// SPDX-License-Identifier: GPL-2.0 #ifndef NO_BCACHEFS_FS #include "bcachefs.h" #include "alloc_foreground.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "error.h" #include "extents.h" #include "fs.h" #include "fs-io.h" #include "fsck.h" #include "inode.h" #include "journal.h" #include "io.h" #include "keylist.h" #include "quota.h" #include "reflink.h" #include "trace.h" #include #include #include #include #include #include #include #include #include #include #include static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } struct quota_res { u64 sectors; }; struct bch_writepage_io { struct closure cl; struct bch_inode_info *inode; /* must be last: */ struct bch_write_op op; }; struct dio_write { struct completion done; struct kiocb *req; struct mm_struct *mm; unsigned loop:1, sync:1, free_iov:1; struct quota_res quota_res; struct iov_iter iter; struct iovec inline_vecs[2]; /* must be last: */ struct bch_write_op op; }; struct dio_read { struct closure cl; struct kiocb *req; long ret; struct bch_read_bio rbio; }; /* pagecache_block must be held */ static noinline int write_invalidate_inode_pages_range(struct address_space *mapping, loff_t start, loff_t end) { int ret; /* * XXX: the way this is currently implemented, we can spin if a process * is continually redirtying a specific page */ do { if (!mapping->nrpages) return 0; ret = filemap_write_and_wait_range(mapping, start, end); if (ret) break; if (!mapping->nrpages) return 0; ret = invalidate_inode_pages2_range(mapping, start >> PAGE_SHIFT, end >> PAGE_SHIFT); } while (ret == -EBUSY); return ret; } /* quotas */ #ifdef CONFIG_BCACHEFS_QUOTA static void bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) { if (!res->sectors) return; mutex_lock(&inode->ei_quota_lock); BUG_ON(res->sectors > inode->ei_quota_reserved); bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) res->sectors), KEY_TYPE_QUOTA_PREALLOC); inode->ei_quota_reserved -= res->sectors; mutex_unlock(&inode->ei_quota_lock); res->sectors = 0; } static int bch2_quota_reservation_add(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res, unsigned sectors, bool check_enospc) { int ret; mutex_lock(&inode->ei_quota_lock); ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, check_enospc ? KEY_TYPE_QUOTA_PREALLOC : KEY_TYPE_QUOTA_NOCHECK); if (likely(!ret)) { inode->ei_quota_reserved += sectors; res->sectors += sectors; } mutex_unlock(&inode->ei_quota_lock); return ret; } #else static void bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) { } static int bch2_quota_reservation_add(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res, unsigned sectors, bool check_enospc) { return 0; } #endif /* i_size updates: */ struct inode_new_size { loff_t new_size; u64 now; unsigned fields; }; static int inode_set_size(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct inode_new_size *s = p; bi->bi_size = s->new_size; if (s->fields & ATTR_ATIME) bi->bi_atime = s->now; if (s->fields & ATTR_MTIME) bi->bi_mtime = s->now; if (s->fields & ATTR_CTIME) bi->bi_ctime = s->now; return 0; } int __must_check bch2_write_inode_size(struct bch_fs *c, struct bch_inode_info *inode, loff_t new_size, unsigned fields) { struct inode_new_size s = { .new_size = new_size, .now = bch2_current_time(c), .fields = fields, }; return bch2_write_inode(c, inode, inode_set_size, &s, fields); } static void i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *quota_res, s64 sectors) { if (!sectors) return; mutex_lock(&inode->ei_quota_lock); #ifdef CONFIG_BCACHEFS_QUOTA if (quota_res && sectors > 0) { BUG_ON(sectors > quota_res->sectors); BUG_ON(sectors > inode->ei_quota_reserved); quota_res->sectors -= sectors; inode->ei_quota_reserved -= sectors; } else { bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, KEY_TYPE_QUOTA_WARN); } #endif inode->v.i_blocks += sectors; mutex_unlock(&inode->ei_quota_lock); } /* page state: */ /* stored in page->private: */ struct bch_page_sector { /* Uncompressed, fully allocated replicas: */ unsigned nr_replicas:3; /* Owns PAGE_SECTORS * replicas_reserved sized reservation: */ unsigned replicas_reserved:3; /* i_sectors: */ enum { SECTOR_UNALLOCATED, SECTOR_RESERVED, SECTOR_DIRTY, SECTOR_ALLOCATED, } state:2; }; struct bch_page_state { spinlock_t lock; atomic_t write_count; struct bch_page_sector s[PAGE_SECTORS]; }; static inline struct bch_page_state *__bch2_page_state(struct page *page) { return page_has_private(page) ? (struct bch_page_state *) page_private(page) : NULL; } static inline struct bch_page_state *bch2_page_state(struct page *page) { EBUG_ON(!PageLocked(page)); return __bch2_page_state(page); } /* for newly allocated pages: */ static void __bch2_page_state_release(struct page *page) { struct bch_page_state *s = __bch2_page_state(page); if (!s) return; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); kfree(s); } static void bch2_page_state_release(struct page *page) { struct bch_page_state *s = bch2_page_state(page); if (!s) return; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); kfree(s); } /* for newly allocated pages: */ static struct bch_page_state *__bch2_page_state_create(struct page *page, gfp_t gfp) { struct bch_page_state *s; s = kzalloc(sizeof(*s), GFP_NOFS|gfp); if (!s) return NULL; spin_lock_init(&s->lock); /* * migrate_page_move_mapping() assumes that pages with private data * have their count elevated by 1. */ get_page(page); set_page_private(page, (unsigned long) s); SetPagePrivate(page); return s; } static struct bch_page_state *bch2_page_state_create(struct page *page, gfp_t gfp) { return bch2_page_state(page) ?: __bch2_page_state_create(page, gfp); } static inline unsigned inode_nr_replicas(struct bch_fs *c, struct bch_inode_info *inode) { /* XXX: this should not be open coded */ return inode->ei_inode.bi_data_replicas ? inode->ei_inode.bi_data_replicas - 1 : c->opts.data_replicas; } static inline unsigned sectors_to_reserve(struct bch_page_sector *s, unsigned nr_replicas) { return max(0, (int) nr_replicas - s->nr_replicas - s->replicas_reserved); } static int bch2_get_page_disk_reservation(struct bch_fs *c, struct bch_inode_info *inode, struct page *page, bool check_enospc) { struct bch_page_state *s = bch2_page_state_create(page, 0); unsigned nr_replicas = inode_nr_replicas(c, inode); struct disk_reservation disk_res = { 0 }; unsigned i, disk_res_sectors = 0; int ret; if (!s) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(s->s); i++) disk_res_sectors += sectors_to_reserve(&s->s[i], nr_replicas); if (!disk_res_sectors) return 0; ret = bch2_disk_reservation_get(c, &disk_res, disk_res_sectors, 1, !check_enospc ? BCH_DISK_RESERVATION_NOFAIL : 0); if (unlikely(ret)) return ret; for (i = 0; i < ARRAY_SIZE(s->s); i++) s->s[i].replicas_reserved += sectors_to_reserve(&s->s[i], nr_replicas); return 0; } struct bch2_page_reservation { struct disk_reservation disk; struct quota_res quota; }; static void bch2_page_reservation_init(struct bch_fs *c, struct bch_inode_info *inode, struct bch2_page_reservation *res) { memset(res, 0, sizeof(*res)); res->disk.nr_replicas = inode_nr_replicas(c, inode); } static void bch2_page_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct bch2_page_reservation *res) { bch2_disk_reservation_put(c, &res->disk); bch2_quota_reservation_put(c, inode, &res->quota); } static int bch2_page_reservation_get(struct bch_fs *c, struct bch_inode_info *inode, struct page *page, struct bch2_page_reservation *res, unsigned offset, unsigned len, bool check_enospc) { struct bch_page_state *s = bch2_page_state_create(page, 0); unsigned i, disk_sectors = 0, quota_sectors = 0; int ret; if (!s) return -ENOMEM; for (i = round_down(offset, block_bytes(c)) >> 9; i < round_up(offset + len, block_bytes(c)) >> 9; i++) { disk_sectors += sectors_to_reserve(&s->s[i], res->disk.nr_replicas); quota_sectors += s->s[i].state == SECTOR_UNALLOCATED; } if (disk_sectors) { ret = bch2_disk_reservation_add(c, &res->disk, disk_sectors, !check_enospc ? BCH_DISK_RESERVATION_NOFAIL : 0); if (unlikely(ret)) return ret; } if (quota_sectors) { ret = bch2_quota_reservation_add(c, inode, &res->quota, quota_sectors, check_enospc); if (unlikely(ret)) { struct disk_reservation tmp = { .sectors = disk_sectors }; bch2_disk_reservation_put(c, &tmp); res->disk.sectors -= disk_sectors; return ret; } } return 0; } static void bch2_clear_page_bits(struct page *page) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_page_state *s = bch2_page_state(page); struct disk_reservation disk_res = { 0 }; int i, dirty_sectors = 0; if (!s) return; EBUG_ON(!PageLocked(page)); EBUG_ON(PageWriteback(page)); for (i = 0; i < ARRAY_SIZE(s->s); i++) { disk_res.sectors += s->s[i].replicas_reserved; s->s[i].replicas_reserved = 0; if (s->s[i].state == SECTOR_DIRTY) { dirty_sectors++; s->s[i].state = SECTOR_UNALLOCATED; } } bch2_disk_reservation_put(c, &disk_res); if (dirty_sectors) i_sectors_acct(c, inode, NULL, -dirty_sectors); bch2_page_state_release(page); } static void bch2_set_page_dirty(struct bch_fs *c, struct bch_inode_info *inode, struct page *page, struct bch2_page_reservation *res, unsigned offset, unsigned len) { struct bch_page_state *s = bch2_page_state(page); unsigned i, dirty_sectors = 0; WARN_ON((u64) page_offset(page) + offset + len > round_up((u64) i_size_read(&inode->v), block_bytes(c))); spin_lock(&s->lock); for (i = round_down(offset, block_bytes(c)) >> 9; i < round_up(offset + len, block_bytes(c)) >> 9; i++) { unsigned sectors = sectors_to_reserve(&s->s[i], res->disk.nr_replicas); /* * This can happen if we race with the error path in * bch2_writepage_io_done(): */ sectors = min_t(unsigned, sectors, res->disk.sectors); s->s[i].replicas_reserved += sectors; res->disk.sectors -= sectors; if (s->s[i].state == SECTOR_UNALLOCATED) dirty_sectors++; s->s[i].state = max_t(unsigned, s->s[i].state, SECTOR_DIRTY); } spin_unlock(&s->lock); if (dirty_sectors) i_sectors_acct(c, inode, &res->quota, dirty_sectors); if (!PageDirty(page)) filemap_dirty_folio(inode->v.i_mapping, page_folio(page)); } vm_fault_t bch2_page_fault(struct vm_fault *vmf) { struct file *file = vmf->vma->vm_file; struct bch_inode_info *inode = file_bch_inode(file); int ret; bch2_pagecache_add_get(&inode->ei_pagecache_lock); ret = filemap_fault(vmf); bch2_pagecache_add_put(&inode->ei_pagecache_lock); return ret; } vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct file *file = vmf->vma->vm_file; struct bch_inode_info *inode = file_bch_inode(file); struct address_space *mapping = file->f_mapping; struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch2_page_reservation res; unsigned len; loff_t isize; int ret = VM_FAULT_LOCKED; bch2_page_reservation_init(c, inode, &res); sb_start_pagefault(inode->v.i_sb); file_update_time(file); /* * Not strictly necessary, but helps avoid dio writes livelocking in * write_invalidate_inode_pages_range() - can drop this if/when we get * a write_invalidate_inode_pages_range() that works without dropping * page lock before invalidating page */ bch2_pagecache_add_get(&inode->ei_pagecache_lock); lock_page(page); isize = i_size_read(&inode->v); if (page->mapping != mapping || page_offset(page) >= isize) { unlock_page(page); ret = VM_FAULT_NOPAGE; goto out; } len = min_t(loff_t, PAGE_SIZE, isize - page_offset(page)); if (bch2_page_reservation_get(c, inode, page, &res, 0, len, true)) { unlock_page(page); ret = VM_FAULT_SIGBUS; goto out; } bch2_set_page_dirty(c, inode, page, &res, 0, len); bch2_page_reservation_put(c, inode, &res); wait_for_stable_page(page); out: bch2_pagecache_add_put(&inode->ei_pagecache_lock); sb_end_pagefault(inode->v.i_sb); return ret; } void bch2_invalidate_folio(struct folio *folio, size_t offset, size_t length) { if (offset || length < folio_size(folio)) return; bch2_clear_page_bits(&folio->page); } bool bch2_release_folio(struct folio *folio, gfp_t gfp_mask) { if (folio_test_dirty(folio) || folio_test_writeback(folio)) return false; bch2_clear_page_bits(&folio->page); return true; } /* readpage(s): */ static void bch2_readpages_end_io(struct bio *bio) { struct bvec_iter_all iter; struct bio_vec *bv; bio_for_each_segment_all(bv, bio, iter) { struct page *page = bv->bv_page; if (!bio->bi_status) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } bio_put(bio); } static inline void page_state_init_for_read(struct page *page) { SetPagePrivate(page); page->private = 0; } struct readpages_iter { struct address_space *mapping; struct page **pages; unsigned nr_pages; unsigned idx; pgoff_t offset; }; static int readpages_iter_init(struct readpages_iter *iter, struct readahead_control *ractl) { unsigned i, nr_pages = readahead_count(ractl); memset(iter, 0, sizeof(*iter)); iter->mapping = ractl->mapping; iter->offset = readahead_index(ractl); iter->nr_pages = nr_pages; iter->pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS); if (!iter->pages) return -ENOMEM; __readahead_batch(ractl, iter->pages, nr_pages); for (i = 0; i < nr_pages; i++) { __bch2_page_state_create(iter->pages[i], __GFP_NOFAIL); put_page(iter->pages[i]); } return 0; } static inline struct page *readpage_iter_next(struct readpages_iter *iter) { if (iter->idx >= iter->nr_pages) return NULL; EBUG_ON(iter->pages[iter->idx]->index != iter->offset + iter->idx); return iter->pages[iter->idx]; } static void bch2_add_page_sectors(struct bio *bio, struct bkey_s_c k) { struct bvec_iter iter; struct bio_vec bv; unsigned nr_ptrs = k.k->type == KEY_TYPE_reflink_v ? 0 : bch2_bkey_nr_ptrs_allocated(k); unsigned state = k.k->type == KEY_TYPE_reservation ? SECTOR_RESERVED : SECTOR_ALLOCATED; bio_for_each_segment(bv, bio, iter) { struct bch_page_state *s = bch2_page_state(bv.bv_page); unsigned i; for (i = bv.bv_offset >> 9; i < (bv.bv_offset + bv.bv_len) >> 9; i++) { s->s[i].nr_replicas = nr_ptrs; s->s[i].state = state; } } } static void readpage_bio_extend(struct readpages_iter *iter, struct bio *bio, unsigned sectors_this_extent, bool get_more) { while (bio_sectors(bio) < sectors_this_extent && bio->bi_vcnt < bio->bi_max_vecs) { pgoff_t page_offset = bio_end_sector(bio) >> PAGE_SECTOR_SHIFT; struct page *page = readpage_iter_next(iter); int ret; if (page) { if (iter->offset + iter->idx != page_offset) break; iter->idx++; } else { if (!get_more) break; page = xa_load(&iter->mapping->i_pages, page_offset); if (page && !xa_is_value(page)) break; page = __page_cache_alloc(readahead_gfp_mask(iter->mapping)); if (!page) break; if (!__bch2_page_state_create(page, 0)) { put_page(page); break; } ret = add_to_page_cache_lru(page, iter->mapping, page_offset, GFP_NOFS); if (ret) { __bch2_page_state_release(page); put_page(page); break; } put_page(page); } BUG_ON(!bio_add_page(bio, page, PAGE_SIZE, 0)); } } static void bchfs_read(struct btree_trans *trans, struct btree_iter *iter, struct bch_read_bio *rbio, u64 inum, struct readpages_iter *readpages_iter) { struct bch_fs *c = trans->c; int flags = BCH_READ_RETRY_IF_STALE| BCH_READ_MAY_PROMOTE; int ret = 0; rbio->c = c; rbio->start_time = local_clock(); retry: while (1) { BKEY_PADDED(k) tmp; struct bkey_s_c k; unsigned bytes, sectors, offset_into_extent; bch2_btree_iter_set_pos(iter, POS(inum, rbio->bio.bi_iter.bi_sector)); k = bch2_btree_iter_peek_slot(iter); ret = bkey_err(k); if (ret) break; bkey_reassemble(&tmp.k, k); k = bkey_i_to_s_c(&tmp.k); offset_into_extent = iter->pos.offset - bkey_start_offset(k.k); sectors = k.k->size - offset_into_extent; ret = bch2_read_indirect_extent(trans, &offset_into_extent, &tmp.k); if (ret) break; sectors = min(sectors, k.k->size - offset_into_extent); bch2_trans_unlock(trans); if (readpages_iter) { bool want_full_extent = false; if (bkey_extent_is_data(k.k)) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *i; struct extent_ptr_decoded p; bkey_for_each_ptr_decode(k.k, ptrs, p, i) want_full_extent |= ((p.crc.csum_type != 0) | (p.crc.compression_type != 0)); } readpage_bio_extend(readpages_iter, &rbio->bio, sectors, want_full_extent); } bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; swap(rbio->bio.bi_iter.bi_size, bytes); if (rbio->bio.bi_iter.bi_size == bytes) flags |= BCH_READ_LAST_FRAGMENT; if (bkey_extent_is_allocation(k.k)) bch2_add_page_sectors(&rbio->bio, k); bch2_read_extent(c, rbio, k, offset_into_extent, flags); if (flags & BCH_READ_LAST_FRAGMENT) return; swap(rbio->bio.bi_iter.bi_size, bytes); bio_advance(&rbio->bio, bytes); } if (ret == -EINTR) goto retry; bcache_io_error(c, &rbio->bio, "btree IO error %i", ret); bio_endio(&rbio->bio); } void