#include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" struct dev_lookup { u64 block_start; u64 num_blocks; u64 device_id; struct block_device *bdev; }; int btrfs_insert_dev_radix(struct btrfs_root *root, struct block_device *bdev, u64 device_id, u64 block_start, u64 num_blocks) { struct dev_lookup *lookup; int ret; lookup = kmalloc(sizeof(*lookup), GFP_NOFS); if (!lookup) return -ENOMEM; lookup->block_start = block_start; lookup->num_blocks = num_blocks; lookup->bdev = bdev; lookup->device_id = device_id; ret = radix_tree_insert(&root->fs_info->dev_radix, block_start + num_blocks - 1, lookup); return ret; } u64 bh_blocknr(struct buffer_head *bh) { int blkbits = bh->b_page->mapping->host->i_blkbits; u64 blocknr = bh->b_page->index << (PAGE_CACHE_SHIFT - blkbits); unsigned long offset; if (PageHighMem(bh->b_page)) offset = (unsigned long)bh->b_data; else offset = bh->b_data - (char *)page_address(bh->b_page); blocknr += offset >> (PAGE_CACHE_SHIFT - blkbits); return blocknr; } static int check_tree_block(struct btrfs_root *root, struct buffer_head *buf) { struct btrfs_node *node = btrfs_buffer_node(buf); if (bh_blocknr(buf) != btrfs_header_blocknr(&node->header)) { printk(KERN_CRIT "bh_blocknr(buf) is %Lu, header is %Lu\n", bh_blocknr(buf), btrfs_header_blocknr(&node->header)); BUG(); } return 0; } struct buffer_head *btrfs_find_tree_block(struct btrfs_root *root, u64 blocknr) { struct address_space *mapping = root->fs_info->btree_inode->i_mapping; int blockbits = root->fs_info->sb->s_blocksize_bits; unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits); struct page *page; struct buffer_head *bh; struct buffer_head *head; struct buffer_head *ret = NULL; page = find_lock_page(mapping, index); if (!page) return NULL; if (!page_has_buffers(page)) goto out_unlock; head = page_buffers(page); bh = head; do { if (buffer_mapped(bh) && bh_blocknr(bh) == blocknr) { ret = bh; get_bh(bh); goto out_unlock; } bh = bh->b_this_page; } while (bh != head); out_unlock: unlock_page(page); page_cache_release(page); return ret; } int btrfs_map_bh_to_logical(struct btrfs_root *root, struct buffer_head *bh, u64 logical) { struct dev_lookup *lookup[2]; int ret; if (logical == 0) { bh->b_bdev = NULL; bh->b_blocknr = 0; set_buffer_mapped(bh); return 0; } root = root->fs_info->dev_root; ret = radix_tree_gang_lookup(&root->fs_info->dev_radix, (void **)lookup, (unsigned long)logical, ARRAY_SIZE(lookup)); if (ret == 0 || lookup[0]->block_start > logical || lookup[0]->block_start + lookup[0]->num_blocks <= logical) { ret = -ENOENT; goto out; } bh->b_bdev = lookup[0]->bdev; bh->b_blocknr = logical - lookup[0]->block_start; set_buffer_mapped(bh); ret = 0; out: return ret; } struct buffer_head *btrfs_find_create_tree_block(struct btrfs_root *root, u64 blocknr) { struct address_space *mapping = root->fs_info->btree_inode->i_mapping; int blockbits = root->fs_info->sb->s_blocksize_bits; unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits); struct page *page; struct buffer_head *bh; struct buffer_head *head; struct buffer_head *ret = NULL; int err; u64 first_block = index << (PAGE_CACHE_SHIFT - blockbits); page = grab_cache_page(mapping, index); if (!page) return NULL; if (!page_has_buffers(page)) create_empty_buffers(page, root->fs_info->sb->s_blocksize, 0); head = page_buffers(page); bh = head; do { if (!buffer_mapped(bh)) { err = btrfs_map_bh_to_logical(root, bh, first_block); BUG_ON(err); } if (bh_blocknr(bh) == blocknr) { ret = bh; get_bh(bh); goto out_unlock; } bh = bh->b_this_page; first_block++; } while (bh != head); out_unlock: