// SPDX-License-Identifier: GPL-2.0 /* * Some low level IO code, and hacks for various block layer limitations * * Copyright 2010, 2011 Kent Overstreet * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "bkey_buf.h" #include "bset.h" #include "btree_update.h" #include "buckets.h" #include "checksum.h" #include "compress.h" #include "clock.h" #include "data_update.h" #include "debug.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "extent_update.h" #include "inode.h" #include "io.h" #include "journal.h" #include "keylist.h" #include "move.h" #include "nocow_locking.h" #include "rebalance.h" #include "subvolume.h" #include "super.h" #include "super-io.h" #include "trace.h" #include #include #include #include const char *bch2_blk_status_to_str(blk_status_t status) { if (status == BLK_STS_REMOVED) return "device removed"; return blk_status_to_str(status); } #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT static bool bch2_target_congested(struct bch_fs *c, u16 target) { const struct bch_devs_mask *devs; unsigned d, nr = 0, total = 0; u64 now = local_clock(), last; s64 congested; struct bch_dev *ca; if (!target) return false; rcu_read_lock(); devs = bch2_target_to_mask(c, target) ?: &c->rw_devs[BCH_DATA_user]; for_each_set_bit(d, devs->d, BCH_SB_MEMBERS_MAX) { ca = rcu_dereference(c->devs[d]); if (!ca) continue; congested = atomic_read(&ca->congested); last = READ_ONCE(ca->congested_last); if (time_after64(now, last)) congested -= (now - last) >> 12; total += max(congested, 0LL); nr++; } rcu_read_unlock(); return bch2_rand_range(nr * CONGESTED_MAX) < total; } static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, u64 now, int rw) { u64 latency_capable = ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; /* ideally we'd be taking into account the device's variance here: */ u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); s64 latency_over = io_latency - latency_threshold; if (latency_threshold && latency_over > 0) { /* * bump up congested by approximately latency_over * 4 / * latency_threshold - we don't need much accuracy here so don't * bother with the divide: */ if (atomic_read(&ca->congested) < CONGESTED_MAX) atomic_add(latency_over >> max_t(int, ilog2(latency_threshold) - 2, 0), &ca->congested); ca->congested_last = now; } else if (atomic_read(&ca->congested) > 0) { atomic_dec(&ca->congested); } } void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) { atomic64_t *latency = &ca->cur_latency[rw]; u64 now = local_clock(); u64 io_latency = time_after64(now, submit_time) ? now - submit_time : 0; u64 old, new, v = atomic64_read(latency); do { old = v; /* * If the io latency was reasonably close to the current * latency, skip doing the update and atomic operation - most of * the time: */ if (abs((int) (old - io_latency)) < (old >> 1) && now & ~(~0U << 5)) break; new = ewma_add(old, io_latency, 5); } while ((v = atomic64_cmpxchg(latency, old, new)) != old); bch2_congested_acct(ca, io_latency, now, rw); __bch2_time_stats_update(&ca->io_latency[rw], submit_time, now); } #else static bool bch2_target_congested(struct bch_fs *c, u16 target) { return false; } #endif /* Allocate, free from mempool: */ void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) { struct bvec_iter_all iter; struct bio_vec *bv; bio_for_each_segment_all(bv, bio, iter) if (bv->bv_page != ZERO_PAGE(0)) mempool_free(bv->bv_page, &c->bio_bounce_pages); bio->bi_vcnt = 0; } static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) { struct page *page; if (likely(!*using_mempool)) { page = alloc_page(GFP_NOIO); if (unlikely(!page)) { mutex_lock(&c->bio_bounce_pages_lock); *using_mempool = true; goto pool_alloc; } } else { pool_alloc: page = mempool_alloc(&c->bio_bounce_pages, GFP_NOIO); } return page; } void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, size_t size) { bool using_mempool = false; while (size) { struct page *page = __bio_alloc_page_pool(c, &using_mempool); unsigned len = min_t(size_t, PAGE_SIZE, size); BUG_ON(!bio_add_page(bio, page, len, 0)); size -= len; } if (using_mempool) mutex_unlock(&c->bio_bounce_pages_lock); } /* Extent update path: */ int bch2_sum_sector_overwrites(struct btree_trans *trans, struct btree_iter *extent_iter, struct bkey_i *new, bool *usage_increasing, s64 *i_sectors_delta, s64 *disk_sectors_delta) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c old; unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); int ret = 0; *usage_increasing = false; *i_sectors_delta = 0; *disk_sectors_delta = 0; bch2_trans_copy_iter(&iter, extent_iter); for_each_btree_key_continue_norestart(iter, BTREE_ITER_SLOTS, old, ret) { s64 sectors = min(new->k.p.offset, old.k->p.offset) - max(bkey_start_offset(&new->k), bkey_start_offset(old.k)); *i_sectors_delta += sectors * (bkey_extent_is_allocation(&new->k) - bkey_extent_is_allocation(old.k)); *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) : 0; if (!*usage_increasing && (new->k.p.snapshot != old.k->p.snapshot || new_replicas > bch2_bkey_replicas(c, old) || (!new_compressed && bch2_bkey_sectors_compressed(old)))) *usage_increasing = true; if (bkey_ge(old.k->p, new->k.p)) break; } bch2_trans_iter_exit(trans, &iter); return ret; } static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, struct btree_iter *extent_iter, u64 new_i_size, s64 i_sectors_delta) { struct btree_iter iter; struct bkey_i *k; struct bkey_i_inode_v3 *inode; unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL; int ret; bch2_trans_iter_init(trans, &iter, BTREE_ID_inodes, SPOS(0, extent_iter->pos.inode, extent_iter->snapshot), BTREE_ITER_INTENT|BTREE_ITER_CACHED); k = bch2_bkey_get_mut(trans, &iter); ret = PTR_ERR_OR_ZERO(k); if (unlikely(ret)) goto err; if (unlikely(k->k.type != KEY_TYPE_inode_v3)) { k = bch2_inode_to_v3(trans, k); ret = PTR_ERR_OR_ZERO(k); if (unlikely(ret)) goto err; } inode = bkey_i_to_inode_v3(k); if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_I_SIZE_DIRTY) && new_i_size > le64_to_cpu(inode->v.bi_size)) { inode->v.bi_size = cpu_to_le64(new_i_size); inode_update_flags = 0; } if (i_sectors_delta) { le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); inode_update_flags = 0; } if (inode->k.p.snapshot != iter.snapshot) { inode->k.p.snapshot = iter.snapshot; inode_update_flags = 0; } ret = bch2_trans_update(trans, &iter, &inode->k_i, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| inode_update_flags); err: bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_extent_update(struct btree_trans *trans, subvol_inum inum, struct btree_iter *iter, struct bkey_i *k, struct disk_reservation *disk_res, u64 new_i_size, s64 *i_sectors_delta_total, bool check_enospc) { struct bpos next_pos; bool usage_increasing; s64 i_sectors_delta = 0, disk_sectors_delta = 0; int ret; /* * This traverses us the iterator without changing iter->path->pos to * search_key() (which is pos + 1 for extents): we want there to be a * path already traversed at iter->pos because * bch2_trans_extent_update() will use it to attempt extent merging */ ret = __bch2_btree_iter_traverse(iter); if (ret) return ret; ret = bch2_extent_trim_atomic(trans, iter, k); if (ret) return ret; next_pos = k->k.p; ret = bch2_sum_sector_overwrites(trans, iter, k, &usage_increasing, &i_sectors_delta, &disk_sectors_delta); if (ret) return ret; if (disk_res && disk_sectors_delta > (s64) disk_res->sectors) { ret = bch2_disk_reservation_add(trans->c, disk_res, disk_sectors_delta - disk_res->sectors, !check_enospc || !usage_increasing ? BCH_DISK_RESERVATION_NOFAIL : 0); if (ret) return ret; } /* * Note: * We always have to do an inode update - even when i_size/i_sectors * aren't changing - for fsync to work properly; fsync relies on * inode->bi_journal_seq which is updated by the trigger code: */ ret = bch2_extent_update_i_size_sectors(trans, iter, min(k->k.p.offset << 9, new_i_size), i_sectors_delta) ?: bch2_trans_update(trans, iter, k, 0) ?: bch2_trans_commit(trans, disk_res, NULL, BTREE_INSERT_NOCHECK_RW| BTREE_INSERT_NOFAIL); if (unlikely(ret)) return ret; if (i_sectors_delta_total) *i_sectors_delta_total += i_sectors_delta; bch2_btree_iter_set_pos(iter, next_pos); return 0; } /* Overwrites whatever was present with zeroes: */ int bch2_extent_fallocate(struct btree_trans *trans, subvol_inum inum, struct btree_iter *iter, unsigned sectors, struct bch_io_opts opts, s64 *i_sectors_delta, struct write_point_specifier write_point) { struct bch_fs *c = trans->c; struct disk_reservation disk_res = { 0 }; struct closure cl; struct open_buckets open_buckets; struct bkey_s_c k; struct bkey_buf old, new; bool have_reservation = false; bool unwritten = opts.nocow && c->sb.version >= bcachefs_metadata_version_unwritten_extents; int