Commit Graph

18028 Commits

Author SHA1 Message Date
Matthew Wilcox (Oracle)
fa29000b6b fs: Add aops->release_folio
This replaces aops->releasepage.  Update the documentation, and call it
if it exists.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
2022-05-09 23:12:30 -04:00
Matthew Wilcox (Oracle)
0795000869 mm/filemap: Hoist filler_t decision to the top of do_read_cache_folio()
Now that filler_t and aops->read_folio() have the same type, we can decide
which one to use at the top of the function, and cache ->read_folio in
the filler parameter.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-05-09 16:36:52 -04:00
Matthew Wilcox (Oracle)
e9b5b23e95 fs: Change the type of filler_t
By making filler_t the same as read_folio, we can use the same function
for both in gfs2.  We can push the use of folios down one more level
in jffs2 and nfs.  We also increase type safety for future users of the
various read_cache_page() family of functions by forcing the parameter
to be a pointer to struct file (or NULL).

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andreas Gruenbacher <agruenba@redhat.com>
2022-05-09 16:36:48 -04:00
Matthew Wilcox (Oracle)
7e0a126519 mm,fs: Remove aops->readpage
With all implementations of aops->readpage converted to aops->read_folio,
we can stop checking whether it's set and remove the member from aops.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-05-09 16:28:36 -04:00
Matthew Wilcox (Oracle)
0f312591d6 mm: Convert swap_readpage to call read_folio instead of readpage
This commit is split out so it can be dropped when resolving
conflicts with Neil Brown's series to stop calling ->readpage in
the swap code.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-05-09 16:21:46 -04:00
Matthew Wilcox (Oracle)
5efe7448a1 fs: Introduce aops->read_folio
Change all the callers of ->readpage to call ->read_folio in preference,
if it exists.  This is a transitional duplication, and will be removed
by the end of the series.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-05-09 16:21:40 -04:00
Matthew Wilcox (Oracle)
520f301c54 fs: Convert is_dirty_writeback() to take a folio
Pass a folio instead of a page to aops->is_dirty_writeback().
Convert both implementations and the caller.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-05-08 14:45:56 -04:00
Matthew Wilcox (Oracle)
a42634a6c0 readahead: Use a folio in read_pages()
Handle multi-page folios correctly and removes a few calls to
compound_head().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-05-08 14:45:56 -04:00
Matthew Wilcox (Oracle)
2ca456c248 filemap: Update the folio_mark_dirty documentation
The previous comment was not terribly helpful.  Be a bit more explicit
about the necessary locking environment.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-05-08 14:45:56 -04:00
Matthew Wilcox (Oracle)
84a1041c60 fs: Remove pagecache_write_begin() and pagecache_write_end()
These wrappers have no more users; remove them.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-05-08 14:45:56 -04:00
Matthew Wilcox (Oracle)
9d6b0cd757 fs: Remove flags parameter from aops->write_begin
There are no more aop flags left, so remove the parameter.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-05-08 14:28:19 -04:00
Matthew Wilcox (Oracle)
b7446e7cf1 fs: Remove aop flags parameter from grab_cache_page_write_begin()
There are no more aop flags left, so remove the parameter.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-05-08 14:28:19 -04:00
Matthew Wilcox (Oracle)
236d93c4bf fs: Remove AOP_FLAG_NOFS
With all users of this flag gone, we can stop testing whether it's set.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-05-08 14:28:19 -04:00
Matthew Wilcox (Oracle)
b9ff43dd27 mm/readahead: Fix readahead with large folios
Reading 100KB chunks from a big file (eg dd bs=100K) leads to poor
readahead behaviour.  Studying the traces in detail, I noticed two
problems.

The first is that we were setting the readahead flag on the folio which
contains the last byte read from the block.  This is wrong because we
will trigger readahead at the end of the read without waiting to see
if a subsequent read is going to use the pages we just read.  Instead,
we need to set the readahead flag on the first folio _after_ the one
which contains the last byte that we're reading.

The second is that we were looking for the index of the folio with the
readahead flag set to exactly match the start + size - async_size.
If we've rounded this, either down (as previously) or up (as now),
we'll think we hit a folio marked as readahead by a different read,
and try to read the wrong pages.  So round the expected index to the
order of the folio we hit.