bch2_readahead(struct readahead_control *ractl) { struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts = io_opts(c, &inode->ei_inode); struct btree_trans trans; struct btree_iter *iter; struct page *page; struct readpages_iter readpages_iter; int ret; ret = readpages_iter_init(&readpages_iter, ractl); BUG_ON(ret); bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_SLOTS); bch2_pagecache_add_get(&inode->ei_pagecache_lock); while ((page = readpage_iter_next(&readpages_iter))) { pgoff_t index = readpages_iter.offset + readpages_iter.idx; unsigned n = min_t(unsigned, readpages_iter.nr_pages - readpages_iter.idx, BIO_MAX_VECS); struct bch_read_bio *rbio = rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ, GFP_NOFS, &c->bio_read), opts); readpages_iter.idx++; rbio->bio.bi_iter.bi_sector = (sector_t) index << PAGE_SECTOR_SHIFT; rbio->bio.bi_end_io = bch2_readpages_end_io; BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0)); bchfs_read(&trans, iter, rbio, inode->v.i_ino, &readpages_iter); } bch2_pagecache_add_put(&inode->ei_pagecache_lock); bch2_trans_exit(&trans); kfree(readpages_iter.pages); } static void __bchfs_readpage(struct bch_fs *c, struct bch_read_bio *rbio, u64 inum, struct page *page) { struct btree_trans trans; struct btree_iter *iter; bch2_page_state_create(page, __GFP_NOFAIL); rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC; rbio->bio.bi_iter.bi_sector = (sector_t) page->index << PAGE_SECTOR_SHIFT; BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0)); bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_SLOTS); bchfs_read(&trans, iter, rbio, inum, NULL); bch2_trans_exit(&trans); } static void bch2_read_single_page_end_io(struct bio *bio) { complete(bio->bi_private); } static int bch2_read_single_page(struct page *page, struct address_space *mapping) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_read_bio *rbio; int ret; DECLARE_COMPLETION_ONSTACK(done); rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, &c->bio_read), io_opts(c, &inode->ei_inode)); rbio->bio.bi_private = &done; rbio->bio.bi_end_io = bch2_read_single_page_end_io; __bchfs_readpage(c, rbio, inode->v.i_ino, page); wait_for_completion(&done); ret = blk_status_to_errno(rbio->bio.bi_status); bio_put(&rbio->bio); if (ret < 0) return ret; SetPageUptodate(page); return 0; } int bch2_read_folio(struct file *file, struct folio *folio) { struct page *page = &folio->page; int ret; ret = bch2_read_single_page(page, page->mapping); folio_unlock(folio); return ret; } /* writepages: */ struct bch_writepage_state { struct bch_writepage_io *io; struct bch_io_opts opts; }; static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, struct bch_inode_info *inode) { return (struct bch_writepage_state) { .opts = io_opts(c, &inode->ei_inode) }; } static void bch2_writepage_io_free(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); bio_put(&io->op.wbio.bio); } static void bch2_writepage_io_done(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); struct bch_fs *c = io->op.c; struct bio *bio = &io->op.wbio.bio; struct bvec_iter_all iter; struct bio_vec *bvec; unsigned i; if (io->op.error) { bio_for_each_segment_all(bvec, bio, iter) { struct bch_page_state *s; SetPageError(bvec->bv_page); mapping_set_error(bvec->bv_page->mapping, -EIO); s = __bch2_page_state(bvec->bv_page); spin_lock(&s->lock); for (i = 0; i < PAGE_SECTORS; i++) s->s[i].nr_replicas = 0; spin_unlock(&s->lock); } } /* * racing with fallocate can cause us to add fewer sectors than * expected - but we shouldn't add more sectors than expected: */ BUG_ON(io->op.i_sectors_delta > 0); /* * (error (due to going RO) halfway through a page can screw that up * slightly) * XXX wtf? BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS); */ /* * PageWriteback is effectively our ref on the inode - fixup i_blocks * before calling end_page_writeback: */ i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta); bio_for_each_segment_all(bvec, bio, iter) { struct bch_page_state *s = __bch2_page_state(bvec->bv_page); if (atomic_dec_and_test(&s->write_count)) end_page_writeback(bvec->bv_page); } closure_return_with_destructor(&io->cl, bch2_writepage_io_free); } static void bch2_writepage_do_io(struct bch_writepage_state *w) { struct bch_writepage_io *io = w->io; w->io = NULL; closure_call(&io->op.cl, bch2_write, NULL, &io->cl); continue_at(&io->cl, bch2_writepage_io_done, NULL); } /* * Get a bch_writepage_io and add @page to it - appending to an existing one if * possible, else allocating a new one: */ static void bch2_writepage_io_alloc(struct bch_fs *c, struct writeback_control *wbc, struct bch_writepage_state *w, struct bch_inode_info *inode, u64 sector, unsigned nr_replicas) { struct bch_write_op *op; w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOFS, &c->writepage_bioset), struct bch_writepage_io, op.wbio.bio); closure_init(&w->io->cl, NULL); w->io->inode = inode; op = &w->io->op; bch2_write_op_init(op, c, w->opts); op->target = w->opts.foreground_target; op_journal_seq_set(op, &inode->ei_journal_seq); op->nr_replicas = nr_replicas; op->res.nr_replicas = nr_replicas; op->write_point = writepoint_hashed(inode->ei_last_dirtied); op->pos = POS(inode->v.i_ino, sector); op->wbio.bio.bi_iter.bi_sector = sector; op->wbio.bio.bi_opf = wbc_to_write_flags(wbc); } static int __bch2_writepage(struct folio *folio, struct writeback_control *wbc, void *data) { struct page *page = &folio->page; struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_writepage_state *w = data; struct bch_page_state *s, orig; unsigned i, offset, nr_replicas_this_write = U32_MAX; loff_t i_size = i_size_read(&inode->v); pgoff_t end_index = i_size >> PAGE_SHIFT; int ret; EBUG_ON(!PageUptodate(page)); /* Is the page fully inside i_size? */ if (page->index < end_index) goto do_io; /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_SIZE - 1); if (page->index > end_index || !offset) { unlock_page(page); return 0; } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ zero_user_segment(page, offset, PAGE_SIZE); do_io: s = bch2_page_state_create(page, __GFP_NOFAIL); ret = bch2_get_page_disk_reservation(c, inode, page, true); if (ret) { SetPageError(page); mapping_set_error(page->mapping, ret); unlock_page(page); return 0; } /* Before unlocking the page, get copy of reservations: */ orig = *s; for (i = 0; i < PAGE_SECTORS; i++) { if (s->s[i].state < SECTOR_DIRTY) continue; nr_replicas_this_write = min_t(unsigned, nr_replicas_this_write, s->s[i].nr_replicas + s->s[i].replicas_reserved); } for (i = 0; i < PAGE_SECTORS; i++) { if (s->s[i].state < SECTOR_DIRTY) continue; s->s[i].nr_replicas = w->opts.compression ? 0 : nr_replicas_this_write; s->s[i].replicas_reserved = 0; s->s[i].state = SECTOR_ALLOCATED; } BUG_ON(atomic_read(&s->write_count)); atomic_set(&s->write_count, 1); BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); offset = 0; while (1) { unsigned sectors = 1, dirty_sectors = 0, reserved_sectors = 0; u64 sector; while (offset < PAGE_SECTORS && orig.s[offset].state < SECTOR_DIRTY) offset++; if (offset == PAGE_SECTORS) break; sector = ((u64) page->index << PAGE_SECTOR_SHIFT) + offset; while (offset + sectors < PAGE_SECTORS && orig.s[offset + sectors].state >= SECTOR_DIRTY) sectors++; for (i = offset; i < offset + sectors; i++) { reserved_sectors += orig.s[i].replicas_reserved; dirty_sectors += orig.s[i].state == SECTOR_DIRTY; } if (w->io && (w->io->op.res.nr_replicas != nr_replicas_this_write || bio_full(&w->io->op.wbio.bio, PAGE_SIZE) || w->io->op.wbio.bio.bi_iter.bi_size >= (256U << 20) || bio_end_sector(&w->io->op.wbio.bio) != sector)) bch2_writepage_do_io(w); if (!w->io) bch2_writepage_io_alloc(c, wbc, w, inode, sector, nr_replicas_this_write); atomic_inc(&s->write_count); BUG_ON(inode != w->io->inode); BUG_ON(!bio_add_page(&w->io->op.wbio.bio, page, sectors << 9, offset << 9)); /* Check for writing past i_size: */ WARN_ON((bio_end_sector(&w->io->op.wbio.bio) << 9) > round_up(i_size, block_bytes(c))); w->io->op.res.sectors += reserved_sectors; w->io->op.i_sectors_delta -= dirty_sectors; w->io->op.new_i_size = i_size; offset += sectors; } if (atomic_dec_and_test(&s->write_count)) end_page_writeback(page); return 