ret; bch2_bkey_buf_init(&old); bch2_bkey_buf_init(&new); closure_init_stack(&cl); open_buckets.nr = 0; retry: k = bch2_btree_iter_peek_slot(iter); ret = bkey_err(k); if (ret) return ret; sectors = min_t(u64, sectors, k.k->p.offset - iter->pos.offset); if (!have_reservation) { unsigned new_replicas = max(0, (int) opts.data_replicas - (int) bch2_bkey_nr_ptrs_fully_allocated(k)); /* * Get a disk reservation before (in the nocow case) calling * into the allocator: */ ret = bch2_disk_reservation_get(c, &disk_res, sectors, new_replicas, 0); if (unlikely(ret)) goto out; bch2_bkey_buf_reassemble(&old, c, k); } if (have_reservation) { if (!bch2_extents_match(k, bkey_i_to_s_c(old.k))) goto out; bch2_key_resize(&new.k->k, sectors); } else if (!unwritten) { struct bkey_i_reservation *reservation; bch2_bkey_buf_realloc(&new, c, sizeof(*reservation) / sizeof(u64)); reservation = bkey_reservation_init(new.k); reservation->k.p = iter->pos; bch2_key_resize(&reservation->k, sectors); reservation->v.nr_replicas = opts.data_replicas; } else { struct bkey_i_extent *e; struct bch_devs_list devs_have; struct write_point *wp; struct bch_extent_ptr *ptr; devs_have.nr = 0; bch2_bkey_buf_realloc(&new, c, BKEY_EXTENT_U64s_MAX); e = bkey_extent_init(new.k); e->k.p = iter->pos; ret = bch2_alloc_sectors_start_trans(trans, opts.foreground_target, false, write_point, &devs_have, opts.data_replicas, opts.data_replicas, RESERVE_none, 0, &cl, &wp); if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) { bch2_trans_unlock(trans); closure_sync(&cl); goto retry; } if (ret) return ret; sectors = min(sectors, wp->sectors_free); bch2_key_resize(&e->k, sectors); bch2_open_bucket_get(c, wp, &open_buckets); bch2_alloc_sectors_append_ptrs(c, wp, &e->k_i, sectors, false); bch2_alloc_sectors_done(c, wp); extent_for_each_ptr(extent_i_to_s(e), ptr) ptr->unwritten = true; } have_reservation = true; ret = bch2_extent_update(trans, inum, iter, new.k, &disk_res, 0, i_sectors_delta, true); out: if ((atomic_read(&cl.remaining) & CLOSURE_REMAINING_MASK) != 1) { bch2_trans_unlock(trans); closure_sync(&cl); } if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) { bch2_trans_begin(trans); goto retry; } bch2_open_buckets_put(c, &open_buckets); bch2_disk_reservation_put(c, &disk_res); bch2_bkey_buf_exit(&new, c); bch2_bkey_buf_exit(&old, c); return ret; } /* * Returns -BCH_ERR_transacton_restart if we had to drop locks: */ int bch2_fpunch_at(struct btree_trans *trans, struct btree_iter *iter, subvol_inum inum, u64 end, s64 *i_sectors_delta) { struct bch_fs *c = trans->c; unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits); struct bpos end_pos = POS(inum.inum, end); struct bkey_s_c k; int ret = 0, ret2 = 0; u32 snapshot; while (!ret || bch2_err_matches(ret, BCH_ERR_transaction_restart)) { struct disk_reservation disk_res = bch2_disk_reservation_init(c, 0); struct bkey_i delete; if (ret) ret2 = ret; bch2_trans_begin(trans); ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); if (ret) continue; bch2_btree_iter_set_snapshot(iter, snapshot); /* * peek_upto() doesn't have ideal semantics for extents: */ k = bch2_btree_iter_peek_upto(iter, end_pos); if (!k.k) break; ret = bkey_err(k); if (ret) continue; bkey_init(&delete.k); delete.k.p = iter->pos; /* create the biggest key we can */ bch2_key_resize(&delete.k, max_sectors); bch2_cut_back(end_pos, &delete); ret = bch2_extent_update(trans, inum, iter, &delete, &disk_res, 0, i_sectors_delta, false); bch2_disk_reservation_put(c, &disk_res); } return ret ?: ret2; } int bch2_fpunch(struct bch_fs *c, subvol_inum inum, u64 start, u64 end, s64 *i_sectors_delta) { struct btree_trans trans; struct btree_iter iter; int ret; bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024); bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents, POS(inum.inum, start), BTREE_ITER_INTENT); ret = bch2_fpunch_at(&trans, &iter, inum, end, i_sectors_delta); bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ret = 0; return ret; } static int bch2_write_index_default(struct bch_write_op *op) { struct bch_fs *c = op->c; struct bkey_buf sk; struct keylist *keys = &op->insert_keys; struct bkey_i *k = bch2_keylist_front(keys); struct btree_trans trans; struct btree_iter iter; subvol_inum inum = { .subvol = op->subvol, .inum = k->k.p.inode, }; int ret; BUG_ON(!inum.subvol); bch2_bkey_buf_init(&sk); bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024); do { bch2_trans_begin(&trans); k = bch2_keylist_front(keys); bch2_bkey_buf_copy(&sk, c, k); ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &sk.k->k.p.snapshot); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) break; bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents, bkey_start_pos(&sk.k->k), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ret = bch2_extent_update(&trans, inum, &iter, sk.k, &op->res, op->new_i_size, &op->i_sectors_delta, op->flags & BCH_WRITE_CHECK_ENOSPC); bch2_trans_iter_exit(&trans, &iter); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) break; if (bkey_ge(iter.pos, k->k.p)) bch2_keylist_pop_front(&op->insert_keys); else bch2_cut_front(iter.pos, k); } while (!bch2_keylist_empty(keys)); bch2_trans_exit(&trans); bch2_bkey_buf_exit(&sk, c); return ret; } /* Writes */ void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, enum bch_data_type type, const struct bkey_i *k, bool nocow) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); const struct bch_extent_ptr *ptr; struct bch_write_bio *n; struct bch_dev *ca; BUG_ON(c->opts.nochanges); bkey_for_each_ptr(ptrs, ptr) { BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX || !c->devs[ptr->dev]); ca = bch_dev_bkey_exists(c, ptr->dev); if (to_entry(ptr + 1) < ptrs.end) { n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOIO, &ca->replica_set)); n->bio.bi_end_io = wbio->bio.bi_end_io; n->bio.bi_private = wbio->bio.bi_private; n->parent = wbio; n->split = true; n->bounce = false; n->put_bio = true; n->bio.bi_opf = wbio->bio.bi_opf; bio_inc_remaining(&wbio->bio); } else { n = wbio; n->split = false; } n->c = c; n->dev = ptr->dev; n->have_ioref = nocow || bch2_dev_get_ioref(ca, type == BCH_DATA_btree ? READ : WRITE); n->nocow = nocow; n->submit_time = local_clock(); n->inode_offset = bkey_start_offset(&k->k); n->bio.bi_iter.bi_sector = ptr->offset; if (likely(n->have_ioref)) { this_cpu_add(ca->io_done->sectors[WRITE][type], bio_sectors(&n->bio)); bio_set_dev(&n->bio, ca->disk_sb.bdev); if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { bio_endio(&n->bio); continue; } submit_bio(&n->bio); } else { n->bio.bi_status = BLK_STS_REMOVED; bio_endio(&n->bio); } } } static void __bch2_write(struct bch_write_op *); static void bch2_write_done(struct closure *cl) { struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); struct bch_fs *c = op->c; bch2_disk_reservation_put(c, &op->res); bch2_write_ref_put(c, BCH_WRITE_REF_write); bch2_keylist_free(&op->insert_keys, op->inline_keys); bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); EBUG_ON(cl->parent); closure_debug_destroy(cl); if (op->end_io) op->end_io(op); } static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) { struct keylist *keys = &op->insert_keys; struct bch_extent_ptr *ptr; struct bkey_i *src, *dst = keys->keys, *n; for (src = keys->keys; src != keys->top; src = n) { n = bkey_next(src); if (bkey_extent_is_direct_data(&src->k)) { bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, test_bit(ptr->dev, op->failed.d)); if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) return -EIO; } if (dst != src) memmove_u64s_down(dst, src, src->u64s); dst = bkey_next(dst); } keys->top = dst; return 0; } /** * bch_write_index - after a write, update index to point to new data */ static void __bch2_write_index(struct bch_write_op *op) { struct bch_fs *c = op->c; struct keylist *keys = &op->insert_keys; struct bkey_i *k; unsigned dev; int ret = 0; if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { ret = bch2_write_drop_io_error_ptrs(op); if (ret) goto err; } /* * probably not the ideal place to hook this in, but I don't * particularly want to plumb io_opts all the way through the btree * update stack right now */ for_each_keylist_key(keys, k) bch2_rebalance_add_key(c, bkey_i_to_s_c(k), &op->opts); if (!bch2_keylist_empty(keys)) { u64 sectors_start = keylist_sectors(keys); ret = !