unlock_page(page); if (ret) touch_buffer(ret); page_cache_release(page); return ret; } static int btree_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create) { int err; struct btrfs_root *root = BTRFS_I(bh->b_page->mapping->host)->root; err = btrfs_map_bh_to_logical(root, bh, iblock); return err; } int btrfs_csum_data(struct btrfs_root * root, char *data, size_t len, char *result) { struct scatterlist sg; struct crypto_hash *tfm = root->fs_info->hash_tfm; struct hash_desc desc; int ret; desc.tfm = tfm; desc.flags = 0; sg_init_one(&sg, data, len); spin_lock(&root->fs_info->hash_lock); ret = crypto_hash_digest(&desc, &sg, 1, result); spin_unlock(&root->fs_info->hash_lock); if (ret) { printk("sha256 digest failed\n"); } return ret; } static int csum_tree_block(struct btrfs_root *root, struct buffer_head *bh, int verify) { char result[BTRFS_CSUM_SIZE]; int ret; struct btrfs_node *node; ret = btrfs_csum_data(root, bh->b_data + BTRFS_CSUM_SIZE, bh->b_size - BTRFS_CSUM_SIZE, result); if (ret) return ret; if (verify) { if (memcmp(bh->b_data, result, BTRFS_CSUM_SIZE)) { printk("checksum verify failed on %Lu\n", bh_blocknr(bh)); return 1; } } else { node = btrfs_buffer_node(bh); memcpy(node->header.csum, result, BTRFS_CSUM_SIZE); } return 0; } static int btree_writepage(struct page *page, struct writeback_control *wbc) { struct buffer_head *bh; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; struct buffer_head *head; if (!page_has_buffers(page)) { create_empty_buffers(page, root->fs_info->sb->s_blocksize, (1 << BH_Dirty)|(1 << BH_Uptodate)); } head = page_buffers(page); bh = head; do { if (buffer_dirty(bh)) csum_tree_block(root, bh, 0); bh = bh->b_this_page; } while (bh != head); return block_write_full_page(page, btree_get_block, wbc); } static int btree_readpage(struct file * file, struct page * page) { return block_read_full_page(page, btree_get_block); } static struct address_space_operations btree_aops = { .readpage = btree_readpage, .writepage = btree_writepage, .sync_page = block_sync_page, }; int readahead_tree_block(struct btrfs_root *root, u64 blocknr) { struct buffer_head *bh = NULL; bh = btrfs_find_create_tree_block(root, blocknr); if (!bh) return 0; if (buffer_uptodate(bh)) goto done; if (test_set_buffer_locked(bh)) goto done; if (!buffer_uptodate(bh)) { get_bh(bh); bh->b_end_io = end_buffer_read_sync; submit_bh(READ, bh); } else { unlock_buffer(bh); } done: brelse(bh); return 0; } struct buffer_head *read_tree_block(struct btrfs_root *root, u64 blocknr) { struct buffer_head *bh = NULL; bh = btrfs_find_create_tree_block(root, blocknr); if (!bh) return bh; if (buffer_uptodate(bh)) goto uptodate; lock_buffer(bh); if (!buffer_uptodate(bh)) { get_bh(bh); bh->b_end_io = end_buffer_read_sync; submit_bh(READ, bh); wait_on_buffer(bh); if (!buffer_uptodate(bh)) goto fail; } else { unlock_buffer(bh); } uptodate: if (!buffer_checked(bh)) { csum_tree_block(root, bh, 1); set_buffer_checked(bh); } if (check_tree_block(root, bh)) BUG(); return bh; fail: brelse(bh); return NULL; } int dirty_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *buf) { WARN_ON(atomic_read(&buf->b_count) == 0); mark_buffer_dirty(buf); return 0; } int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct buffer_head *buf) { WARN_ON(atomic_read(&buf->b_count) == 0); clear_buffer_dirty(buf); return 0; } static int __setup_root(int blocksize, struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { root->node = NULL; root->inode = NULL; root->commit_root = NULL; root->blocksize = blocksize; root->ref_cows = 0; root->fs_info = fs_info; root->objectid = objectid; root->last_trans = 0; root->highest_inode = 0; root->last_inode_alloc = 0; memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); root->root_key.objectid = objectid; return 0; } static int find_and_setup_root(int blocksize, struct btrfs_root *tree_root, struct btrfs_fs_info *fs_info, u64 objectid, struct btrfs_root *root) { int ret; __setup_root(blocksize, root, fs_info, objectid); ret = btrfs_find_last_root(tree_root, objectid, &root->root_item, &root->root_key); BUG_ON(ret); root->node = read_tree_block(root, btrfs_root_blocknr(&root->root_item)); BUG_ON(!root->node); return 0; } struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path; struct btrfs_leaf *l; u64 highest_inode; int ret = 0; printk("read_fs_root looking for %Lu %Lu %u\n", location->objectid, location->offset, location->flags); root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)location->objectid); if (root) { printk("found %p in cache\n", root); return root; } root = kmalloc(sizeof(*root), GFP_NOFS); if (!root) { printk("failed1\n"); return ERR_PTR(-ENOMEM); } if (location->offset == (u64)-1) { ret = find_and_setup_root(fs_info->sb->s_blocksize, fs_info->tree_root, fs_info, location->objectid, root); if (ret) { printk("failed2\n"); kfree(root); return ERR_PTR(ret); } goto insert; } __setup_root(fs_info->sb->s_blocksize, root, fs_info, location->objectid); path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); if (ret != 0) { printk("internal search_slot gives us %d\n", ret); if (ret > 0) ret = -ENOENT; goto out; } l = btrfs_buffer_leaf(path->nodes[0]); memcpy(&root->root_item, btrfs_item_ptr(l, path->slots[0], struct btrfs_root_item), sizeof(root->root_item)); memcpy(&root->root_key, location, sizeof(*location)); ret = 0; out: btrfs_release_path(root, path); btrfs_free_path(path); if (ret) { kfree(root); return ERR_PTR(ret); } root->node = read_tree_block(root, btrfs_root_blocknr(&root->root_item)); BUG_ON(!root->node); insert: printk("inserting %p\n", root); root->ref_cows = 1; ret = radix_tree_insert(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, root); if (ret) { printk("radix_tree_insert gives us %d\n", ret); brelse(root->node); kfree(root); return ERR_PTR(ret); } ret = btrfs_find_highest_inode(root, &highest_inode); if (ret == 0) { root->highest_inode = highest_inode; root->last_inode_alloc = highest_inode; printk("highest inode is %Lu\n", highest_inode); } printk("all worked\n"); return root; } static int btrfs_open_disk(struct btrfs_root *root, u64 device_id, u64 block_start, u64 num_blocks, char *filename, int name_len) { char *null_filename; struct block_device *bdev; int ret; null_filename = kmalloc(name_len + 1, GFP_NOFS); if (!null_filename) return -ENOMEM; memcpy(null_filename, filename, name_len); null_filename[name_len] = '\0'; bdev = open_bdev_excl(null_filename, O_RDWR, root->fs_info->sb); if (IS_ERR(bdev)) { ret = PTR_ERR(bdev); goto out; } set_blocksize(bdev, root->fs_info->sb->s_blocksize); ret = btrfs_insert_dev_radix(root, bdev, device_id, block_start, num_blocks); BUG_ON(ret); ret = 0; out: kfree(null_filename); return ret; } static int read_device_info(struct btrfs_root *root) { struct btrfs_path *path; int ret; struct btrfs_key key; struct btrfs_leaf *leaf; struct btrfs_device_item *dev_item; int nritems; int slot; root = root->fs_info->dev_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.offset = 0; key.flags = 0; btrfs_set_key_type(&key, BTRFS_DEV_ITEM_KEY); mutex_lock(&root->fs_info->fs_mutex); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); leaf = btrfs_buffer_leaf(path->nodes[0]); nritems = btrfs_header_nritems(&leaf->header); while(1) { slot = path->slots[0]; if (slot >= nritems) { ret = btrfs_next_leaf(root, path); if (ret) break; leaf = btrfs_buffer_leaf(path->nodes[0]); nritems = btrfs_header_nritems(&leaf->header); slot = path->slots[0]; } btrfs_disk_key_to_cpu(&key, &leaf->items[slot].key); if (btrfs_key_type(&key) != BTRFS_DEV_ITEM_KEY) { path->slots[0]++; continue; } dev_item = btrfs_item_ptr(leaf, slot, struct btrfs_device_item); printk("found key %Lu %Lu\n", key.objectid, key.offset); if (btrfs_device_id(dev_item) != btrfs_super_device_id(root->fs_info->disk_super)) { ret = btrfs_open_disk(root, btrfs_device_id(dev_item), key.objectid, key.offset, (char *)(dev_item + 1), btrfs_device_pathlen(dev_item)); BUG_ON(ret); } path->slots[0]++; } btrfs_free_path(path); mutex_unlock(&root->fs_info->fs_mutex); return 0; } struct btrfs_root *open_ctree(struct super_block *sb) { struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info), GFP_NOFS); int ret; struct btrfs_super_block *disk_super; struct dev_lookup *dev_lookup; init_bit_radix(&fs_info->pinned_radix); init_bit_radix(&fs_info->pending_del_radix); INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); INIT_RADIX_TREE(&fs_info->dev_radix, GFP_NOFS); INIT_RADIX_TREE(&fs_info->block_group_radix, GFP_KERNEL); INIT_LIST_HEAD(&fs_info->trans_list); sb_set_blocksize(sb, 4096); fs_info->running_transaction = NULL; fs_info->tree_root = tree_root; fs_info->extent_root = extent_root; fs_info->dev_root = dev_root; fs_info->sb = sb; fs_info->btree_inode = new_inode(sb); fs_info->btree_inode->i_ino = 1; fs_info->btree_inode->i_nlink = 1; fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size; fs_info->btree_inode->i_mapping->a_ops = &btree_aops; fs_info->do_barriers = 1; fs_info->extent_tree_insert_nr = 0; fs_info->extent_tree_prealloc_nr = 0; BTRFS_I(fs_info->btree_inode)->root = tree_root; memset(&BTRFS_I(fs_info->btree_inode)->location, 0, sizeof(struct btrfs_key)); insert_inode_hash(fs_info->btree_inode); mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); fs_info->hash_tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC); spin_lock_init(&fs_info->hash_lock); if (!fs_info->hash_tfm || IS_ERR(fs_info->hash_tfm)) { printk("failed to allocate sha256 hash\n"); return NULL; } mutex_init(&fs_info->trans_mutex); mutex_init(&fs_info->fs_mutex); fs_info->block_group_cache = NULL; __setup_root(sb->s_blocksize, dev_root, fs_info, BTRFS_DEV_TREE_OBJECTID); __setup_root(sb->s_blocksize, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); dev_lookup = kmalloc(sizeof(*dev_lookup), GFP_NOFS); dev_lookup->block_start = 0; dev_lookup->num_blocks = (u32)-2; dev_lookup->bdev = sb->s_bdev; dev_lookup->device_id = 0; ret = radix_tree_insert(&fs_info->dev_radix, (u32)-2, dev_lookup); BUG_ON(ret); fs_info->sb_buffer = read_tree_block(tree_root, BTRFS_SUPER_INFO_OFFSET / sb->s_blocksize); if (!fs_info->sb_buffer) return NULL; disk_super = (struct btrfs_super_block *)fs_info->sb_buffer->b_data; if (!btrfs_super_root(disk_super)) return NULL; i_size_write(fs_info->btree_inode, btrfs_super_total_blocks(disk_super) << fs_info->btree_inode->i_blkbits); radix_tree_delete(&fs_info->dev_radix, (u32)-2); dev_lookup->block_start = btrfs_super_device_block_start(disk_super); dev_lookup->num_blocks = btrfs_super_device_num_blocks(disk_super); dev_lookup->device_id = btrfs_super_device_id(disk_super); ret = radix_tree_insert(&fs_info->dev_radix, dev_lookup->block_start + dev_lookup->num_blocks - 1, dev_lookup); BUG_ON(ret); fs_info->disk_super = disk_super; dev_root->node = read_tree_block(tree_root, btrfs_super_device_root(disk_super)); ret = read_device_info(dev_root); BUG_ON(ret); tree_root->node = read_tree_block(tree_root, btrfs_super_root(disk_super)); BUG_ON(!tree_root->node); mutex_lock(&fs_info->fs_mutex); ret = find_and_setup_root(sb->s_blocksize, tree_root, fs_info, BTRFS_EXTENT_TREE_OBJECTID, extent_root); BUG_ON(ret); btrfs_read_block_groups(extent_root); fs_info->generation = btrfs_super_generation(disk_super) + 1; memset(&fs_info->kobj, 0, sizeof(fs_info->kobj)); kobj_set_kset_s(fs_info, btrfs_subsys); kobject_set_name(&fs_info->kobj, "%s", sb->s_id); kobject_register(&fs_info->kobj); mutex_unlock(&fs_info->fs_mutex); return tree_root; } int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; struct buffer_head *bh = root->fs_info->sb_buffer; btrfs_set_super_root(root->fs_info->disk_super, bh_blocknr(root->fs_info->tree_root->node)); lock_buffer(bh); WARN_ON(atomic_read(&bh->b_count) < 1); clear_buffer_dirty(bh); csum_tree_block(root, bh, 0); bh->b_end_io = end_buffer_write_sync; get_bh(bh); if (root->fs_info->do_barriers) ret = submit_bh(WRITE_BARRIER, bh); else ret = submit_bh(WRITE, bh); if (ret == -EOPNOTSUPP) { set_buffer_uptodate(bh); root->fs_info->do_barriers = 0; ret = submit_bh(WRITE, bh); } wait_on_buffer(bh); if (!buffer_uptodate(bh)) { WARN_ON(1); return -EIO; } return 0; } static int free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { radix_tree_delete(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid); if (root->inode) iput(root->inode); if (root->node) brelse(root->node); if (root->commit_root) brelse(root->commit_root); kfree(root); return 0; } int del_fs_roots(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_root *gang[8]; int i; while(1) { ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) free_fs_root(fs_info, gang[i]); } return 0; } static int free_dev_radix(struct btrfs_fs_info *fs_info) { struct dev_lookup *lookup[8]; struct block_device *super_bdev = fs_info->sb->s_bdev; int ret; int i; while(1) { ret = radix_tree_gang_lookup(&fs_info->dev_radix, (void **)lookup, 0, ARRAY_SIZE(lookup)); if (!ret) break; for (i = 0; i < ret; i++) { if (lookup[i]->bdev != super_bdev) close_bdev_excl(lookup[i]->bdev); radix_tree_delete(&fs_info->dev_radix, lookup[i]->block_start + lookup[i]->num_blocks - 1); kfree(lookup[i]); } } return 0; } int close_ctree(struct btrfs_root *root) { int ret; struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; mutex_lock(&fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_commit_transaction(trans, root); /* run commit again to drop the original snapshot */ trans = btrfs_start_transaction(root, 1); btrfs_commit_transaction(trans, root); ret = btrfs_write_and_wait_transaction(NULL, root); BUG_ON(ret); write_ctree_super(NULL, root); mutex_unlock(&fs_info->fs_mutex); if (fs_info->extent_root->node) btrfs_block_release(fs_info->extent_root, fs_info->extent_root->node); if (fs_info->dev_root->node) btrfs_block_release(fs_info->dev_root, fs_info->dev_root->node); if (fs_info->tree_root->node) btrfs_block_release(fs_info->tree_root, fs_info->tree_root->node); btrfs_block_release(root, fs_info->sb_buffer); crypto_free_hash(fs_info->hash_tfm); truncate_inode_pages(fs_info->btree_inode->i_mapping, 0); iput(fs_info->btree_inode); free_dev_radix(fs_info); btrfs_free_block_groups(root->fs_info); del_fs_roots(fs_info); kfree(fs_info->extent_root); kfree(fs_info->tree_root); kobject_unregister(&fs_info->kobj); return 0; } void btrfs_block_release(struct btrfs_root *root, struct buffer_head *buf) { brelse(buf); }