Reported-by: Guo Xuenan <guoxuenan@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-05-05 00:47:29 -04:00
Zqiang
31fa985b41 kasan: prevent cpu_quarantine corruption when CPU offline and cache shrink occur at same time
kasan_quarantine_remove_cache() is called in kmem_cache_shrink()/
destroy().  The kasan_quarantine_remove_cache() call is protected by
cpuslock in kmem_cache_destroy() to ensure serialization with
kasan_cpu_offline().

However the kasan_quarantine_remove_cache() call is not protected by
cpuslock in kmem_cache_shrink().  When a CPU is going offline and cache
shrink occurs at same time, the cpu_quarantine may be corrupted by
interrupt (per_cpu_remove_cache operation).

So add a cpu_quarantine offline flags check in per_cpu_remove_cache().

[akpm@linux-foundation.org: add comment, per Zqiang]

Link: https://lkml.kernel.org/r/20220414025925.2423818-1-qiang1.zhang@intel.com
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-27 13:28:48 -07:00
Linus Torvalds
0fc74d820a no-MMU: expose vmalloc_huge() for alloc_large_system_hash()
It turns out that for the CONFIG_MMU=n builds, vmalloc_huge() was never
defined, since it's defined in mm/vmalloc.c, which doesn't get built for
the no-MMU configurations.

Just implement the trivial wrapper for the no-MMU case too.  In fact,
just make it an alias to the existing __vmalloc() function that has the
same signature.

Link: https://lore.kernel.org/all/CAMuHMdVdx2V1uhv_152Sw3_z2xE0spiaWp1d6Ko8-rYmAxUBAg@mail.gmail.com/
Link: https://lore.kernel.org/all/CA+G9fYscb1y4a17Sf5G_Aibt+WuSf-ks_Qjw9tYFy=A4sjCEug@mail.gmail.com/
Link: https://lore.kernel.org/all/20220425150356.GA4138752@roeck-us.net/
Reported-and-tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Reported-and-tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-25 10:11:49 -07:00
Linus Torvalds
9becb68891 kvmalloc: use vmalloc_huge for vmalloc allocations
Since commit 559089e0a9 ("vmalloc: replace VM_NO_HUGE_VMAP with
VM_ALLOW_HUGE_VMAP"), the use of hugepage mappings for vmalloc is an
opt-in strategy, because it caused a number of problems that weren't
noticed until x86 enabled it too.

One of the issues was fixed by Nick Piggin in commit 3b8000ae18
("mm/vmalloc: huge vmalloc backing pages should be split rather than
compound"), but I'm still worried about page protection issues, and
VM_FLUSH_RESET_PERMS in particular.

However, like the hash table allocation case (commit f2edd118d0:
"page_alloc: use vmalloc_huge for large system hash"), the use of
kvmalloc() should be safe from any such games, since the returned
pointer might be a SLUB allocation, and as such no user should
reasonably be using it in any odd ways.

We also know that the allocations are fairly large, since it falls back
to the vmalloc case only when a kmalloc() fails.  So using a hugepage
mapping seems both safe and relevant.

This patch does show a weakness in the opt-in strategy: since the opt-in
flag is in the 'vm_flags', not the usual gfp_t allocation flags, very
few of the usual interfaces actually expose it.

That's not much of an issue in this case that already used one of the
fairly specialized low-level vmalloc interfaces for the allocation, but
for a lot of other vmalloc() users that might want to opt in, it's going
to be very inconvenient.

We'll either have to fix any compatibility problems, or expose it in the
gfp flags (__GFP_COMP would have made a lot of sense) to allow normal
vmalloc() users to use hugepage mappings.  That said, the cases that
really matter were probably already taken care of by the hash tabel
allocation.

Link: https://lore.kernel.org/all/20220415164413.2727220-1-song@kernel.org/
Link: https://lore.kernel.org/all/CAHk-=whao=iosX1s5Z4SF-ZGa-ebAukJoAdUJFk5SPwnofV+Vg@mail.gmail.com/
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
Cc: Song Liu <songliubraving@fb.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-24 10:05:38 -07:00
Song Liu
f2edd118d0 page_alloc: use vmalloc_huge for large system hash
Use vmalloc_huge() in alloc_large_system_hash() so that large system
hash (>= PMD_SIZE) could benefit from huge pages.