(op->flags & BCH_WRITE_MOVE) ? bch2_write_index_default(op) : bch2_data_update_index_update(op); BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); BUG_ON(keylist_sectors(keys) && !ret); op->written += sectors_start - keylist_sectors(keys); if (ret && !bch2_err_matches(ret, EROFS)) { struct bkey_i *k = bch2_keylist_front(&op->insert_keys); bch_err_inum_offset_ratelimited(c, k->k.p.inode, k->k.p.offset << 9, "write error while doing btree update: %s", bch2_err_str(ret)); } if (ret) goto err; } out: /* If some a bucket wasn't written, we can't erasure code it: */ for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) bch2_open_bucket_write_error(c, &op->open_buckets, dev); bch2_open_buckets_put(c, &op->open_buckets); return; err: keys->top = keys->keys; op->error = ret; op->flags |= BCH_WRITE_DONE; goto out; } static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) { if (state != wp->state) { u64 now = ktime_get_ns(); if (wp->last_state_change && time_after64(now, wp->last_state_change)) wp->time[wp->state] += now - wp->last_state_change; wp->state = state; wp->last_state_change = now; } } static inline void wp_update_state(struct write_point *wp, bool running) { enum write_point_state state; state = running ? WRITE_POINT_running : !list_empty(&wp->writes) ? WRITE_POINT_waiting_io : WRITE_POINT_stopped; __wp_update_state(wp, state); } static void bch2_write_index(struct closure *cl) { struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); struct write_point *wp = op->wp; struct workqueue_struct *wq = index_update_wq(op); barrier(); /* * We're not using wp->writes_lock here, so this is racey: that's ok, * because this is just for diagnostic purposes, and we're running out * of interrupt context here so if we were to take the log we'd have to * switch to spin_lock_irq()/irqsave(), which is not free: */ if (wp->state == WRITE_POINT_waiting_io) __wp_update_state(wp, WRITE_POINT_waiting_work); op->btree_update_ready = true; queue_work(wq, &wp->index_update_work); } void bch2_write_point_do_index_updates(struct work_struct *work) { struct write_point *wp = container_of(work, struct write_point, index_update_work); struct bch_write_op *op; while (1) { spin_lock(&wp->writes_lock); list_for_each_entry(op, &wp->writes, wp_list) if (op->btree_update_ready) { list_del(&op->wp_list); goto unlock; } op = NULL; unlock: wp_update_state(wp, op != NULL); spin_unlock(&wp->writes_lock); if (!op) break; op->flags |= BCH_WRITE_IN_WORKER; __bch2_write_index(op); if (!(op->flags & BCH_WRITE_DONE)) __bch2_write(op); else bch2_write_done(&op->cl); } } static void bch2_write_endio(struct bio *bio) { struct closure *cl = bio->bi_private; struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); struct bch_write_bio *wbio = to_wbio(bio); struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; struct bch_fs *c = wbio->c; struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); if (bch2_dev_inum_io_err_on(bio->bi_status, ca, op->pos.inode, wbio->inode_offset << 9, "data write error: %s", bch2_blk_status_to_str(bio->bi_status))) { set_bit(wbio->dev, op->failed.d); op->flags |= BCH_WRITE_IO_ERROR; } if (wbio->nocow) set_bit(wbio->dev, op->devs_need_flush->d); if (wbio->have_ioref) { bch2_latency_acct(ca, wbio->submit_time, WRITE); percpu_ref_put(&ca->io_ref); } if (wbio->bounce) bch2_bio_free_pages_pool(c, bio); if (wbio->put_bio) bio_put(bio); if (parent) bio_endio(&parent->bio); else closure_put(cl); } static void init_append_extent(struct bch_write_op *op, struct write_point *wp, struct bversion version, struct bch_extent_crc_unpacked crc) { struct bkey_i_extent *e; op->pos.offset += crc.uncompressed_size; e = bkey_extent_init(op->insert_keys.top); e->k.p = op->pos; e->k.size = crc.uncompressed_size; e->k.version = version; if (crc.csum_type || crc.compression_type || crc.nonce) bch2_extent_crc_append(&e->k_i, crc); bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, op->flags & BCH_WRITE_CACHED); bch2_keylist_push(&op->insert_keys); } static struct bio *bch2_write_bio_alloc(struct bch_fs *c, struct write_point *wp, struct bio *src, bool *page_alloc_failed, void *buf) { struct bch_write_bio *wbio; struct bio *bio; unsigned output_available = min(wp->sectors_free << 9, src->bi_iter.bi_size); unsigned pages = DIV_ROUND_UP(output_available + (buf ? ((unsigned long) buf & (PAGE_SIZE - 1)) : 0), PAGE_SIZE); pages = min(pages, BIO_MAX_VECS); bio = bio_alloc_bioset(NULL, pages, 0, GFP_NOIO, &c->bio_write); wbio = wbio_init(bio); wbio->put_bio = true; /* copy WRITE_SYNC flag */ wbio->bio.bi_opf = src->bi_opf; if (buf) { bch2_bio_map(bio, buf, output_available); return bio; } wbio->bounce = true; /* * We can't use mempool for more than c->sb.encoded_extent_max * worth of pages, but we'd like to allocate more if we can: */ bch2_bio_alloc_pages_pool(c, bio, min_t(unsigned, output_available, c->opts.encoded_extent_max)); if (bio->bi_iter.bi_size < output_available) *page_alloc_failed = bch2_bio_alloc_pages(bio, output_available - bio->bi_iter.bi_size, GFP_NOFS) != 0; return bio; } static int bch2_write_rechecksum(struct bch_fs *c, struct bch_write_op *op, unsigned new_csum_type) { struct bio *bio = &op->wbio.bio; struct bch_extent_crc_unpacked new_crc; int ret; /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ if (bch2_csum_type_is_encryption(op->crc.csum_type) != bch2_csum_type_is_encryption(new_csum_type)) new_csum_type = op->crc.csum_type; ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, NULL, &new_crc, op->crc.offset, op->crc.live_size, new_csum_type); if (ret) return ret; bio_advance(bio, op->crc.offset << 9); bio->bi_iter.bi_size = op->crc.live_size << 9; op->crc = new_crc; return 0; } static int bch2_write_decrypt(struct bch_write_op *op) { struct bch_fs *c = op->c; struct nonce nonce = extent_nonce(op->version, op->crc); struct bch_csum csum; int ret; if (!bch2_csum_type_is_encryption(op->crc.csum_type)) return 0; /* * If we need to decrypt data in the write path, we'll no longer be able * to verify the existing checksum (poly1305 mac, in this case) after * it's decrypted - this is the last point we'll be able to reverify the * checksum: */ csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); if (bch2_crc_cmp(op->crc.csum, csum)) return -EIO; ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); op->crc.csum_type = 0; op->crc.csum = (struct bch_csum) { 0, 0 }; return ret; } static enum prep_encoded_ret { PREP_ENCODED_OK, PREP_ENCODED_ERR, PREP_ENCODED_CHECKSUM_ERR, PREP_ENCODED_DO_WRITE, } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) { struct bch_fs *c = op->c; struct bio *bio = &op->wbio.bio; if (!(op->flags & BCH_WRITE_DATA_ENCODED)) return PREP_ENCODED_OK; BUG_ON(bio_sectors(bio) != op->crc.compressed_size); /* Can we just write the entire extent as is? */ if (op->crc.uncompressed_size == op->crc.live_size && op->crc.compressed_size <= wp->sectors_free && (op->crc.compression_type == op->compression_type || op->incompressible)) { if (!crc_is_compressed(op->crc) && op->csum_type != op->crc.csum_type && bch2_write_rechecksum(c, op, op->csum_type)) return PREP_ENCODED_CHECKSUM_ERR; return PREP_ENCODED_DO_WRITE; } /* * If the data is compressed and we couldn't write the entire extent as * is, we have to decompress it: */ if (crc_is_compressed(op->crc)) { struct bch_csum csum; if (bch2_write_decrypt(op)) return PREP_ENCODED_CHECKSUM_ERR; /* Last point we can still verify checksum: */ csum = bch2_checksum_bio(c, op->crc.csum_type, extent_nonce(op->version, op->crc), bio); if (bch2_crc_cmp(op->crc.csum, csum)) return PREP_ENCODED_CHECKSUM_ERR; if (bch2_bio_uncompress_inplace(c, bio, &op->crc)) return PREP_ENCODED_ERR; } /* * No longer have compressed data after this point - data might be * encrypted: */ /* * If the data is checksummed and we're only writing a subset, * rechecksum and adjust bio to point to currently live data: */ if ((op->crc.live_size != op->crc.uncompressed_size || op->crc.csum_type != op->csum_type) && bch2_write_rechecksum(c, op, op->csum_type)) return PREP_ENCODED_CHECKSUM_ERR; /* * If we want to compress the data, it has to be decrypted: */ if ((op->compression_type || bch2_csum_type_is_encryption(op->crc.csum_type) != bch2_csum_type_is_encryption(op->csum_type)) && bch2_write_decrypt(op)) return PREP_ENCODED_CHECKSUM_ERR; return PREP_ENCODED_OK; } static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, struct bio **_dst) { struct bch_fs *c = op->c; struct bio *src = &op->wbio.bio, *dst = src; struct bvec_iter saved_iter; void *ec_buf; unsigned total_output = 0, total_input = 0; bool bounce = false; bool page_alloc_failed = false; int ret, more = 0; BUG_ON(!bio_sectors(src)); ec_buf = bch2_writepoint_ec_buf(c, wp); switch (bch2_write_prep_encoded_data(op, wp)) { case PREP_ENCODED_OK: break; case PREP_ENCODED_ERR: ret = -EIO; goto err; case PREP_ENCODED_CHECKSUM_ERR: goto csum_err; case PREP_ENCODED_DO_WRITE: /* XXX look for bug here */ if (ec_buf) { dst = bch2_write_bio_alloc(c, wp, src, &page_alloc_failed, ec_buf); bio_copy_data(dst, src); bounce = true; } init_append_extent(op, wp, op->version, op->crc); goto do_write; } if (ec_buf || op->compression_type || (op->csum_type && !