0; } int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct bch_fs *c = mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = bch_writepage_state_init(c, to_bch_ei(mapping->host)); struct blk_plug plug; int ret; blk_start_plug(&plug); ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w); if (w.io) bch2_writepage_do_io(&w); blk_finish_plug(&plug); return ret; } int bch2_writepage(struct page *page, struct writeback_control *wbc) { struct bch_fs *c = page->mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = bch_writepage_state_init(c, to_bch_ei(page->mapping->host)); int ret; ret = __bch2_writepage(page_folio(page), wbc, &w); if (w.io) bch2_writepage_do_io(&w); return ret; } /* buffered writes: */ int bch2_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch2_page_reservation *res; pgoff_t index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); struct page *page; int ret = -ENOMEM; res = kmalloc(sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; bch2_page_reservation_init(c, inode, res); *fsdata = res; bch2_pagecache_add_get(&inode->ei_pagecache_lock); page = grab_cache_page_write_begin(mapping, index); if (!page) goto err_unlock; if (PageUptodate(page)) goto out; /* If we're writing entire page, don't need to read it in first: */ if (len == PAGE_SIZE) goto out; if (!offset && pos + len >= inode->v.i_size) { zero_user_segment(page, len, PAGE_SIZE); flush_dcache_page(page); goto out; } if (index > inode->v.i_size >> PAGE_SHIFT) { zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE); flush_dcache_page(page); goto out; } readpage: ret = bch2_read_single_page(page, mapping); if (ret) goto err; out: ret = bch2_page_reservation_get(c, inode, page, res, offset, len, true); if (ret) { if (!PageUptodate(page)) { /* * If the page hasn't been read in, we won't know if we * actually need a reservation - we don't actually need * to read here, we just need to check if the page is * fully backed by uncompressed data: */ goto readpage; } goto err; } *pagep = page; return 0; err: unlock_page(page); put_page(page); *pagep = NULL; err_unlock: bch2_pagecache_add_put(&inode->ei_pagecache_lock); kfree(res); *fsdata = NULL; return ret; } int bch2_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch2_page_reservation *res = fsdata; unsigned offset = pos & (PAGE_SIZE - 1); lockdep_assert_held(&inode->v.i_rwsem); if (unlikely(copied < len && !PageUptodate(page))) { /* * The page needs to be read in, but that would destroy * our partial write - simplest thing is to just force * userspace to redo the write: */ zero_user(page, 0, PAGE_SIZE); flush_dcache_page(page); copied = 0; } spin_lock(&inode->v.i_lock); if (pos + copied > inode->v.i_size) i_size_write(&inode->v, pos + copied); spin_unlock(&inode->v.i_lock); if (copied) { if (!PageUptodate(page)) SetPageUptodate(page); bch2_set_page_dirty(c, inode, page, res, offset, copied); inode->ei_last_dirtied = (unsigned long) current; } unlock_page(page); put_page(page); bch2_pagecache_add_put(&inode->ei_pagecache_lock); bch2_page_reservation_put(c, inode, res); kfree(res); return copied; } #define WRITE_BATCH_PAGES 32 static int __bch2_buffered_write(struct bch_inode_info *inode, struct address_space *mapping, struct iov_iter *iter, loff_t pos, unsigned len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct page *pages[WRITE_BATCH_PAGES]; struct bch2_page_reservation res; unsigned long index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); unsigned nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); unsigned i, reserved = 0, set_dirty = 0; unsigned copied = 0, nr_pages_copied = 0; int ret = 0; BUG_ON(!len); BUG_ON(nr_pages > ARRAY_SIZE(pages)); bch2_page_reservation_init(c, inode, &res); for (i = 0; i < nr_pages; i++) { pages[i] = grab_cache_page_write_begin(mapping, index + i); if (!pages[i]) { nr_pages = i; if (!i) { ret = -ENOMEM; goto out; } len = min_t(unsigned, len, nr_pages * PAGE_SIZE - offset); break; } } if (offset && !PageUptodate(pages[0])) { ret = bch2_read_single_page(pages[0], mapping); if (ret) goto out; } if ((pos + len) & (PAGE_SIZE - 1) && !PageUptodate(pages[nr_pages - 1])) { if ((index + nr_pages - 1) << PAGE_SHIFT >= inode->v.i_size) { zero_user(pages[nr_pages - 1], 0, PAGE_SIZE); } else { ret = bch2_read_single_page(pages[nr_pages - 1], mapping); if (ret) goto out; } } while (reserved < len) { struct page *page = pages[(offset + reserved) >> PAGE_SHIFT]; unsigned pg_offset = (offset + reserved) & (PAGE_SIZE - 1); unsigned pg_len = min_t(unsigned, len - reserved, PAGE_SIZE - pg_offset); retry_reservation: ret = bch2_page_reservation_get(c, inode, page, &res, pg_offset, pg_len, true); if (ret && !PageUptodate(page)) { ret = bch2_read_single_page(page, mapping); if (!ret) goto retry_reservation; } if (ret) goto out; reserved += pg_len; } if (mapping_writably_mapped(mapping)) for (i = 0; i < nr_pages; i++) flush_dcache_page(pages[i]); while (copied < len) { struct page *page = pages[(offset + copied) >> PAGE_SHIFT]; unsigned pg_offset = (offset + copied) & (PAGE_SIZE - 1); unsigned pg_len = min_t(unsigned, len - copied, PAGE_SIZE - pg_offset); unsigned pg_copied = copy_page_from_iter_atomic(page, pg_offset, pg_len, iter); if (!pg_copied) break; flush_dcache_page(page); copied += pg_copied; } if (!copied) goto out; if (copied < len && ((offset + copied) & (PAGE_SIZE - 1))) { struct page *page = pages[(offset + copied) >> PAGE_SHIFT]; if (!PageUptodate(page)) { zero_user(page, 0, PAGE_SIZE); copied -= (offset + copied) & (PAGE_SIZE - 1); } } spin_lock(&inode->v.i_lock); if (pos + copied > inode->v.i_size) i_size_write(&inode->v, pos + copied); spin_unlock(&inode->v.i_lock); while (set_dirty < copied) { struct page *page = pages[(offset + set_dirty) >> PAGE_SHIFT]; unsigned pg_offset = (offset + set_dirty) & (PAGE_SIZE - 1); unsigned pg_len = min_t(unsigned, copied - set_dirty, PAGE_SIZE - pg_offset); if (!PageUptodate(page)) SetPageUptodate(page); bch2_set_page_dirty(c, inode, page, &res, pg_offset, pg_len); unlock_page(page); put_page(page); set_dirty += pg_len; } nr_pages_copied = DIV_ROUND_UP(offset + copied, PAGE_SIZE); inode->ei_last_dirtied = (unsigned long) current; out: for (i = nr_pages_copied; i < nr_pages; i++) { unlock_page(pages[i]); put_page(pages[i]); } bch2_page_reservation_put(c, inode, &res); return copied ?: ret; } static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct bch_inode_info *inode = file_bch_inode(file); loff_t pos = iocb->ki_pos; ssize_t written = 0; int ret = 0; bch2_pagecache_add_get(&inode->ei_pagecache_lock); do { unsigned offset = pos & (PAGE_SIZE - 1); unsigned bytes = min_t(unsigned long, iov_iter_count(iter), PAGE_SIZE * WRITE_BATCH_PAGES - offset); again: /* * Bring in the user page that we will copy from _first_. * Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked * up-to-date. * * Not only is this an optimisation, but it is also required * to check that the address is actually valid, when atomic * usercopies are used, below. */ if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { bytes = min_t(unsigned long, iov_iter_count(iter), PAGE_SIZE - offset); if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { ret = -EFAULT; break; } } if (unlikely(fatal_signal_pending(current))) { ret = -EINTR; break; } ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes); if (unlikely(ret < 0)) break; cond_resched(); if (unlikely(ret == 0)) { /* * If we were unable to copy any data at all, we must * fall back to a single segment length write. * * If we didn't fallback here, we could livelock * because not all segments in the iov can be copied at * once without a pagefault. */ bytes = min_t(unsigned long, PAGE_SIZE - offset, iov_iter_single_seg_count(iter)); goto again; } pos += ret; written += ret; balance_dirty_pages_ratelimited(mapping); } while (iov_iter_count(iter)); bch2_pagecache_add_put(&inode->ei_pagecache_lock); return written ? written : ret; } /* O_DIRECT reads */ static void bch2_dio_read_complete(struct closure *cl) { struct dio_read *dio = container_of(cl, struct dio_read, cl); dio->req->ki_complete(dio->req, dio->ret); bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ } static void bch2_direct_IO_read_endio(struct bio *bio) { struct dio_read *dio = bio->bi_private; if (bio->bi_status) dio->ret = blk_status_to_errno(bio->bi_status); closure_put(&dio->cl); } static void bch2_direct_IO_read_split_endio(struct bio *bio) { bch2_direct_IO_read_endio(bio); bio_check_pages_dirty(bio); /* transfers ownership */ } static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts = io_opts(c, &inode->ei_inode); struct dio_read *dio; struct bio *bio; loff_t offset = req->ki_pos; bool sync = is_sync_kiocb(req); size_t shorten; ssize_t ret; if ((offset|iter->count) & (block_bytes(c) - 1)) return -EINVAL; ret = min_t(loff_t, iter->count, max_t(loff_t, 0, i_size_read(&inode->v) - offset)); if (!ret) return ret; shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c)); iter->count -= shorten; bio = bio_alloc_bioset(NULL, iov_iter_npages(iter, BIO_MAX_VECS), REQ_OP_READ, GFP_KERNEL, &c->dio_read_bioset); bio->bi_end_io = bch2_direct_IO_read_endio; dio = container_of(bio, struct dio_read, rbio.bio); closure_init(&dio->cl, NULL); /* * this is a _really_ horrible hack just to avoid an atomic sub at the * end: */ if (!sync) { set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL); atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER - CLOSURE_RUNNING + CLOSURE_DESTRUCTOR); } else { atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER + 1); } dio->req = req; dio->ret = ret; goto start; while (iter->count) { bio = bio_alloc_bioset(NULL, iov_iter_npages(iter, BIO_MAX_VECS), REQ_OP_READ, GFP_KERNEL, &c->bio_read); bio->bi_end_io = bch2_direct_IO_read_split_endio; start: bio->bi_opf = REQ_OP_READ|REQ_SYNC; bio->bi_iter.bi_sector = offset >> 9; bio->bi_private = dio; ret = bio_iov_iter_get_pages(bio, iter); if (ret < 0) { /* XXX: fault inject this path */ bio->bi_status = BLK_STS_RESOURCE; bio_endio(bio); break; } offset += bio->bi_iter.bi_size; bio_set_pages_dirty(bio); if (iter->count) closure_get(&dio->cl); bch2_read(c, rbio_init(bio, opts), inode->v.i_ino); } iter->count += shorten; if (sync) { closure_sync(&dio->cl); closure_debug_destroy(&dio->cl); ret = dio->ret; bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ return ret; } else { return -EIOCBQUEUED; } } ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct address_space *mapping = file->f_mapping; size_t count = iov_iter_count(iter); ssize_t ret; if (!count) return 0; /* skip atime */ if (iocb->ki_flags & IOCB_DIRECT) { struct blk_plug plug; if (unlikely(mapping->nrpages)) { ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, iocb->ki_pos + count - 1); if (ret < 0) return ret; } file_accessed(file); blk_start_plug(&plug); ret = bch2_direct_IO_read(iocb, iter); blk_finish_plug(&plug); if (ret >= 0) iocb->ki_pos += ret; } else { bch2_pagecache_add_get(&inode->ei_pagecache_lock); ret = generic_file_read_iter(iocb, iter); bch2_pagecache_add_put(&inode->ei_pagecache_lock); } return ret; } /* O_DIRECT writes */ /* * We're going to return -EIOCBQUEUED, but we haven't finished consuming the * iov_iter yet, so we need to stash a copy of the iovec: it might be on the * caller's stack, we're not guaranteed that it will live for the duration of * the IO: */ static noinline int bch2_dio_write_copy_iov(struct dio_write *dio) { struct iovec *iov = dio->inline_vecs; /* * iov_iter has a single embedded iovec - nothing to do: */ if (iter_is_ubuf(&dio->iter)) return 0; /* * We don't currently handle non-iovec iov_iters here - return an error, * and we'll fall back to doing the IO synchronously: */ if (!iter_is_iovec(&dio->iter)) return -1; if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov), GFP_KERNEL); if (unlikely(!iov)) return -ENOMEM; dio->free_iov = true; } memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov)); dio->iter.__iov = iov; return 0; } static long bch2_dio_write_loop(struct dio_write *dio) { bool kthread = (current->flags & PF_KTHREAD) != 0; struct bch_fs *c = dio->op.c; struct kiocb *req = dio->req; struct address_space *mapping = req->ki_filp->f_mapping; struct bch_inode_info *inode = file_bch_inode(req->ki_filp); struct bio *bio = &dio->op.wbio.bio; struct bvec_iter_all iter; struct bio_vec *bv; unsigned unaligned; u64 new_i_size; bool sync; long ret; if (dio->loop) goto loop; while (1) { if (kthread) kthread_use_mm(dio->mm); BUG_ON(current->faults_disabled_mapping); current->faults_disabled_mapping = mapping; ret = bio_iov_iter_get_pages(bio, &dio->iter); current->faults_disabled_mapping = NULL; if (kthread) kthread_unuse_mm(dio->mm); if (unlikely(ret < 0)) goto err; unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1); bio->bi_iter.bi_size -= unaligned; iov_iter_revert(&dio->iter, unaligned); if (!bio->bi_iter.bi_size) { /* * bio_iov_iter_get_pages was only able to get < * blocksize worth of pages: */ bio_for_each_segment_all(bv, bio, iter) put_page(bv->bv_page); ret = -EFAULT; goto err; } dio->op.pos = POS(inode->v.i_ino, (req->ki_pos >> 9) + dio->op.written); task_io_account_write(bio->bi_iter.bi_size); if (!dio->sync && !dio->loop && dio->iter.count) { if (bch2_dio_write_copy_iov(dio)) { dio->sync = true; goto do_io; } } do_io: dio->loop = true; closure_call(&dio->op.cl, bch2_write, NULL, NULL); if (dio->sync) wait_for_completion(&dio->done); else return -EIOCBQUEUED; loop: i_sectors_acct(c, inode, &dio->quota_res, dio->op.i_sectors_delta); dio->op.i_sectors_delta = 0; new_i_size = req->ki_pos + ((u64) dio->op.written << 9); spin_lock(&inode->v.i_lock); if (new_i_size > inode->v.i_size) i_size_write(&inode->v, new_i_size); spin_unlock(&inode->v.i_lock); bio_for_each_segment_all(bv, bio, iter) put_page(bv->bv_page); if (!dio->iter.count || dio->op.error) break; bio_reset(bio, NULL, REQ_OP_WRITE); reinit_completion(&dio->done); } ret = dio->op.error ?: ((long) dio->op.written << 9); err: bch2_pagecache_block_put(&inode->ei_pagecache_lock); bch2_disk_reservation_put(c, &dio->op.res); bch2_quota_reservation_put(c, inode, &dio->quota_res); if (dio->free_iov) kfree(dio->iter.__iov); sync = dio->sync; bio_put(bio); /* inode->i_dio_count is our ref on inode and thus bch_fs */ inode_dio_end(&inode->v); if (!sync) { req->ki_complete(req, ret); ret = -EIOCBQUEUED; } return ret; } static void bch2_dio_write_loop_async(struct bch_write_op *op) { struct dio_write *dio = container_of(op, struct dio_write, op); if (dio->sync) complete(&dio->done); else bch2_dio_write_loop(dio); } static noinline ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct address_space *mapping = file->f_mapping; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts = io_opts(c, &inode->ei_inode); struct dio_write *dio; struct bio *bio; bool locked = true, extending; ssize_t ret; prefetch(&c->opts); prefetch((void *) &c->opts + 64); prefetch(&inode->ei_inode); prefetch((void *) &inode->ei_inode + 64); inode_lock(&inode->v); ret = generic_write_checks(req, iter); if (unlikely(ret <= 0)) goto err; ret = file_remove_privs(file); if (unlikely(ret)) goto err; ret = file_update_time(file); if (unlikely(ret)) goto err; if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1))) goto err; inode_dio_begin(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); extending = req->ki_pos + iter->count > inode->v.i_size; if (!extending) { inode_unlock(&inode->v); locked = false; } bio = bio_alloc_bioset(NULL, iov_iter_npages(iter, BIO_MAX_VECS), REQ_OP_WRITE, GFP_KERNEL, &c->dio_write_bioset); dio = container_of(bio, struct dio_write, op.wbio.bio); init_completion(&dio->done); dio->req = req; dio->mm = current->mm; dio->loop = false; dio->sync = is_sync_kiocb(req) || extending; dio->free_iov = false; dio->quota_res.sectors = 0; dio->iter = *iter; bch2_write_op_init(&dio->op, c, opts); dio->op.end_io = bch2_dio_write_loop_async; dio->op.target = opts.foreground_target; op_journal_seq_set(&dio->op, &inode->ei_journal_seq); dio->op.write_point = writepoint_hashed((unsigned long) current); dio->op.flags |= BCH_WRITE_NOPUT_RESERVATION; if ((req->ki_flags & IOCB_DSYNC) && !c->opts.journal_flush_disabled) dio->op.flags |= BCH_WRITE_FLUSH; ret = bch2_quota_reservation_add(c, inode, &dio->quota_res, iter->count >> 9, true); if (unlikely(ret)) goto err_put_bio; dio->op.nr_replicas = dio->op.opts.data_replicas; ret = bch2_disk_reservation_get(c, &dio->op.res, iter->count >> 9, dio->op.opts.data_replicas, 0); if (unlikely(ret) && !bch2_check_range_allocated(c, POS(inode->v.i_ino, req->ki_pos >> 9), iter->count >> 9, dio->op.opts.data_replicas)) goto err_put_bio; if (unlikely(mapping->nrpages)) { ret = write_invalidate_inode_pages_range(mapping, req->ki_pos, req->ki_pos + iter->count - 1); if (unlikely(ret)) goto err_put_bio; } ret = bch2_dio_write_loop(dio); err: if (locked) inode_unlock(&inode->v); if (ret > 0) req->ki_pos += ret; return ret; err_put_bio: bch2_pagecache_block_put(&inode->ei_pagecache_lock); bch2_disk_reservation_put(c, &dio->op.res); bch2_quota_reservation_put(c, inode, &dio->quota_res); bio_put(bio); inode_dio_end(&inode->v); goto err; } ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); ssize_t ret; if (iocb->ki_flags & IOCB_DIRECT) return bch2_direct_write(iocb, from); inode_lock(&inode->v); ret = generic_write_checks(iocb, from); if (ret <= 0) goto unlock; ret = file_remove_privs(file); if (ret) goto unlock; ret = file_update_time(file); if (ret) goto unlock; ret = bch2_buffered_write(iocb, from); if (likely(ret > 0)) iocb->ki_pos += ret; unlock: inode_unlock(&inode->v); if (ret > 0) ret = generic_write_sync(iocb, ret); return ret; } /* fsync: */ int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; int ret, ret2; ret = file_write_and_wait_range(file, start, end); if (ret) return ret; if (datasync && !(inode->v.i_state & I_DIRTY_DATASYNC)) goto out; ret = sync_inode_metadata(&inode->v, 1); if (ret) return ret; out: if (!c->opts.journal_flush_disabled) ret = bch2_journal_flush_seq(&c->journal, inode->ei_journal_seq); ret2 = file_check_and_advance_wb_err(file); return ret ?: ret2; } /* truncate: */ static inline int range_has_data(struct bch_fs *c, struct bpos start, struct bpos end) { struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; int ret = 0; bch2_trans_init(&trans, c, 0, 0); for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, start, 0, k, ret) { if (bkey_cmp(bkey_start_pos(k.k), end) >= 0) break; if (bkey_extent_is_data(k.k)) { ret = 1; break; } } return bch2_trans_exit(&trans) ?: ret; } static int __bch2_truncate_page(struct bch_inode_info *inode, pgoff_t index, loff_t start, loff_t end) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct bch_page_state *s; unsigned start_offset = start & (PAGE_SIZE - 1); unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1; unsigned i; struct page *page; int ret = 0; /* Page boundary? Nothing to do */ if (!((index == start >> PAGE_SHIFT && start_offset) || (index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE))) return 0; /* Above i_size? */ if (index << PAGE_SHIFT >= inode->v.i_size) return 0; page = find_lock_page(mapping, index); if (!page) { /* * XXX: we're doing two index lookups when we end up reading the * page */ ret = range_has_data(c, POS(inode->v.i_ino, index << PAGE_SECTOR_SHIFT), POS(inode->v.i_ino, (index + 1) << PAGE_SECTOR_SHIFT)); if (ret <= 0) return ret; page = find_or_create_page(mapping, index, GFP_KERNEL); if (unlikely(!page)) { ret = -ENOMEM; goto out; } } s = bch2_page_state_create(page, 0); if (!s) { ret = -ENOMEM; goto unlock; } if (!PageUptodate(page)) { ret = bch2_read_single_page(page, mapping); if (ret) goto unlock; } if (index != start >> PAGE_SHIFT) start_offset = 0; if (index != end >> PAGE_SHIFT) end_offset = PAGE_SIZE; for (i = round_up(start_offset, block_bytes(c)) >> 9; i < round_down(end_offset, block_bytes(c)) >> 9; i++) { s->s[i].nr_replicas = 0; s->s[i].state = SECTOR_UNALLOCATED; } zero_user_segment(page, start_offset, end_offset); /* * Bit of a hack - we don't want truncate to fail due to -ENOSPC. * * XXX: because we aren't currently tracking whether the page has actual * data in it (vs. just 0s, or only partially written) this wrong. ick. */ ret = bch2_get_page_disk_reservation(c, inode, page, false); BUG_ON(ret); filemap_dirty_folio(mapping, page_folio(page)); unlock: unlock_page(page); put_page(page); out: return ret; } static int bch2_truncate_page(struct bch_inode_info *inode, loff_t from) { return __bch2_truncate_page(inode, from >> PAGE_SHIFT, from, round_up(from, PAGE_SIZE)); } static int bch2_extend(struct bch_inode_info *inode, struct bch_inode_unpacked *inode_u, struct iattr *iattr) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; int ret; /* * sync appends: * * this has to be done _before_ extending i_size: */ ret = filemap_write_and_wait_range(mapping, inode_u->bi_size, S64_MAX); if (ret) return ret; truncate_setsize(&inode->v, iattr->ia_size); /* ATTR_MODE will never be set here, ns argument isn't needed: */ setattr_copy(NULL, &inode->v, iattr); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, inode->v.i_size, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); return ret; } static int bch2_truncate_finish_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; bi->bi_flags &= ~BCH_INODE_I_SIZE_DIRTY; bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); return 0; } static int bch2_truncate_start_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { u64 *new_i_size = p; bi->bi_flags |= BCH_INODE_I_SIZE_DIRTY; bi->bi_size = *new_i_size; return 0; } int bch2_truncate(struct bch_inode_info *inode, struct iattr *iattr) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct bch_inode_unpacked inode_u; struct btree_trans trans; struct btree_iter *iter; u64 new_i_size = iattr->ia_size; s64 i_sectors_delta = 0; int ret = 0; inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); /* * fetch current on disk i_size: inode is locked, i_size can only * increase underneath us: */ bch2_trans_init(&trans, c, 0, 0); iter = bch2_inode_peek(&trans, &inode_u, inode->v.i_ino, 0); ret = PTR_ERR_OR_ZERO(iter); bch2_trans_exit(&trans); if (ret) goto err; BUG_ON(inode->v.i_size < inode_u.bi_size); if (iattr->ia_size > inode->v.i_size) { ret = bch2_extend(inode, &inode_u, iattr); goto err; } ret = bch2_truncate_page(inode, iattr->ia_size); if (unlikely(ret)) goto err; /* * When extending, we're going to write the new i_size to disk * immediately so we need to flush anything above the current on disk * i_size first: * * Also, when extending we need to flush the page that i_size currently * straddles - if it's mapped to userspace, we need to ensure that * userspace has to redirty it and call .mkwrite -> set_page_dirty * again to allocate the part of the page that was extended. */ if (iattr->ia_size > inode_u.bi_size) ret = filemap_write_and_wait_range(mapping, inode_u.bi_size, iattr->ia_size - 1); else if (iattr->ia_size & (PAGE_SIZE - 1)) ret = filemap_write_and_wait_range(mapping, round_down(iattr->ia_size, PAGE_SIZE), iattr->ia_size - 1); if (ret) goto err; mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode(c, inode, bch2_truncate_start_fn, &new_i_size, 0); mutex_unlock(&inode->ei_update_lock); if (unlikely(ret)) goto err; truncate_setsize(&inode->v, iattr->ia_size); ret = bch2_fpunch(c, inode->v.i_ino, round_up(iattr->ia_size, block_bytes(c)) >> 9, U64_MAX, &inode->ei_journal_seq, &i_sectors_delta); i_sectors_acct(c, inode, NULL, i_sectors_delta); if (unlikely(ret)) goto err; /* ATTR_MODE will never be set here, ns argument isn't needed: */ setattr_copy(NULL, &inode->v, iattr); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode(c, inode, bch2_truncate_finish_fn, NULL, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); err: bch2_pagecache_block_put(&inode->ei_pagecache_lock); return ret; } /* fallocate: */ static long bchfs_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; u64 discard_start = round_up(offset, block_bytes(c)) >> 9; u64 discard_end = round_down(offset + len, block_bytes(c)) >> 9; int ret = 0; inode_lock(&inode->v); inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); ret = __bch2_truncate_page(inode, offset >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto err; if (offset >> PAGE_SHIFT != (offset + len) >> PAGE_SHIFT) { ret = __bch2_truncate_page(inode, (offset + len) >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto err; } truncate_pagecache_range(&inode->v, offset, offset + len - 1); if (discard_start < discard_end) { s64 i_sectors_delta = 0; ret = bch2_fpunch(c, inode->v.i_ino, discard_start, discard_end, &inode->ei_journal_seq, &i_sectors_delta); i_sectors_acct(c, inode, NULL, i_sectors_delta); } err: bch2_pagecache_block_put(&inode->ei_pagecache_lock); inode_unlock(&inode->v); return ret; } static long bchfs_fcollapse_finsert(struct bch_inode_info *inode, loff_t offset, loff_t len, bool insert) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct btree_trans trans; struct btree_iter *src, *dst, *del = NULL; loff_t shift, new_size; u64 src_start; int ret; if ((offset | len) & (block_bytes(c) - 1)) return -EINVAL; bch2_trans_init(&trans, c, BTREE_ITER_MAX, 256); /* * We need i_mutex to keep the page cache consistent with the extents * btree, and the btree consistent with i_size - we don't need outside * locking for the extents btree itself, because we're using linked * iterators */ inode_lock(&inode->v); inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); if (insert) { ret = -EFBIG; if (inode->v.i_sb->s_maxbytes - inode->v.i_size < len) goto err; ret = -EINVAL; if (offset >= inode->v.i_size) goto err; src_start = U64_MAX; shift = len; } else { ret = -EINVAL; if (offset + len >= inode->v.i_size) goto err; src_start = offset + len; shift = -len; } new_size = inode->v.i_size + shift; ret = write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX); if (ret) goto err; if (insert) { i_size_write(&inode->v, new_size); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, new_size, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); } else { s64 i_sectors_delta = 0; ret = bch2_fpunch(c, inode->v.i_ino, offset >> 9, (offset + len) >> 9, &inode->ei_journal_seq, &i_sectors_delta); i_sectors_acct(c, inode, NULL, i_sectors_delta); if (ret) goto err; } src = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS(inode->v.i_ino, src_start >> 9), BTREE_ITER_INTENT); BUG_ON(IS_ERR_OR_NULL(src)); dst = bch2_trans_copy_iter(&trans, src); BUG_ON(IS_ERR_OR_NULL(dst)); while (1) { struct disk_reservation disk_res = bch2_disk_reservation_init(c, 0); BKEY_PADDED(k) copy; struct bkey_i delete; struct bkey_s_c k; struct bpos next_pos; struct bpos move_pos = POS(inode->v.i_ino, offset >> 9); struct bpos atomic_end; unsigned commit_flags = BTREE_INSERT_NOFAIL| BTREE_INSERT_ATOMIC| BTREE_INSERT_USE_RESERVE; k = insert ? bch2_btree_iter_peek_prev(src) : bch2_btree_iter_peek(src); if ((ret = bkey_err(k))) goto bkey_err; if (!k.k || k.k->p.inode != inode->v.i_ino) break; BUG_ON(bkey_cmp(src->pos, bkey_start_pos(k.k))); if (insert && bkey_cmp(k.k->p, POS(inode->v.i_ino, offset >> 9)) <= 0) break; reassemble: bkey_reassemble(©.k, k); if (insert && bkey_cmp(bkey_start_pos(k.k), move_pos) < 0) { bch2_cut_front(move_pos, ©.k); bch2_btree_iter_set_pos(src, bkey_start_pos(©.k.k)); } copy.k.k.p.offset += shift >> 9; bch2_btree_iter_set_pos(dst, bkey_start_pos(©.k.k)); ret = bch2_extent_atomic_end(dst, ©.k, &atomic_end); if (ret) goto bkey_err; if (bkey_cmp(atomic_end, copy.k.k.p)) { if (insert) { move_pos = atomic_end; move_pos.offset -= shift >> 9; goto reassemble; } else { bch2_cut_back(atomic_end, ©.k.k); } } bkey_init(&delete.k); delete.k.p = src->pos; bch2_key_resize(&delete.k, copy.k.k.size); next_pos = insert ? bkey_start_pos(&delete.k) : delete.k.p; /* * If the new and old keys overlap (because we're moving an * extent that's bigger than the amount we're collapsing by), * we need to trim the delete key here so they don't overlap * because overlaps on insertions aren't handled before * triggers are run, so the overwrite will get double counted * by the triggers machinery: */ if (insert && bkey_cmp(bkey_start_pos(©.k.k), delete.k.p) < 0) { bch2_cut_back(bkey_start_pos(©.k.k), &delete.k); } else if (!insert && bkey_cmp(copy.k.k.p, bkey_start_pos(&delete.k)) > 0) { bch2_cut_front(copy.k.k.p, &delete); del = bch2_trans_copy_iter(&trans, src); BUG_ON(IS_ERR_OR_NULL(del)); bch2_btree_iter_set_pos(del, bkey_start_pos(&delete.k)); } bch2_trans_update(&trans, dst, ©.k); bch2_trans_update(&trans, del ?: src, &delete); if (copy.k.k.size == k.k->size) { /* * If we're moving the entire extent, we can skip * running triggers: */ commit_flags |= BTREE_INSERT_NOMARK; } else { /* We might end up splitting compressed extents: */ unsigned nr_ptrs = bch2_bkey_nr_dirty_ptrs(bkey_i_to_s_c(©.k)); ret = bch2_disk_reservation_get(c, &disk_res, copy.k.k.size, nr_ptrs, BCH_DISK_RESERVATION_NOFAIL); BUG_ON(ret); } ret = bch2_trans_commit(&trans, &disk_res, &inode->ei_journal_seq, commit_flags); bch2_disk_reservation_put(c, &disk_res); bkey_err: if (del) bch2_trans_iter_put(&trans, del); del = NULL; if (!ret) bch2_btree_iter_set_pos(src, next_pos); if (ret == -EINTR) ret = 0; if (ret) goto err; bch2_trans_cond_resched(&trans); } bch2_trans_unlock(&trans); if (!insert) { i_size_write(&inode->v, new_size); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, new_size, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); } err: bch2_trans_exit(&trans); bch2_pagecache_block_put(&inode->ei_pagecache_lock); inode_unlock(&inode->v); return ret; } static long bchfs_fallocate(struct bch_inode_info *inode, int mode, loff_t offset, loff_t len) { struct address_space *mapping = inode->v.i_mapping; struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_trans trans; struct btree_iter *iter; struct bpos end_pos; loff_t end = offset + len; loff_t block_start = round_down(offset, block_bytes(c)); loff_t block_end = round_up(end, block_bytes(c)); unsigned sectors; unsigned replicas = io_opts(c, &inode->ei_inode).data_replicas; int ret; bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); inode_lock(&inode->v); inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { ret = inode_newsize_ok(&inode->v, end); if (ret) goto err; } if (mode & FALLOC_FL_ZERO_RANGE) { ret = __bch2_truncate_page(inode, offset >> PAGE_SHIFT, offset, end); if (!ret && offset >> PAGE_SHIFT != end >> PAGE_SHIFT) ret = __bch2_truncate_page(inode, end >> PAGE_SHIFT, offset, end); if (unlikely(ret)) goto err; truncate_pagecache_range(&inode->v, offset, end - 1); } iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS(inode->v.i_ino, block_start >> 9), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); end_pos = POS(inode->v.i_ino, block_end >> 9); while (bkey_cmp(iter->pos, end_pos) < 0) { s64 i_sectors_delta = 0; struct disk_reservation disk_res = { 0 }; struct quota_res quota_res = { 0 }; struct bkey_i_reservation reservation; struct bkey_s_c k; k = bch2_btree_iter_peek_slot(iter); if ((ret = bkey_err(k))) goto bkey_err; /* already reserved */ if (k.k->type == KEY_TYPE_reservation && bkey_s_c_to_reservation(k).v->nr_replicas >= replicas) { bch2_btree_iter_next_slot(iter); continue; } if (bkey_extent_is_data(k.k) && !(mode & FALLOC_FL_ZERO_RANGE)) { bch2_btree_iter_next_slot(iter); continue; } bkey_reservation_init(&reservation.k_i); reservation.k.type = KEY_TYPE_reservation; reservation.k.p = k.k->p; reservation.k.size = k.k->size; bch2_cut_front(iter->pos, &reservation.k_i); bch2_cut_back(end_pos, &reservation.k); sectors = reservation.k.size; reservation.v.nr_replicas = bch2_bkey_nr_dirty_ptrs(k); if (!bkey_extent_is_allocation(k.k)) { ret = bch2_quota_reservation_add(c, inode, "a_res, sectors, true); if (unlikely(ret)) goto bkey_err; } if (reservation.v.nr_replicas < replicas || bch2_extent_is_compressed(k)) { ret = bch2_disk_reservation_get(c, &disk_res, sectors, replicas, 0); if (unlikely(ret)) goto bkey_err; reservation.v.nr_replicas = disk_res.nr_replicas; } bch2_trans_begin_updates(&trans); ret = bch2_extent_update(&trans, iter, &reservation.k_i, &disk_res, &inode->ei_journal_seq, 0, &i_sectors_delta); i_sectors_acct(c, inode, "a_res, i_sectors_delta); bkey_err: bch2_quota_reservation_put(c, inode, "a_res); bch2_disk_reservation_put(c, &disk_res); if (ret == -EINTR) ret = 0; if (ret) goto err; } /* * Do we need to extend the file? * * If we zeroed up to the end of the file, we dropped whatever writes * were going to write out the current i_size, so we have to extend * manually even if FL_KEEP_SIZE was set: */ if (end >= inode->v.i_size && (!