Note that vmalloc_huge only allocates huge pages for systems with
HAVE_ARCH_HUGE_VMALLOC.

Signed-off-by: Song Liu <song@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-24 10:00:54 -07:00
Linus Torvalds
281b9d9a4b Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton:
 "13 patches.

  Subsystems affected by this patch series: mm (memory-failure, memcg,
  userfaultfd, hugetlbfs, mremap, oom-kill, kasan, hmm), and kcov"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  mm/mmu_notifier.c: fix race in mmu_interval_notifier_remove()
  kcov: don't generate a warning on vm_insert_page()'s failure
  MAINTAINERS: add Vincenzo Frascino to KASAN reviewers
  oom_kill.c: futex: delay the OOM reaper to allow time for proper futex cleanup
  selftest/vm: add skip support to mremap_test
  selftest/vm: support xfail in mremap_test
  selftest/vm: verify remap destination address in mremap_test
  selftest/vm: verify mmap addr in mremap_test
  mm, hugetlb: allow for "high" userspace addresses
  userfaultfd: mark uffd_wp regardless of VM_WRITE flag
  memcg: sync flush only if periodic flush is delayed
  mm/memory-failure.c: skip huge_zero_page in memory_failure()
  mm/hwpoison: fix race between hugetlb free/demotion and memory_failure_hugetlb()
2022-04-22 10:10:43 -07:00
Nicholas Piggin
3b8000ae18 mm/vmalloc: huge vmalloc backing pages should be split rather than compound
Huge vmalloc higher-order backing pages were allocated with __GFP_COMP
in order to allow the sub-pages to be refcounted by callers such as
"remap_vmalloc_page [sic]" (remap_vmalloc_range).

However a similar problem exists for other struct page fields callers
use, for example fb_deferred_io_fault() takes a vmalloc'ed page and
not only refcounts it but uses ->lru, ->mapping, ->index.

This is not compatible with compound sub-pages, and can cause bad page
state issues like

  BUG: Bad page state in process swapper/0  pfn:00743
  page:(____ptrval____) refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x743
  flags: 0x7ffff000000000(node=0|zone=0|lastcpupid=0x7ffff)
  raw: 007ffff000000000 c00c00000001d0c8 c00c00000001d0c8 0000000000000000
  raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
  page dumped because: corrupted mapping in tail page
  Modules linked in:
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.18.0-rc3-00082-gfc6fff4a7ce1-dirty #2810
  Call Trace:
    dump_stack_lvl+0x74/0xa8 (unreliable)
    bad_page+0x12c/0x170
    free_tail_pages_check+0xe8/0x190
    free_pcp_prepare+0x31c/0x4e0
    free_unref_page+0x40/0x1b0
    __vunmap+0x1d8/0x420
    ...

The correct approach is to use split high-order pages for the huge
vmalloc backing. These allow callers to treat them in exactly the same
way as individually-allocated order-0 pages.

Link: https://lore.kernel.org/all/14444103-d51b-0fb3-ee63-c3f182f0b546@molgen.mpg.de/
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
Cc: Song Liu <songliubraving@fb.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-22 09:20:16 -07:00
Alistair Popple
319561669a mm/mmu_notifier.c: fix race in mmu_interval_notifier_remove()
In some cases it is possible for mmu_interval_notifier_remove() to race
with mn_tree_inv_end() allowing it to return while the notifier data
structure is still in use.  Consider the following sequence:

  CPU0 - mn_tree_inv_end()            CPU1 - mmu_interval_notifier_remove()
  ----------------------------------- ------------------------------------
                                      spin_lock(subscriptions->lock);
                                      seq = subscriptions->invalidate_seq;
  spin_lock(subscriptions->lock);     spin_unlock(subscriptions->lock);
  subscriptions->invalidate_seq++;
                                      wait_event(invalidate_seq != seq);
                                      return;
  interval_tree_remove(interval_sub); kfree(interval_sub);
  spin_unlock(subscriptions->lock);
  wake_up_all();

As the wait_event() condition is true it will return immediately.  This
can lead to use-after-free type errors if the caller frees the data
structure containing the interval notifier subscription while it is
still on a deferred list.  Fix this by taking the appropriate lock when
reading invalidate_seq to ensure proper synchronisation.