(op->flags & BCH_WRITE_PAGES_STABLE)) || (bch2_csum_type_is_encryption(op->csum_type) && !(op->flags & BCH_WRITE_PAGES_OWNED))) { dst = bch2_write_bio_alloc(c, wp, src, &page_alloc_failed, ec_buf); bounce = true; } saved_iter = dst->bi_iter; do { struct bch_extent_crc_unpacked crc = { 0 }; struct bversion version = op->version; size_t dst_len, src_len; if (page_alloc_failed && dst->bi_iter.bi_size < (wp->sectors_free << 9) && dst->bi_iter.bi_size < c->opts.encoded_extent_max) break; BUG_ON(op->compression_type && (op->flags & BCH_WRITE_DATA_ENCODED) && bch2_csum_type_is_encryption(op->crc.csum_type)); BUG_ON(op->compression_type && !bounce); crc.compression_type = op->incompressible ? BCH_COMPRESSION_TYPE_incompressible : op->compression_type ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, op->compression_type) : 0; if (!crc_is_compressed(crc)) { dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); if (op->csum_type) dst_len = min_t(unsigned, dst_len, c->opts.encoded_extent_max); if (bounce) { swap(dst->bi_iter.bi_size, dst_len); bio_copy_data(dst, src); swap(dst->bi_iter.bi_size, dst_len); } src_len = dst_len; } BUG_ON(!src_len || !dst_len); if (bch2_csum_type_is_encryption(op->csum_type)) { if (bversion_zero(version)) { version.lo = atomic64_inc_return(&c->key_version); } else { crc.nonce = op->nonce; op->nonce += src_len >> 9; } } if ((op->flags & BCH_WRITE_DATA_ENCODED) && !crc_is_compressed(crc) && bch2_csum_type_is_encryption(op->crc.csum_type) == bch2_csum_type_is_encryption(op->csum_type)) { u8 compression_type = crc.compression_type; u16 nonce = crc.nonce; /* * Note: when we're using rechecksum(), we need to be * checksumming @src because it has all the data our * existing checksum covers - if we bounced (because we * were trying to compress), @dst will only have the * part of the data the new checksum will cover. * * But normally we want to be checksumming post bounce, * because part of the reason for bouncing is so the * data can't be modified (by userspace) while it's in * flight. */ if (bch2_rechecksum_bio(c, src, version, op->crc, &crc, &op->crc, src_len >> 9, bio_sectors(src) - (src_len >> 9), op->csum_type)) goto csum_err; /* * rchecksum_bio sets compression_type on crc from op->crc, * this isn't always correct as sometimes we're changing * an extent from uncompressed to incompressible. */ crc.compression_type = compression_type; crc.nonce = nonce; } else { if ((op->flags & BCH_WRITE_DATA_ENCODED) && bch2_rechecksum_bio(c, src, version, op->crc, NULL, &op->crc, src_len >> 9, bio_sectors(src) - (src_len >> 9), op->crc.csum_type)) goto csum_err; crc.compressed_size = dst_len >> 9; crc.uncompressed_size = src_len >> 9; crc.live_size = src_len >> 9; swap(dst->bi_iter.bi_size, dst_len); ret = bch2_encrypt_bio(c, op->csum_type, extent_nonce(version, crc), dst); if (ret) goto err; crc.csum = bch2_checksum_bio(c, op->csum_type, extent_nonce(version, crc), dst); crc.csum_type = op->csum_type; swap(dst->bi_iter.bi_size, dst_len); } init_append_extent(op, wp, version, crc); if (dst != src) bio_advance(dst, dst_len); bio_advance(src, src_len); total_output += dst_len; total_input += src_len; } while (dst->bi_iter.bi_size && src->bi_iter.bi_size && wp->sectors_free && !bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), BKEY_EXTENT_U64s_MAX)); more = src->bi_iter.bi_size != 0; dst->bi_iter = saved_iter; if (dst == src && more) { BUG_ON(total_output != total_input); dst = bio_split(src, total_input >> 9, GFP_NOIO, &c->bio_write); wbio_init(dst)->put_bio = true; /* copy WRITE_SYNC flag */ dst->bi_opf = src->bi_opf; } dst->bi_iter.bi_size = total_output; do_write: *_dst = dst; return more; csum_err: bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)"); ret = -EIO; err: if (to_wbio(dst)->bounce) bch2_bio_free_pages_pool(c, dst); if (to_wbio(dst)->put_bio) bio_put(dst); return ret; } static bool bch2_extent_is_writeable(struct bch_write_op *op, struct bkey_s_c k) { struct bch_fs *c = op->c; struct bkey_s_c_extent e; struct extent_ptr_decoded p; const union bch_extent_entry *entry; unsigned replicas = 0; if (k.k->type != KEY_TYPE_extent) return false; e = bkey_s_c_to_extent(k); extent_for_each_ptr_decode(e, p, entry) { if (p.crc.csum_type || crc_is_compressed(p.crc) || p.has_ec) return false; replicas += bch2_extent_ptr_durability(c, &p); } return replicas >= op->opts.data_replicas; } static inline void bch2_nocow_write_unlock(struct bch_write_op *op) { struct bch_fs *c = op->c; const struct bch_extent_ptr *ptr; struct bkey_i *k; for_each_keylist_key(&op->insert_keys, k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); bkey_for_each_ptr(ptrs, ptr) bch2_bucket_nocow_unlock(&c->nocow_locks, PTR_BUCKET_POS(c, ptr), BUCKET_NOCOW_LOCK_UPDATE); } } static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *orig, struct bkey_s_c k, u64 new_i_size) { struct bkey_i *new; struct bkey_ptrs ptrs; struct bch_extent_ptr *ptr; int ret; if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { /* trace this */ return 0; } new = bch2_bkey_make_mut(trans, k); ret = PTR_ERR_OR_ZERO(new); if (ret) return ret; bch2_cut_front(bkey_start_pos(&orig->k), new); bch2_cut_back(orig->k.p, new); ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); bkey_for_each_ptr(ptrs, ptr) ptr->unwritten = 0; /* * Note that we're not calling bch2_subvol_get_snapshot() in this path - * that was done when we kicked off the write, and here it's important * that we update the extent that we wrote to - even if a snapshot has * since been created. The write is still outstanding, so we're ok * w.r.t. snapshot atomicity: */ return bch2_extent_update_i_size_sectors(trans, iter, min(new->k.p.offset << 9, new_i_size), 0) ?: bch2_trans_update(trans, iter, new, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); } static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) { struct bch_fs *c = op->c; struct btree_trans trans; struct btree_iter iter; struct bkey_i *orig; struct bkey_s_c k; int ret; bch2_trans_init(&trans, c, 0, 0); for_each_keylist_key(&op->insert_keys, orig) { ret = for_each_btree_key_upto_commit(&trans, iter, BTREE_ID_extents, bkey_start_pos(&orig->k), orig->k.p, BTREE_ITER_INTENT, k, NULL, NULL, BTREE_INSERT_NOFAIL, ({ bch2_nocow_write_convert_one_unwritten(&trans, &iter, orig, k, op->new_i_size); })); if (ret && !bch2_err_matches(ret, EROFS)) { struct bkey_i *k = bch2_keylist_front(&op->insert_keys); bch_err_inum_offset_ratelimited(c, k->k.p.inode, k->k.p.offset << 9, "write error while doing btree update: %s", bch2_err_str(ret)); } if (ret) { op->error = ret; break; } } bch2_trans_exit(&trans); } static void __bch2_nocow_write_done(struct bch_write_op *op) { bch2_nocow_write_unlock(op); if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { op->error = -EIO; } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN)) bch2_nocow_write_convert_unwritten(op); } static void bch2_nocow_write_done(struct closure *cl) { struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); __bch2_nocow_write_done(op); bch2_write_done(cl); } static void bch2_nocow_write(struct bch_write_op *op) { struct bch_fs *c = op->c; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct bkey_ptrs_c ptrs; const struct bch_extent_ptr *ptr, *ptr2; struct { struct bpos b; unsigned gen; struct nocow_lock_bucket *l; } buckets[BCH_REPLICAS_MAX]; unsigned nr_buckets = 0; u32 snapshot; int ret, i; if (op->flags & BCH_WRITE_MOVE) return; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, op->subvol, &snapshot); if (unlikely(ret)) goto err; bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents, SPOS(op->pos.inode, op->pos.offset, snapshot), BTREE_ITER_SLOTS); while (1) { struct bio *bio = &op->wbio.bio; nr_buckets = 0; k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) break; /* fall back to normal cow write path? */ if (unlikely(k.k->p.snapshot != snapshot || !bch2_extent_is_writeable(op, k))) break; if (bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), k.k->u64s)) break; /* Get iorefs before dropping btree locks: */ ptrs = bch2_bkey_ptrs_c(k); bkey_for_each_ptr(ptrs, ptr) { buckets[nr_buckets].b = PTR_BUCKET_POS(c, ptr); buckets[nr_buckets].gen = ptr->gen; buckets[nr_buckets].l = bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(buckets[nr_buckets].b)); prefetch(buckets[nr_buckets].l); nr_buckets++; if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE))) goto err_get_ioref; if (ptr->unwritten) op->flags |= BCH_WRITE_CONVERT_UNWRITTEN; } /* Unlock before taking nocow locks, doing IO: */ bkey_reassemble(op->insert_keys.top, k); bch2_trans_unlock(&trans); bch2_cut_front(op->pos, op->insert_keys.top); if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN) bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); for (i = 0; i < nr_buckets; i++) { struct bch_dev *ca = bch_dev_bkey_exists(c, buckets[i].b.inode); struct nocow_lock_bucket *l = buckets[i].l; bool stale; __bch2_bucket_nocow_lock(&c->nocow_locks, l, bucket_to_u64(buckets[i].b), BUCKET_NOCOW_LOCK_UPDATE); rcu_read_lock(); stale = gen_after(*bucket_gen(ca, buckets[i].b.offset), buckets[i].gen); rcu_read_unlock(); if (unlikely(stale)) goto err_bucket_stale; } bio = &op->wbio.bio; if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { bio = bio_split(bio, k.k->p.offset - op->pos.offset, GFP_KERNEL, &c->bio_write); wbio_init(bio)->put_bio = true; bio->bi_opf = op->wbio.bio.bi_opf; } else { op->flags |= BCH_WRITE_DONE; } op->pos.offset += bio_sectors(bio); op->written += bio_sectors(bio); bio->bi_end_io = bch2_write_endio; bio->bi_private = &op->cl; bio->bi_opf |= REQ_OP_WRITE; closure_get(&op->cl); bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, op->insert_keys.top, true); bch2_keylist_push(&op->insert_keys); if (op->flags & BCH_WRITE_DONE) break; bch2_btree_iter_advance(&iter); } out: bch2_trans_iter_exit(&trans, &iter); err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; if (ret) { bch_err_inum_offset_ratelimited(c, op->pos.inode, op->pos.offset << 9, "%s: btree lookup error %s", __func__, bch2_err_str(ret)); op->error = ret; op->flags |= BCH_WRITE_DONE; } bch2_trans_exit(&trans); /* fallback to cow write path? */ if (!(op->flags & BCH_WRITE_DONE)) { closure_sync(&op->cl); __bch2_nocow_write_done(op); op->insert_keys.top = op->insert_keys.keys; } else if (op->flags & BCH_WRITE_SYNC) { closure_sync(&op->cl); bch2_nocow_write_done(&op->cl); } else { /* * XXX * needs to run out of process context because ei_quota_lock is * a mutex */ continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); } return; err_get_ioref: bkey_for_each_ptr(ptrs, ptr2) { if (ptr2 == ptr) break; percpu_ref_put(&bch_dev_bkey_exists(c, ptr2->dev)->io_ref); } /* Fall back to COW path: */ goto out; err_bucket_stale: while (--i >= 0) bch2_bucket_nocow_unlock(&c->nocow_locks, buckets[i].b, BUCKET_NOCOW_LOCK_UPDATE); bkey_for_each_ptr(ptrs, ptr2) percpu_ref_put(&bch_dev_bkey_exists(c, ptr2->dev)->io_ref); /* We can retry this: */ ret = BCH_ERR_transaction_restart; goto out; } static void __bch2_write(struct bch_write_op *op) { struct bch_fs *c = op->c; struct write_point *wp = NULL; struct bio *bio = NULL; unsigned nofs_flags; int ret; nofs_flags = memalloc_nofs_save(); if (unlikely(op->opts.nocow)) { bch2_nocow_write(op); if (op->flags & BCH_WRITE_DONE) goto out_nofs_restore; } again: memset(&op->failed, 0, sizeof(op->failed)); op->btree_update_ready = false; do { struct bkey_i *key_to_write; unsigned key_to_write_offset = op->insert_keys.top_p - op->insert_keys.keys_p; /* +1 for possible cache device: */ if (op->open_buckets.nr + op->nr_replicas + 1 > ARRAY_SIZE(op->open_buckets.v)) break; if (bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), BKEY_EXTENT_U64s_MAX)) break; /* * The copygc thread is now global, which means it's no longer * freeing up space on specific disks, which means that * allocations for specific disks may hang arbitrarily long: */ ret = bch2_trans_do(c, NULL, NULL, 0, bch2_alloc_sectors_start_trans(&trans, op->target, op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED), op->write_point, &op->devs_have, op->nr_replicas, op->nr_replicas_required, op->alloc_reserve, op->flags, (op->flags & (BCH_WRITE_ALLOC_NOWAIT| BCH_WRITE_ONLY_SPECIFIED_DEVS)) ? NULL : &op->cl, &wp)); if (unlikely(ret)) { if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) break; goto err; } EBUG_ON(!wp); bch2_open_bucket_get(c, wp, &op->open_buckets); ret = bch2_write_extent(op, wp, &bio); bch2_alloc_sectors_done_inlined(c, wp); err: if (ret <= 0) { if (!(op->flags & BCH_WRITE_SYNC)) { spin_lock(&wp->writes_lock); op->wp = wp; list_add_tail(&op->wp_list, &wp->writes); if (wp->state == WRITE_POINT_stopped) __wp_update_state(wp, WRITE_POINT_waiting_io); spin_unlock(&wp->writes_lock); } op->flags |= BCH_WRITE_DONE; if (ret < 0) { op->error = ret; break; } } bio->bi_end_io = bch2_write_endio; bio->bi_private = &op->cl; bio->bi_opf |= REQ_OP_WRITE; closure_get(bio->bi_private); key_to_write = (void *) (op->insert_keys.keys_p + key_to_write_offset); bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, key_to_write, false); } while (ret); /* * Sync or no? * * If we're running asynchronously, wne may still want to block * synchronously here if we weren't able to submit all of the IO at * once, as that signals backpressure to the caller. */ if ((op->flags & BCH_WRITE_SYNC) || (!(op->flags & BCH_WRITE_DONE) && !(op->flags & BCH_WRITE_IN_WORKER))) { closure_sync(&op->cl); __bch2_write_index(op); if (!(op->flags & BCH_WRITE_DONE)) goto again; bch2_write_done(&op->cl); } else { continue_at(&op->cl, bch2_write_index, NULL); } out_nofs_restore: memalloc_nofs_restore(nofs_flags); } static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) { struct bio *bio = &op->wbio.bio; struct bvec_iter iter; struct bkey_i_inline_data *id; unsigned sectors; int ret; op->flags |= BCH_WRITE_WROTE_DATA_INLINE; op->flags |= BCH_WRITE_DONE; bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ARRAY_SIZE(op->inline_keys), BKEY_U64s + DIV_ROUND_UP(data_len, 8)); if (ret) { op->error = ret; goto err; } sectors = bio_sectors(bio); op->pos.offset += sectors; id = bkey_inline_data_init(op->insert_keys.top); id->k.p = op->pos; id->k.version = op->version; id->k.size = sectors; iter = bio->bi_iter; iter.bi_size = data_len; memcpy_from_bio(id->v.data, bio, iter); while (data_len & 7) id->v.data[data_len++] = '\0'; set_bkey_val_bytes(&id->k, data_len); bch2_keylist_push(&op->insert_keys); __bch2_write_index(op); err: bch2_write_done(&op->cl); } /** * bch_write - handle a write to a cache device or flash only volume * * This is the starting point for any data to end up in a cache device; it could * be from a normal write, or a writeback write, or a write to a flash only * volume - it's also used by the moving garbage collector to compact data in * mostly empty buckets. * * It first writes the data to the cache, creating a list of keys to be inserted * (if the data won't fit in a single open bucket, there will be multiple keys); * after the data is written it calls bch_journal, and after the keys have been * added to the next journal write they're inserted into the btree. * * If op->discard is true, instead of inserting the data it invalidates the * region of the cache represented by op->bio and op->inode. */ void bch2_write(struct closure *cl) { struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); struct bio *bio = &op->wbio.bio; struct bch_fs *c = op->c; unsigned data_len; EBUG_ON(op->cl.parent); BUG_ON(!op->nr_replicas); BUG_ON(!op->write_point.v); BUG_ON(bkey_eq(op->pos, POS_MAX)); op->start_time = local_clock(); bch2_keylist_init(&op->insert_keys, op->inline_keys); wbio_init(bio)->put_bio = false; if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) { bch_err_inum_offset_ratelimited(c, op->pos.inode, op->pos.offset << 9, "misaligned write"); op->error = -EIO; goto err; } if (c->opts.nochanges || !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { op->error = -BCH_ERR_erofs_no_writes; goto err; } this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); bch2_increment_clock(c, bio_sectors(bio), WRITE); data_len = min_t(u64, bio->bi_iter.bi_size, op->new_i_size - (op->pos.offset << 9)); if (c->opts.inline_data && data_len <= min(block_bytes(c) / 2, 1024U)) { bch2_write_data_inline(op, data_len); return; } __bch2_write(op); return; err: bch2_disk_reservation_put(c, &op->res); closure_debug_destroy(&op->cl); if (op->end_io) op->end_io(op); } /* Cache promotion on read */ struct promote_op { struct rcu_head rcu; u64 start_time; struct rhash_head hash; struct bpos pos; struct data_update write; struct bio_vec bi_inline_vecs[0]; /* must be last */ }; static const struct rhashtable_params bch_promote_params = { .head_offset = offsetof(struct promote_op, hash), .key_offset = offsetof(struct promote_op, pos), .key_len = sizeof(struct bpos), }; static inline bool should_promote(struct bch_fs *c, struct bkey_s_c k, struct bpos pos, struct bch_io_opts opts, unsigned flags) { if (!