(mode & FALLOC_FL_KEEP_SIZE) || (mode & FALLOC_FL_ZERO_RANGE))) { struct btree_iter *inode_iter; struct bch_inode_unpacked inode_u; do { bch2_trans_begin(&trans); inode_iter = bch2_inode_peek(&trans, &inode_u, inode->v.i_ino, 0); ret = PTR_ERR_OR_ZERO(inode_iter); } while (ret == -EINTR); bch2_trans_unlock(&trans); if (ret) goto err; /* * Sync existing appends before extending i_size, * as in bch2_extend(): */ ret = filemap_write_and_wait_range(mapping, inode_u.bi_size, S64_MAX); if (ret) goto err; if (mode & FALLOC_FL_KEEP_SIZE) end = inode->v.i_size; else i_size_write(&inode->v, end); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, end, 0); mutex_unlock(&inode->ei_update_lock); } err: bch2_trans_exit(&trans); bch2_pagecache_block_put(&inode->ei_pagecache_lock); inode_unlock(&inode->v); return ret; } long bch2_fallocate_dispatch(struct file *file, int mode, loff_t offset, loff_t len) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; long ret; if (!percpu_ref_tryget(&c->writes)) return -EROFS; if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE))) ret = bchfs_fallocate(inode, mode, offset, len); else if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE)) ret = bchfs_fpunch(inode, offset, len); else if (mode == FALLOC_FL_INSERT_RANGE) ret = bchfs_fcollapse_finsert(inode, offset, len, true); else if (mode == FALLOC_FL_COLLAPSE_RANGE) ret = bchfs_fcollapse_finsert(inode, offset, len, false); else ret = -EOPNOTSUPP; percpu_ref_put(&c->writes); return ret; } static void mark_range_unallocated(struct bch_inode_info *inode, loff_t start, loff_t end) { pgoff_t index = start >> PAGE_SHIFT; pgoff_t end_index = (end - 1) >> PAGE_SHIFT; struct folio_batch fbatch; unsigned i, j; folio_batch_init(&fbatch); while (filemap_get_folios(inode->v.i_mapping, &index, end_index, &fbatch)) { for (i = 0; i < folio_batch_count(&fbatch); i++) { struct folio *folio = fbatch.folios[i]; struct bch_page_state *s; folio_lock(folio); s = bch2_page_state(&folio->page); if (s) { spin_lock(&s->lock); for (j = 0; j < PAGE_SECTORS; j++) s->s[j].nr_replicas = 0; spin_unlock(&s->lock); } folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); } } loff_t bch2_remap_file_range(struct file *file_src, loff_t pos_src, struct file *file_dst, loff_t pos_dst, loff_t len, unsigned remap_flags) { struct bch_inode_info *src = file_bch_inode(file_src); struct bch_inode_info *dst = file_bch_inode(file_dst); struct bch_fs *c = src->v.i_sb->s_fs_info; s64 i_sectors_delta = 0; u64 aligned_len; loff_t ret = 0; if (remap_flags & ~(REMAP_FILE_DEDUP|REMAP_FILE_ADVISORY)) return -EINVAL; if (remap_flags & REMAP_FILE_DEDUP) return -EOPNOTSUPP; if ((pos_src & (block_bytes(c) - 1)) || (pos_dst & (block_bytes(c) - 1))) return -EINVAL; if (src == dst && abs(pos_src - pos_dst) < len) return -EINVAL; bch2_lock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); file_update_time(file_dst); inode_dio_wait(&src->v); inode_dio_wait(&dst->v); ret = generic_remap_file_range_prep(file_src, pos_src, file_dst, pos_dst, &len, remap_flags); if (ret < 0 || len == 0) goto err; aligned_len = round_up((u64) len, block_bytes(c)); ret = write_invalidate_inode_pages_range(dst->v.i_mapping, pos_dst, pos_dst + len - 1); if (ret) goto err; mark_range_unallocated(src, pos_src, pos_src + aligned_len); ret = bch2_remap_range(c, POS(dst->v.i_ino, pos_dst >> 9), POS(src->v.i_ino, pos_src >> 9), aligned_len >> 9, &dst->ei_journal_seq, pos_dst + len, &i_sectors_delta); if (ret < 0) goto err; /* * due to alignment, we might have remapped slightly more than requsted */ ret = min((u64) ret << 9, (u64) len); /* XXX get a quota reservation */ i_sectors_acct(c, dst, NULL, i_sectors_delta); spin_lock(&dst->v.i_lock); if (pos_dst + ret > dst->v.i_size) i_size_write(&dst->v, pos_dst + ret); spin_unlock(&dst->v.i_lock); err: bch2_unlock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); return ret; } /* fseek: */ static int folio_data_offset(struct folio *folio, unsigned offset) { struct bch_page_state *s = bch2_page_state(&folio->page); unsigned i; if (s) for (i = offset >> 9; i < PAGE_SECTORS; i++) if (s->s[i].state >= SECTOR_DIRTY) return i << 9; return -1; } static loff_t bch2_seek_pagecache_data(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct folio_batch fbatch; pgoff_t start_index = start_offset >> PAGE_SHIFT; pgoff_t end_index = end_offset >> PAGE_SHIFT; pgoff_t index = start_index; unsigned i; loff_t ret; int offset; folio_batch_init(&fbatch); while (filemap_get_folios(vinode->i_mapping, &index, end_index, &fbatch)) { for (i = 0; i < folio_batch_count(&fbatch); i++) { struct folio *folio = fbatch.folios[i]; folio_lock(folio); offset = folio_data_offset(folio, folio->index == start_index ? start_offset & (PAGE_SIZE - 1) : 0); if (offset >= 0) { ret = clamp(((loff_t) folio->index << PAGE_SHIFT) + offset, start_offset, end_offset); folio_unlock(folio); folio_batch_release(&fbatch); return ret; } folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); } return end_offset; } static loff_t bch2_seek_data(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; u64 isize, next_data = MAX_LFS_FILESIZE; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; bch2_trans_init(&trans, c, 0, 0); for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), 0, k, ret) { if (k.k->p.inode != inode->v.i_ino) { break; } else if (bkey_extent_is_data(k.k)) { next_data = max(offset, bkey_start_offset(k.k) << 9); break; } else if (k.k->p.offset >> 9 > isize) break; } ret = bch2_trans_exit(&trans) ?: ret; if (ret) return ret; if (next_data > offset) next_data = bch2_seek_pagecache_data(&inode->v, offset, next_data); if (next_data >= isize) return -ENXIO; return vfs_setpos(file, next_data, MAX_LFS_FILESIZE); } static int __page_hole_offset(struct page *page, unsigned offset) { struct bch_page_state *s = bch2_page_state(page); unsigned i; if (!s) return 0; for (i = offset >> 9; i < PAGE_SECTORS; i++) if (s->s[i].state < SECTOR_DIRTY) return i << 9; return -1; } static loff_t page_hole_offset(struct address_space *mapping, loff_t offset) { pgoff_t index = offset >> PAGE_SHIFT; struct page *page; int pg_offset; loff_t ret = -1; page = find_lock_page(mapping, index); if (!page) return offset; pg_offset = __page_hole_offset(page, offset & (PAGE_SIZE - 1)); if (pg_offset >= 0) ret = ((loff_t) index << PAGE_SHIFT) + pg_offset; unlock_page(page); return ret; } static loff_t bch2_seek_pagecache_hole(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct address_space *mapping = vinode->i_mapping; loff_t offset = start_offset, hole; while (offset < end_offset) { hole = page_hole_offset(mapping, offset); if (hole >= 0 && hole <= end_offset) return max(start_offset, hole); offset += PAGE_SIZE; offset &= PAGE_MASK; } return end_offset; } static loff_t bch2_seek_hole(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; u64 isize, next_hole = MAX_LFS_FILESIZE; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; bch2_trans_init(&trans, c, 0, 0); for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), BTREE_ITER_SLOTS, k, ret) { if (k.k->p.inode != inode->v.i_ino) { next_hole = bch2_seek_pagecache_hole(&inode->v, offset, MAX_LFS_FILESIZE); break; } else if (!bkey_extent_is_data(k.k)) { next_hole = bch2_seek_pagecache_hole(&inode->v, max(offset, bkey_start_offset(k.k) << 9), k.k->p.offset << 9); if (next_hole < k.k->p.offset << 9) break; } else { offset = max(offset, bkey_start_offset(k.k) << 9); } } ret = bch2_trans_exit(&trans) ?: ret; if (ret) return ret; if (next_hole > isize) next_hole = isize; return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE); } loff_t bch2_llseek(struct file *file, loff_t offset, int whence) { switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek(file, offset, whence); case SEEK_DATA: return bch2_seek_data(file, offset); case SEEK_HOLE: return bch2_seek_hole(file, offset); } return -EINVAL; } void bch2_fs_fsio_exit(struct bch_fs *c) { bioset_exit(&c->dio_write_bioset); bioset_exit(&c->dio_read_bioset); bioset_exit(&c->writepage_bioset); } int bch2_fs_fsio_init(struct bch_fs *c) { int ret = 0; pr_verbose_init(c->opts, ""); if (bioset_init(&c->writepage_bioset, 4, offsetof(struct bch_writepage_io, op.wbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_read_bioset, 4, offsetof(struct dio_read, rbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_write_bioset, 4, offsetof(struct dio_write, op.wbio.bio), BIOSET_NEED_BVECS)) ret = -ENOMEM; pr_verbose_init(c->opts, "ret %i", ret); return ret; } #endif /* NO_BCACHEFS_FS */