); if (pci_enable_device(pdev)) { dev_err(&pdev->dev, "pci_enable_device call failed\n"); status = -ENODEV; goto abort_with_netdev; } myri10ge_select_firmware(mgp); /* Find the vendor-specific cap so we can check * the reboot register later on */ mgp->vendor_specific_offset = pci_find_capability(pdev, PCI_CAP_ID_VNDR); /* Set our max read request to 4KB */ cap = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (cap < 64) { dev_err(&pdev->dev, "Bad PCI_CAP_ID_EXP location %d\n", cap); goto abort_with_netdev; } status = pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &val); if (status != 0) { dev_err(&pdev->dev, "Error %d reading PCI_EXP_DEVCTL\n", status); goto abort_with_netdev; } val = (val & ~PCI_EXP_DEVCTL_READRQ) | (5 << 12); status = pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, val); if (status != 0) { dev_err(&pdev->dev, "Error %d writing PCI_EXP_DEVCTL\n", status); goto abort_with_netdev; } pci_set_master(pdev); dac_enabled = 1; status = pci_set_dma_mask(pdev, DMA_64BIT_MASK); if (status != 0) { dac_enabled = 0; dev_err(&pdev->dev, "64-bit pci address mask was refused, trying 32-bit"); status = pci_set_dma_mask(pdev, DMA_32BIT_MASK); } if (status != 0) { dev_err(&pdev->dev, "Error %d setting DMA mask\n", status); goto abort_with_netdev; } mgp->cmd = dma_alloc_coherent(&pdev->dev, sizeof(*mgp->cmd), &mgp->cmd_bus, GFP_KERNEL); if (mgp->cmd == NULL) goto abort_with_netdev; mgp->fw_stats = dma_alloc_coherent(&pdev->dev, sizeof(*mgp->fw_stats), &mgp->fw_stats_bus, GFP_KERNEL); if (mgp->fw_stats == NULL) goto abort_with_cmd; mgp->board_span = pci_resource_len(pdev, 0); mgp->iomem_base = pci_resource_start(pdev, 0); mgp->mtrr = -1; #ifdef CONFIG_MTRR mgp->mtrr = mtrr_add(mgp->iomem_base, mgp->board_span, MTRR_TYPE_WRCOMB, 1); #endif /* Hack. need to get rid of these magic numbers */ mgp->sram_size = 2 * 1024 * 1024 - (2 * (48 * 1024) + (32 * 1024)) - 0x100; if (mgp->sram_size > mgp->board_span) { dev_err(&pdev->dev, "board span %ld bytes too small\n", mgp->board_span); goto abort_with_wc; } mgp->sram = ioremap(mgp->iomem_base, mgp->board_span); if (mgp->sram == NULL) { dev_err(&pdev->dev, "ioremap failed for %ld bytes at 0x%lx\n", mgp->board_span, mgp->iomem_base); status = -ENXIO; goto abort_with_wc; } memcpy_fromio(mgp->eeprom_strings, mgp->sram + mgp->sram_size - MYRI10GE_EEPROM_STRINGS_SIZE, MYRI10GE_EEPROM_STRINGS_SIZE); memset(mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE - 2, 0, 2); status = myri10ge_read_mac_addr(mgp); if (status) goto abort_with_ioremap; for (i = 0; i < ETH_ALEN; i++) netdev->dev_addr[i] = mgp->mac_addr[i]; /* allocate rx done ring */ bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry); mgp->rx_done.entry = dma_alloc_coherent(&pdev->dev, bytes, &mgp->rx_done.bus, GFP_KERNEL); if (mgp->rx_done.entry == NULL) goto abort_with_ioremap; memset(mgp->rx_done.entry, 0, bytes); status = myri10ge_load_firmware(mgp); if (status != 0) { dev_err(&pdev->dev, "failed to load firmware\n"); goto abort_with_rx_done; } status = myri10ge_reset(mgp); if (status != 0) { dev_err(&pdev->dev, "failed reset\n"); goto abort_with_firmware; } if (myri10ge_msi) { status = pci_enable_msi(pdev); if (status != 0) dev_err(&pdev->dev, "Error %d setting up MSI; falling back to xPIC\n", status); else mgp->msi_enabled = 1; } status = request_irq(pdev->irq, myri10ge_intr, IRQF_SHARED, netdev->name, mgp); if (status != 0) { dev_err(&pdev->dev, "failed to allocate IRQ\n"); goto abort_with_firmware; } pci_set_drvdata(pdev, mgp); if ((myri10ge_initial_mtu + ETH_HLEN) > MYRI10GE_MAX_ETHER_MTU) myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN; if ((myri10ge_initial_mtu + ETH_HLEN) < 68) myri10ge_initial_mtu = 68; netdev->mtu = myri10ge_initial_mtu; netdev->open = myri10ge_open; netdev->stop = myri10ge_close; netdev->hard_start_xmit = myri10ge_xmit; netdev->get_stats = myri10ge_get_stats; netdev->base_addr = mgp->iomem_base; netdev->irq = pdev->irq; netdev->change_mtu = myri10ge_change_mtu; netdev->set_multicast_list = myri10ge_set_multicast_list; netdev->set_mac_address = myri10ge_set_mac_address; netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_TSO; if (dac_enabled) netdev->features |= NETIF_F_HIGHDMA; netdev->poll = myri10ge_poll; netdev->weight = myri10ge_napi_weight; /* Save configuration space to be restored if the * nic resets due to a parity error */ myri10ge_save_state(mgp); /* Setup the watchdog timer */ setup_timer(&mgp->watchdog_timer, myri10ge_watchdog_timer, (unsigned long)mgp); SET_ETHTOOL_OPS(netdev, &myri10ge_ethtool_ops); INIT_WORK(&mgp->watchdog_work, myri10ge_watchdog, mgp); status = register_netdev(netdev); if (status != 0) { dev_err(&pdev->dev, "register_netdev failed: %d\n", status); goto abort_with_irq; } printk(KERN_INFO "myri10ge: %s: %s IRQ %d, tx bndry %d, fw %s, WC %s\n", netdev->name, (mgp->msi_enabled ? "MSI" : "xPIC"), pdev->irq, mgp->tx.boundary, mgp->fw_name, (mgp->mtrr >= 0 ? "Enabled" : "Disabled")); return 0; abort_with_irq: free_irq(pdev->irq, mgp); if (mgp->msi_enabled) pci_disable_msi(pdev); abort_with_firmware: myri10ge_dummy_rdma(mgp, 0); abort_with_rx_done: bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry); dma_free_coherent(&pdev->dev, bytes, mgp->rx_done.entry, mgp->rx_done.bus); abort_with_ioremap: iounmap(mgp->sram); abort_with_wc: #ifdef CONFIG_MTRR if (mgp->mtrr >= 0) mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span); #endif dma_free_coherent(&pdev->dev, sizeof(*mgp->fw_stats), mgp->fw_stats, mgp->fw_stats_bus); abort_with_cmd: dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd), mgp->cmd, mgp->cmd_bus); abort_with_netdev: free_netdev(netdev); return status; } /* * myri10ge_remove * * Does what is necessary to shutdown one Myrinet device. Called * once for each Myrinet card by the kernel when a module is * unloaded. */ static void myri10ge_remove(struct pci_dev *pdev) { struct myri10ge_priv *mgp; struct net_device *netdev; size_t bytes; mgp = pci_get_drvdata(pdev); if (mgp == NULL) return; flush_scheduled_work(); netdev = mgp->dev; unregister_netdev(netdev); free_irq(pdev->irq, mgp); if (mgp->msi_enabled) pci_disable_msi(pdev); myri10ge_dummy_rdma(mgp, 0); bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry); dma_free_coherent(&pdev->dev, bytes, mgp->rx_done.entry, mgp->rx_done.bus); iounmap(mgp->sram); #ifdef CONFIG_MTRR if (mgp->mtrr >= 0) mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span); #endif dma_free_coherent(&pdev->dev, sizeof(*mgp->fw_stats), mgp->fw_stats, mgp->fw_stats_bus); dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd), mgp->cmd, mgp->cmd_bus); free_netdev(netdev); pci_set_drvdata(pdev, NULL); } #define PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E 0x0008 static struct pci_device_id myri10ge_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_MYRICOM, PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E)}, {0}, }; static struct pci_driver myri10ge_driver = { .name = "myri10ge", .probe = myri10ge_probe, .remove = myri10ge_remove, .id_table = myri10ge_pci_tbl, #ifdef CONFIG_PM .suspend = myri10ge_suspend, .resume = myri10ge_resume, #endif }; static __init int myri10ge_init_module(void) { printk(KERN_INFO "%s: Version %s\n", myri10ge_driver.name, MYRI10GE_VERSION_STR); return pci_register_driver(&myri10ge_driver); } module_init(myri10ge_init_module); static __exit void myri10ge_cleanup_module(void) { pci_unregister_driver(&myri10ge_driver); } module_exit(myri10ge_cleanup_module);