(flags & BCH_READ_MAY_PROMOTE)) return false; if (!opts.promote_target) return false; if (bch2_bkey_has_target(c, k, opts.promote_target)) return false; if (bkey_extent_is_unwritten(k)) return false; if (bch2_target_congested(c, opts.promote_target)) { /* XXX trace this */ return false; } if (rhashtable_lookup_fast(&c->promote_table, &pos, bch_promote_params)) return false; return true; } static void promote_free(struct bch_fs *c, struct promote_op *op) { int ret; bch2_data_update_exit(&op->write); ret = rhashtable_remove_fast(&c->promote_table, &op->hash, bch_promote_params); BUG_ON(ret); bch2_write_ref_put(c, BCH_WRITE_REF_promote); kfree_rcu(op, rcu); } static void promote_done(struct bch_write_op *wop) { struct promote_op *op = container_of(wop, struct promote_op, write.op); struct bch_fs *c = op->write.op.c; bch2_time_stats_update(&c->times[BCH_TIME_data_promote], op->start_time); promote_free(c, op); } static void promote_start(struct promote_op *op, struct bch_read_bio *rbio) { struct bio *bio = &op->write.op.wbio.bio; trace_and_count(op->write.op.c, read_promote, &rbio->bio); /* we now own pages: */ BUG_ON(!rbio->bounce); BUG_ON(rbio->bio.bi_vcnt > bio->bi_max_vecs); memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec, sizeof(struct bio_vec) * rbio->bio.bi_vcnt); swap(bio->bi_vcnt, rbio->bio.bi_vcnt); bch2_data_update_read_done(&op->write, rbio->pick.crc); } static struct promote_op *__promote_alloc(struct btree_trans *trans, enum btree_id btree_id, struct bkey_s_c k, struct bpos pos, struct extent_ptr_decoded *pick, struct bch_io_opts opts, unsigned sectors, struct bch_read_bio **rbio) { struct bch_fs *c = trans->c; struct promote_op *op = NULL; struct bio *bio; unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS); int ret; if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_promote)) return NULL; op = kzalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOIO); if (!op) goto err; op->start_time = local_clock(); op->pos = pos; /* * We don't use the mempool here because extents that aren't * checksummed or compressed can be too big for the mempool: */ *rbio = kzalloc(sizeof(struct bch_read_bio) + sizeof(struct bio_vec) * pages, GFP_NOIO); if (!*rbio) goto err; rbio_init(&(*rbio)->bio, opts); bio_init(&(*rbio)->bio, NULL, (*rbio)->bio.bi_inline_vecs, pages, 0); if (bch2_bio_alloc_pages(&(*rbio)->bio, sectors << 9, GFP_NOIO)) goto err; (*rbio)->bounce = true; (*rbio)->split = true; (*rbio)->kmalloc = true; if (rhashtable_lookup_insert_fast(&c->promote_table, &op->hash, bch_promote_params)) goto err; bio = &op->write.op.wbio.bio; bio_init(bio, NULL, bio->bi_inline_vecs, pages, 0); ret = bch2_data_update_init(trans, NULL, &op->write, writepoint_hashed((unsigned long) current), opts, (struct data_update_opts) { .target = opts.promote_target, .extra_replicas = 1, .write_flags = BCH_WRITE_ALLOC_NOWAIT|BCH_WRITE_CACHED, }, btree_id, k); BUG_ON(ret); op->write.op.end_io = promote_done; return op; err: if (*rbio) bio_free_pages(&(*rbio)->bio); kfree(*rbio); *rbio = NULL; kfree(op); bch2_write_ref_put(c, BCH_WRITE_REF_promote); return NULL; } noinline static struct promote_op *promote_alloc(struct btree_trans *trans, struct bvec_iter iter, struct bkey_s_c k, struct extent_ptr_decoded *pick, struct bch_io_opts opts, unsigned flags, struct bch_read_bio **rbio, bool *bounce, bool *read_full) { struct bch_fs *c = trans->c; bool promote_full = *read_full || READ_ONCE(c->promote_whole_extents); /* data might have to be decompressed in the write path: */ unsigned sectors = promote_full ? max(pick->crc.compressed_size, pick->crc.live_size) : bvec_iter_sectors(iter); struct bpos pos = promote_full ? bkey_start_pos(k.k) : POS(k.k->p.inode, iter.bi_sector); struct promote_op *promote; if (!should_promote(c, k, pos, opts, flags)) return NULL; promote = __promote_alloc(trans, k.k->type == KEY_TYPE_reflink_v ? BTREE_ID_reflink : BTREE_ID_extents, k, pos, pick, opts, sectors, rbio); if (!promote) return NULL; *bounce = true; *read_full = promote_full; return promote; } /* Read */ #define READ_RETRY_AVOID 1 #define READ_RETRY 2 #define READ_ERR 3 enum rbio_context { RBIO_CONTEXT_NULL, RBIO_CONTEXT_HIGHPRI, RBIO_CONTEXT_UNBOUND, }; static inline struct bch_read_bio * bch2_rbio_parent(struct bch_read_bio *rbio) { return rbio->split ? rbio->parent : rbio; } __always_inline static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn, enum rbio_context context, struct workqueue_struct *wq) { if (context <= rbio->context) { fn(&rbio->work); } else { rbio->work.func = fn; rbio->context = context; queue_work(wq, &rbio->work); } } static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio) { BUG_ON(rbio->bounce && !rbio->split); if (rbio->promote) promote_free(rbio->c, rbio->promote); rbio->promote = NULL; if (rbio->bounce) bch2_bio_free_pages_pool(rbio->c, &rbio->bio); if (rbio->split) { struct bch_read_bio *parent = rbio->parent; if (rbio->kmalloc) kfree(rbio); else bio_put(&rbio->bio); rbio = parent; } return rbio; } /* * Only called on a top level bch_read_bio to complete an entire read request, * not a split: */ static void bch2_rbio_done(struct bch_read_bio *rbio) { if (rbio->start_time) bch2_time_stats_update(&rbio->c->times[BCH_TIME_data_read], rbio->start_time); bio_endio(&rbio->bio); } static void bch2_read_retry_nodecode(struct bch_fs *c, struct bch_read_bio *rbio, struct bvec_iter bvec_iter, struct bch_io_failures *failed, unsigned flags) { struct btree_trans trans; struct btree_iter iter; struct bkey_buf sk; struct bkey_s_c k; int ret; flags &= ~BCH_READ_LAST_FRAGMENT; flags |= BCH_READ_MUST_CLONE; bch2_bkey_buf_init(&sk); bch2_trans_init(&trans, c, 0, 0); bch2_trans_iter_init(&trans, &iter, rbio->data_btree, rbio->read_pos, BTREE_ITER_SLOTS); retry: rbio->bio.bi_status = 0; k = bch2_btree_iter_peek_slot(&iter); if (bkey_err(k)) goto err; bch2_bkey_buf_reassemble(&sk, c, k); k = bkey_i_to_s_c(sk.k); bch2_trans_unlock(&trans); if (!bch2_bkey_matches_ptr(c, k, rbio->pick.ptr, rbio->data_pos.offset - rbio->pick.crc.offset)) { /* extent we wanted to read no longer exists: */ rbio->hole = true; goto out; } ret = __bch2_read_extent(&trans, rbio, bvec_iter, rbio->read_pos, rbio->data_btree, k, 0, failed, flags); if (ret == READ_RETRY) goto retry; if (ret) goto err; out: bch2_rbio_done(rbio); bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); bch2_bkey_buf_exit(&sk, c); return; err: rbio->bio.bi_status = BLK_STS_IOERR; goto out; } static void bch2_rbio_retry(struct work_struct *work) { struct bch_read_bio *rbio = container_of(work, struct bch_read_bio, work); struct bch_fs *c = rbio->c; struct bvec_iter iter = rbio->bvec_iter; unsigned flags = rbio->flags; subvol_inum inum = { .subvol = rbio->subvol, .inum = rbio->read_pos.inode, }; struct bch_io_failures failed = { .nr = 0 }; trace_and_count(c, read_retry, &rbio->bio); if (rbio->retry == READ_RETRY_AVOID) bch2_mark_io_failure(&failed, &rbio->pick); rbio->bio.bi_status = 0; rbio = bch2_rbio_free(rbio); flags |= BCH_READ_IN_RETRY; flags &= ~BCH_READ_MAY_PROMOTE; if (flags & BCH_READ_NODECODE) { bch2_read_retry_nodecode(c, rbio, iter, &failed, flags); } else { flags &= ~BCH_READ_LAST_FRAGMENT; flags |= BCH_READ_MUST_CLONE; __bch2_read(c, rbio, iter, inum, &failed, flags); } } static void bch2_rbio_error(struct bch_read_bio *rbio, int retry, blk_status_t error) { rbio->retry = retry; if (rbio->flags & BCH_READ_IN_RETRY) return; if (retry == READ_ERR) { rbio = bch2_rbio_free(rbio); rbio->bio.bi_status = error; bch2_rbio_done(rbio); } else { bch2_rbio_punt(rbio, bch2_rbio_retry, RBIO_CONTEXT_UNBOUND, system_unbound_wq); } } static int __bch2_rbio_narrow_crcs(struct btree_trans *trans, struct bch_read_bio *rbio) { struct bch_fs *c = rbio->c; u64 data_offset = rbio->data_pos.offset - rbio->pick.crc.offset; struct bch_extent_crc_unpacked new_crc; struct btree_iter iter; struct bkey_i *new; struct bkey_s_c k; int ret = 0; if (crc_is_compressed(rbio->pick.crc)) return 0; bch2_trans_iter_init(trans, &iter, rbio->data_btree, rbio->data_pos, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); k = bch2_btree_iter_peek_slot(&iter); if ((ret = bkey_err(k))) goto out; if (bversion_cmp(k.k->version, rbio->version) || !bch2_bkey_matches_ptr(c, k, rbio->pick.ptr, data_offset)) goto out; /* Extent was merged? */ if (bkey_start_offset(k.k) < data_offset || k.k->p.offset > data_offset + rbio->pick.crc.uncompressed_size) goto out; if (bch2_rechecksum_bio(c, &rbio->bio, rbio->version, rbio->pick.crc, NULL, &new_crc, bkey_start_offset(k.k) - data_offset, k.k->size, rbio->pick.crc.csum_type)) { bch_err(c, "error verifying existing checksum while narrowing checksum (memory corruption?)"); ret = 0; goto out; } /* * going to be temporarily appending another checksum entry: */ new = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(struct bch_extent_crc128)); if ((ret = PTR_ERR_OR_ZERO(new))) goto out; bkey_reassemble(new, k); if (!bch2_bkey_narrow_crcs(new, new_crc)) goto out; ret = bch2_trans_update(trans, &iter, new, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); out: bch2_trans_iter_exit(trans, &iter); return ret; } static noinline void bch2_rbio_narrow_crcs(struct bch_read_bio *rbio) { bch2_trans_do(rbio->c, NULL, NULL, BTREE_INSERT_NOFAIL, __bch2_rbio_narrow_crcs(&trans, rbio)); } /* Inner part that may run in process context */ static void __bch2_read_endio(struct work_struct *work) { struct bch_read_bio *rbio = container_of(work, struct bch_read_bio, work); struct bch_fs *c = rbio->c; struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev); struct bio *src = &rbio->bio; struct bio *dst = &bch2_rbio_parent(rbio)->bio; struct bvec_iter dst_iter = rbio->bvec_iter; struct bch_extent_crc_unpacked crc = rbio->pick.crc; struct nonce nonce = extent_nonce(rbio->version, crc); unsigned nofs_flags; struct bch_csum csum; int ret; nofs_flags = memalloc_nofs_save(); /* Reset iterator for checksumming and copying bounced data: */ if (rbio->bounce) { src->bi_iter.bi_size = crc.compressed_size << 9; src->bi_iter.bi_idx = 0; src->bi_iter.bi_bvec_done = 0; } else { src->bi_iter = rbio->bvec_iter; } csum = bch2_checksum_bio(c, crc.csum_type, nonce, src); if (bch2_crc_cmp(csum, rbio->pick.crc.csum) && !c->opts.no_data_io) goto csum_err; /* * XXX * We need to rework the narrow_crcs path to deliver the read completion * first, and then punt to a different workqueue, otherwise we're * holding up reads while doing btree updates which is bad for memory * reclaim. */ if (unlikely(rbio->narrow_crcs)) bch2_rbio_narrow_crcs(rbio); if (rbio->flags & BCH_READ_NODECODE) goto nodecode; /* Adjust crc to point to subset of data we want: */ crc.offset += rbio->offset_into_extent; crc.live_size = bvec_iter_sectors(rbio->bvec_iter); if (crc_is_compressed(crc)) { ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src); if (ret) goto decrypt_err; if (bch2_bio_uncompress(c, src, dst, dst_iter, crc)) goto decompression_err; } else { /* don't need to decrypt the entire bio: */ nonce = nonce_add(nonce, crc.offset << 9); bio_advance(src, crc.offset << 9); BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size); src->bi_iter.bi_size = dst_iter.bi_size; ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src); if (ret) goto decrypt_err; if (rbio->bounce) { struct bvec_iter src_iter = src->bi_iter; bio_copy_data_iter(dst, &dst_iter, src, &src_iter); } } if (rbio->promote) { /* * Re encrypt data we decrypted, so it's consistent with * rbio->crc: */ ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src); if (ret) goto decrypt_err; promote_start(rbio->promote, rbio); rbio->promote = NULL; } nodecode: if (likely(!(rbio->flags & BCH_READ_IN_RETRY))) { rbio = bch2_rbio_free(rbio); bch2_rbio_done(rbio); } out: memalloc_nofs_restore(nofs_flags); return; csum_err: /* * Checksum error: if the bio wasn't bounced, we may have been * reading into buffers owned by userspace (that userspace can * scribble over) - retry the read, bouncing it this time: */ if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) { rbio->flags |= BCH_READ_MUST_BOUNCE; bch2_rbio_error(rbio, READ_RETRY, BLK_STS_IOERR); goto out; } bch_err_inum_offset_ratelimited(ca, rbio->read_pos.inode, rbio->read_pos.offset << 9, "data checksum error: expected %0llx:%0llx got %0llx:%0llx (type %s)", rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo, csum.hi, csum.lo, bch2_csum_types[crc.csum_type]); bch2_io_error(ca); bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); goto out; decompression_err: bch_err_inum_offset_ratelimited(c, rbio->read_pos.inode, rbio->read_pos.offset << 9, "decompression error"); bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR); goto out; decrypt_err: bch_err_inum_offset_ratelimited(c, rbio->read_pos.inode, rbio->read_pos.offset << 9, "decrypt error"); bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR); goto out; } static void bch2_read_endio(struct bio *bio) { struct bch_read_bio *rbio = container_of(bio, struct bch_read_bio, bio); struct bch_fs *c = rbio->c; struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev); struct workqueue_struct *wq = NULL; enum rbio_context context = RBIO_CONTEXT_NULL; if (rbio->have_ioref) { bch2_latency_acct(ca, rbio->submit_time, READ); percpu_ref_put(&ca->io_ref); } if (!rbio->split) rbio->bio.bi_end_io = rbio->end_io; if (bch2_dev_inum_io_err_on(bio->bi_status, ca, rbio->read_pos.inode, rbio->read_pos.offset, "data read error: %s", bch2_blk_status_to_str(bio->bi_status))) { bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_status); return; } if (((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) || ptr_stale(ca, &rbio->pick.ptr)) { trace_and_count(c, read_reuse_race, &rbio->bio); if (rbio->flags & BCH_READ_RETRY_IF_STALE) bch2_rbio_error(rbio, READ_RETRY, BLK_STS_AGAIN); else bch2_rbio_error(rbio, READ_ERR, BLK_STS_AGAIN); return; } if (rbio->narrow_crcs || rbio->promote || crc_is_compressed(rbio->pick.crc) || bch2_csum_type_is_encryption(rbio->pick.crc.csum_type)) context = RBIO_CONTEXT_UNBOUND, wq = system_unbound_wq; else if (rbio->pick.crc.csum_type) context = RBIO_CONTEXT_HIGHPRI, wq = system_highpri_wq; bch2_rbio_punt(rbio, __bch2_read_endio, context, wq); } int __bch2_read_indirect_extent(struct btree_trans *trans, unsigned *offset_into_extent, struct bkey_buf *orig_k) { struct btree_iter iter; struct bkey_s_c k; u64 reflink_offset; int ret; reflink_offset = le64_to_cpu(bkey_i_to_reflink_p(orig_k->k)->v.idx) + *offset_into_extent; bch2_trans_iter_init(trans, &iter, BTREE_ID_reflink, POS(0, reflink_offset), BTREE_ITER_SLOTS); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto err; if (k.k->type != KEY_TYPE_reflink_v && k.k->type != KEY_TYPE_indirect_inline_data) { bch_err_inum_offset_ratelimited(trans->c, orig_k->k->k.p.inode, orig_k->k->k.p.offset << 9, "%llu len %u points to nonexistent indirect extent %llu", orig_k->k->k.p.offset, orig_k->k->k.size, reflink_offset); bch2_inconsistent_error(trans->c); ret = -EIO; goto err; } *offset_into_extent = iter.pos.offset - bkey_start_offset(k.k); bch2_bkey_buf_reassemble(orig_k, trans->c, k); err: bch2_trans_iter_exit(trans, &iter); return ret; } static noinline void read_from_stale_dirty_pointer(struct btree_trans *trans, struct bkey_s_c k, struct bch_extent_ptr ptr) { struct bch_fs *c = trans->c; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr.dev); struct btree_iter iter; struct printbuf buf = PRINTBUF; int ret; bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, PTR_BUCKET_POS(c, &ptr), BTREE_ITER_CACHED); prt_printf(&buf, "Attempting to read from stale dirty pointer:"); printbuf_indent_add(&buf, 2); prt_newline(&buf); bch2_bkey_val_to_text(&buf, c, k); prt_newline(&buf); prt_printf(&buf, "memory gen: %u", *bucket_gen(ca, iter.pos.offset)); ret = lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_slot(&iter))); if (!ret) { prt_newline(&buf); bch2_bkey_val_to_text(&buf, c, k); } bch2_fs_inconsistent(c, "%s", buf.buf); bch2_trans_iter_exit(trans, &iter); printbuf_exit(&buf); } int __bch2_read_extent(struct btree_trans *trans, struct bch_read_bio *orig, struct bvec_iter iter, struct bpos read_pos, enum btree_id data_btree, struct bkey_s_c k, unsigned offset_into_extent, struct bch_io_failures *failed, unsigned flags) { struct bch_fs *c = trans->c; struct extent_ptr_decoded pick; struct bch_read_bio *rbio = NULL; struct bch_dev *ca = NULL; struct promote_op *promote = NULL; bool bounce = false, read_full = false, narrow_crcs = false; struct bpos data_pos = bkey_start_pos(k.k); int pick_ret; if (bkey_extent_is_inline_data(k.k)) { unsigned bytes = min_t(unsigned, iter.bi_size, bkey_inline_data_bytes(k.k)); swap(iter.bi_size, bytes); memcpy_to_bio(&orig->bio, iter, bkey_inline_data_p(k)); swap(iter.bi_size, bytes); bio_advance_iter(&orig->bio, &iter, bytes); zero_fill_bio_iter(&orig->bio, iter); goto out_read_done; } retry_pick: pick_ret = bch2_bkey_pick_read_device(c, k, failed, &pick); /* hole or reservation - just zero fill: */ if (!pick_ret) goto hole; if (pick_ret < 0) { bch_err_inum_offset_ratelimited(c, read_pos.inode, read_pos.offset << 9, "no device to read from"); goto err; } ca = bch_dev_bkey_exists(c, pick.ptr.dev); /* * Stale dirty pointers are treated as IO errors, but @failed isn't * allocated unless we're in the retry path - so if we're not in the * retry path, don't check here, it'll be caught in bch2_read_endio() * and we'll end up in the retry path: */ if ((flags & BCH_READ_IN_RETRY) && !pick.ptr.cached && unlikely(ptr_stale(ca, &pick.ptr))) { read_from_stale_dirty_pointer(trans, k, pick.ptr); bch2_mark_io_failure(failed, &pick); goto retry_pick; } /* * Unlock the iterator while the btree node's lock is still in * cache, before doing the IO: */ bch2_trans_unlock(trans); if (flags & BCH_READ_NODECODE) { /* * can happen if we retry, and the extent we were going to read * has been merged in the meantime: */ if (pick.crc.compressed_size > orig->bio.bi_vcnt * PAGE_SECTORS) goto hole; iter.bi_size = pick.crc.compressed_size << 9; goto get_bio; } if (!