/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_BTREE_GC_H #define _BCACHEFS_BTREE_GC_H #include "btree_types.h" void bch2_coalesce(struct bch_fs *); int bch2_gc(struct bch_fs *, struct list_head *, bool); void bch2_gc_thread_stop(struct bch_fs *); int bch2_gc_thread_start(struct bch_fs *); void bch2_mark_dev_superblock(struct bch_fs *, struct bch_dev *, unsigned); /* * For concurrent mark and sweep (with other index updates), we define a total * ordering of _all_ references GC walks: * * Note that some references will have the same GC position as others - e.g. * everything within the same btree node; in those cases we're relying on * whatever locking exists for where those references live, i.e. the write lock * on a btree node. * * That locking is also required to ensure GC doesn't pass the updater in * between the updater adding/removing the reference and updating the GC marks; * without that, we would at best double count sometimes. * * That part is important - whenever calling bch2_mark_pointers(), a lock _must_ * be held that prevents GC from passing the position the updater is at. * * (What about the start of gc, when we're clearing all the marks? GC clears the * mark with the gc pos seqlock held, and bch_mark_bucket checks against the gc * position inside its cmpxchg loop, so crap magically works). */ /* Position of (the start of) a gc phase: */ static inline struct gc_pos gc_phase(enum gc_phase phase) { return (struct gc_pos) { .phase = phase, .pos = POS_MIN, .level = 0, }; } static inline int gc_pos_cmp(struct gc_pos l, struct gc_pos r) { if (l.phase != r.phase) return l.phase < r.phase ? -1 : 1; if (bkey_cmp(l.pos, r.pos)) return bkey_cmp(l.pos, r.pos); if (l.level != r.level) return l.level < r.level ? -1 : 1; return 0; } static inline enum gc_phase btree_id_to_gc_phase(enum btree_id id) { switch (id) { #define x(n, v, s) case BTREE_ID_##n: return GC_PHASE_BTREE_##n; BCH_BTREE_IDS() #undef x default: BUG(); } } static inline struct gc_pos gc_pos_btree(enum btree_id id, struct bpos pos, unsigned level) { return (struct gc_pos) { .phase = btree_id_to_gc_phase(id), .pos = pos, .level = level, }; } /* * GC position of the pointers within a btree node: note, _not_ for &b->key * itself, that lives in the parent node: */ static inline struct gc_pos gc_pos_btree_node(struct btree *b) { return gc_pos_btree(b->btree_id, b->key.k.p, b->level); } /* * GC position of the pointer to a btree root: we don't use * gc_pos_pointer_to_btree_node() here to avoid a potential race with * btree_split() increasing the tree depth - the new root will have level > the * old root and thus have a greater gc position than the old root, but that * would be incorrect since once gc has marked the root it's not coming back. */ static inline struct gc_pos gc_pos_btree_root(enum btree_id id) { return gc_pos_btree(id, POS_MAX, BTREE_MAX_DEPTH); } static inline struct gc_pos gc_pos_alloc(struct bch_fs *c, struct open_bucket *ob) { return (struct gc_pos) { .phase = GC_PHASE_ALLOC, .pos = POS(ob ? ob - c->open_buckets : 0, 0), }; } static inline bool gc_visited(struct bch_fs *c, struct gc_pos pos) { unsigned seq; bool ret; do { seq = read_seqcount_begin(&c->gc_pos_lock); ret = gc_pos_cmp(pos, c->gc_pos) <= 0; } while (read_seqcount_retry(&c->gc_pos_lock, seq)); return ret; } #endif /* _BCACHEFS_BTREE_GC_H */