(flags & BCH_READ_LAST_FRAGMENT) || bio_flagged(&orig->bio, BIO_CHAIN)) flags |= BCH_READ_MUST_CLONE; narrow_crcs = !(flags & BCH_READ_IN_RETRY) && bch2_can_narrow_extent_crcs(k, pick.crc); if (narrow_crcs && (flags & BCH_READ_USER_MAPPED)) flags |= BCH_READ_MUST_BOUNCE; EBUG_ON(offset_into_extent + bvec_iter_sectors(iter) > k.k->size); if (crc_is_compressed(pick.crc) || (pick.crc.csum_type != BCH_CSUM_none && (bvec_iter_sectors(iter) != pick.crc.uncompressed_size || (bch2_csum_type_is_encryption(pick.crc.csum_type) && (flags & BCH_READ_USER_MAPPED)) || (flags & BCH_READ_MUST_BOUNCE)))) { read_full = true; bounce = true; } if (orig->opts.promote_target) promote = promote_alloc(trans, iter, k, &pick, orig->opts, flags, &rbio, &bounce, &read_full); if (!read_full) { EBUG_ON(crc_is_compressed(pick.crc)); EBUG_ON(pick.crc.csum_type && (bvec_iter_sectors(iter) != pick.crc.uncompressed_size || bvec_iter_sectors(iter) != pick.crc.live_size || pick.crc.offset || offset_into_extent)); data_pos.offset += offset_into_extent; pick.ptr.offset += pick.crc.offset + offset_into_extent; offset_into_extent = 0; pick.crc.compressed_size = bvec_iter_sectors(iter); pick.crc.uncompressed_size = bvec_iter_sectors(iter); pick.crc.offset = 0; pick.crc.live_size = bvec_iter_sectors(iter); offset_into_extent = 0; } get_bio: if (rbio) { /* * promote already allocated bounce rbio: * promote needs to allocate a bio big enough for uncompressing * data in the write path, but we're not going to use it all * here: */ EBUG_ON(rbio->bio.bi_iter.bi_size < pick.crc.compressed_size << 9); rbio->bio.bi_iter.bi_size = pick.crc.compressed_size << 9; } else if (bounce) { unsigned sectors = pick.crc.compressed_size; rbio = rbio_init(bio_alloc_bioset(NULL, DIV_ROUND_UP(sectors, PAGE_SECTORS), 0, GFP_NOIO, &c->bio_read_split), orig->opts); bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9); rbio->bounce = true; rbio->split = true; } else if (flags & BCH_READ_MUST_CLONE) { /* * Have to clone if there were any splits, due to error * reporting issues (if a split errored, and retrying didn't * work, when it reports the error to its parent (us) we don't * know if the error was from our bio, and we should retry, or * from the whole bio, in which case we don't want to retry and * lose the error) */ rbio = rbio_init(bio_alloc_clone(NULL, &orig->bio, GFP_NOIO, &c->bio_read_split), orig->opts); rbio->bio.bi_iter = iter; rbio->split = true; } else { rbio = orig; rbio->bio.bi_iter = iter; EBUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN)); } EBUG_ON(bio_sectors(&rbio->bio) != pick.crc.compressed_size); rbio->c = c; rbio->submit_time = local_clock(); if (rbio->split) rbio->parent = orig; else rbio->end_io = orig->bio.bi_end_io; rbio->bvec_iter = iter; rbio->offset_into_extent= offset_into_extent; rbio->flags = flags; rbio->have_ioref = pick_ret > 0 && bch2_dev_get_ioref(ca, READ); rbio->narrow_crcs = narrow_crcs; rbio->hole = 0; rbio->retry = 0; rbio->context = 0; /* XXX: only initialize this if needed */ rbio->devs_have = bch2_bkey_devs(k); rbio->pick = pick; rbio->subvol = orig->subvol; rbio->read_pos = read_pos; rbio->data_btree = data_btree; rbio->data_pos = data_pos; rbio->version = k.k->version; rbio->promote = promote; INIT_WORK(&rbio->work, NULL); rbio->bio.bi_opf = orig->bio.bi_opf; rbio->bio.bi_iter.bi_sector = pick.ptr.offset; rbio->bio.bi_end_io = bch2_read_endio; if (rbio->bounce) trace_and_count(c, read_bounce, &rbio->bio); this_cpu_add(c->counters[BCH_COUNTER_io_read], bio_sectors(&rbio->bio)); bch2_increment_clock(c, bio_sectors(&rbio->bio), READ); /* * If it's being moved internally, we don't want to flag it as a cache * hit: */ if (pick.ptr.cached && !(flags & BCH_READ_NODECODE)) bch2_bucket_io_time_reset(trans, pick.ptr.dev, PTR_BUCKET_NR(ca, &pick.ptr), READ); if (!(flags & (BCH_READ_IN_RETRY|BCH_READ_LAST_FRAGMENT))) { bio_inc_remaining(&orig->bio); trace_and_count(c, read_split, &orig->bio); } if (!rbio->pick.idx) { if (!rbio->have_ioref) { bch_err_inum_offset_ratelimited(c, read_pos.inode, read_pos.offset << 9, "no device to read from"); bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); goto out; } this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_user], bio_sectors(&rbio->bio)); bio_set_dev(&rbio->bio, ca->disk_sb.bdev); if (unlikely(c->opts.no_data_io)) { if (likely(!(flags & BCH_READ_IN_RETRY))) bio_endio(&rbio->bio); } else { if (likely(!(flags & BCH_READ_IN_RETRY))) submit_bio(&rbio->bio); else submit_bio_wait(&rbio->bio); } /* * We just submitted IO which may block, we expect relock fail * events and shouldn't count them: */ trans->notrace_relock_fail = true; } else { /* Attempting reconstruct read: */ if (bch2_ec_read_extent(c, rbio)) { bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); goto out; } if (likely(!(flags & BCH_READ_IN_RETRY))) bio_endio(&rbio->bio); } out: if (likely(!(flags & BCH_READ_IN_RETRY))) { return 0; } else { int ret; rbio->context = RBIO_CONTEXT_UNBOUND; bch2_read_endio(&rbio->bio); ret = rbio->retry; rbio = bch2_rbio_free(rbio); if (ret == READ_RETRY_AVOID) { bch2_mark_io_failure(failed, &pick); ret = READ_RETRY; } if (!ret) goto out_read_done; return ret; } err: if (flags & BCH_READ_IN_RETRY) return READ_ERR; orig->bio.bi_status = BLK_STS_IOERR; goto out_read_done; hole: /* * won't normally happen in the BCH_READ_NODECODE * (bch2_move_extent()) path, but if we retry and the extent we wanted * to read no longer exists we have to signal that: */ if (flags & BCH_READ_NODECODE) orig->hole = true; zero_fill_bio_iter(&orig->bio, iter); out_read_done: if (flags & BCH_READ_LAST_FRAGMENT) bch2_rbio_done(orig); return 0; } void __bch2_read(struct bch_fs *c, struct bch_read_bio *rbio, struct bvec_iter bvec_iter, subvol_inum inum, struct bch_io_failures *failed, unsigned flags) { struct btree_trans trans; struct btree_iter iter; struct bkey_buf sk; struct bkey_s_c k; u32 snapshot; int ret; BUG_ON(flags & BCH_READ_NODECODE); bch2_bkey_buf_init(&sk); bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); iter = (struct btree_iter) { NULL }; ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot); if (ret) goto err; bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents, SPOS(inum.inum, bvec_iter.bi_sector, snapshot), BTREE_ITER_SLOTS); while (1) { unsigned bytes, sectors, offset_into_extent; enum btree_id data_btree = BTREE_ID_extents; /* * read_extent -> io_time_reset may cause a transaction restart * without returning an error, we need to check for that here: */ ret = bch2_trans_relock(&trans); if (ret) break; bch2_btree_iter_set_pos(&iter, POS(inum.inum, bvec_iter.bi_sector)); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) break; offset_into_extent = iter.pos.offset - bkey_start_offset(k.k); sectors = k.k->size - offset_into_extent; bch2_bkey_buf_reassemble(&sk, c, k); ret = bch2_read_indirect_extent(&trans, &data_btree, &offset_into_extent, &sk); if (ret) break; k = bkey_i_to_s_c(sk.k); /* * With indirect extents, the amount of data to read is the min * of the original extent and the indirect extent: */ sectors = min(sectors, k.k->size - offset_into_extent); bytes = min(sectors, bvec_iter_sectors(bvec_iter)) << 9; swap(bvec_iter.bi_size, bytes); if (bvec_iter.bi_size == bytes) flags |= BCH_READ_LAST_FRAGMENT; ret = __bch2_read_extent(&trans, rbio, bvec_iter, iter.pos, data_btree, k, offset_into_extent, failed, flags); if (ret) break; if (flags & BCH_READ_LAST_FRAGMENT) break; swap(bvec_iter.bi_size, bytes); bio_advance_iter(&rbio->bio, &bvec_iter, bytes); ret = btree_trans_too_many_iters(&trans); if (ret) break; } err: bch2_trans_iter_exit(&trans, &iter); if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || ret == READ_RETRY || ret == READ_RETRY_AVOID) goto retry; bch2_trans_exit(&trans); bch2_bkey_buf_exit(&sk, c); if (ret) { bch_err_inum_offset_ratelimited(c, inum.inum, bvec_iter.bi_sector << 9, "read error %i from btree lookup", ret); rbio->bio.bi_status = BLK_STS_IOERR; bch2_rbio_done(rbio); } } void bch2_fs_io_exit(struct bch_fs *c) { if (c->promote_table.tbl) rhashtable_destroy(&c->promote_table); mempool_exit(&c->bio_bounce_pages); bioset_exit(&c->bio_write); bioset_exit(&c->bio_read_split); bioset_exit(&c->bio_read); } int bch2_fs_io_init(struct bch_fs *c) { if (bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio), BIOSET_NEED_BVECS) || bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio), BIOSET_NEED_BVECS) || bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) || mempool_init_page_pool(&c->bio_bounce_pages, max_t(unsigned, c->opts.btree_node_size, c->opts.encoded_extent_max) / PAGE_SIZE, 0) || rhashtable_init(&c->promote_table, &bch_promote_params)) return -ENOMEM; return 0; }