I observed this whilst running stress testing during some development.
You do have to be pretty unlucky, but it leads to the usual problems of
use-after-free (memory corruption, kernel crash, difficult to diagnose
WARN_ON, etc).

Link: https://lkml.kernel.org/r/20220420043734.476348-1-apopple@nvidia.com
Fixes: 99cb252f5e ("mm/mmu_notifier: add an interval tree notifier")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:10 -07:00
Nico Pache
e4a38402c3 oom_kill.c: futex: delay the OOM reaper to allow time for proper futex cleanup
The pthread struct is allocated on PRIVATE|ANONYMOUS memory [1] which
can be targeted by the oom reaper.  This mapping is used to store the
futex robust list head; the kernel does not keep a copy of the robust
list and instead references a userspace address to maintain the
robustness during a process death.

A race can occur between exit_mm and the oom reaper that allows the oom
reaper to free the memory of the futex robust list before the exit path
has handled the futex death:

    CPU1                               CPU2
    --------------------------------------------------------------------
    page_fault
    do_exit "signal"
    wake_oom_reaper
                                        oom_reaper
                                        oom_reap_task_mm (invalidates mm)
    exit_mm
    exit_mm_release
    futex_exit_release
    futex_cleanup
    exit_robust_list
    get_user (EFAULT- can't access memory)

If the get_user EFAULT's, the kernel will be unable to recover the
waiters on the robust_list, leaving userspace mutexes hung indefinitely.

Delay the OOM reaper, allowing more time for the exit path to perform
the futex cleanup.

Reproducer: https://gitlab.com/jsavitz/oom_futex_reproducer

Based on a patch by Michal Hocko.

Link: https://elixir.bootlin.com/glibc/glibc-2.35/source/nptl/allocatestack.c#L370 [1]
Link: https://lkml.kernel.org/r/20220414144042.677008-1-npache@redhat.com
Fixes: 2129258024 ("mm: oom: let oom_reap_task and exit_mmap run concurrently")
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Signed-off-by: Nico Pache <npache@redhat.com>
Co-developed-by: Joel Savitz <jsavitz@redhat.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Herton R. Krzesinski <herton@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joel Savitz <jsavitz@redhat.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:10 -07:00
Christophe Leroy
5f24d5a579 mm, hugetlb: allow for "high" userspace addresses
This is a fix for commit f6795053da ("mm: mmap: Allow for "high"
userspace addresses") for hugetlb.

This patch adds support for "high" userspace addresses that are
optionally supported on the system and have to be requested via a hint
mechanism ("high" addr parameter to mmap).

Architectures such as powerpc and x86 achieve this by making changes to
their architectural versions of hugetlb_get_unmapped_area() function.
However, arm64 uses the generic version of that function.

So take into account arch_get_mmap_base() and arch_get_mmap_end() in
hugetlb_get_unmapped_area().  To allow that, move those two macros out
of mm/mmap.c into include/linux/sched/mm.h

If these macros are not defined in architectural code then they default
to (TASK_SIZE) and (base) so should not introduce any behavioural
changes to architectures that do not define them.

For the time being, only ARM64 is affected by this change.

Catalin (ARM64) said
 "We should have fixed hugetlb_get_unmapped_area() as well when we added
  support for 52-bit VA. The reason for commit f6795053da was to
  prevent normal mmap() from returning addresses above 48-bit by default
  as some user-space had hard assumptions about this.

  It's a slight ABI change if you do this for hugetlb_get_unmapped_area()
  but I doubt anyone would notice. It's more likely that the current
  behaviour would cause issues, so I'd rather have them consistent.

  Basically when arm64 gained support for 52-bit addresses we did not
  want user-space calling mmap() to suddenly get such high addresses,
  otherwise we could have inadvertently broken some programs (similar
  behaviour to x86 here). Hence we added commit f6795053da. But we
  missed hugetlbfs which could still get such high mmap() addresses. So
  in theory that's a potential regression that should have bee addressed
  at the same time as commit f6795053da (and before arm64 enabled
  52-bit addresses)"

Link: https://lkml.kernel.org/r/ab847b6edb197bffdfe189e70fb4ac76bfe79e0d.1650033747.git.christophe.leroy@csgroup.eu
Fixes: f6795053da ("mm: mmap: Allow for "high" userspace addresses")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>	[5.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:09 -07:00
Nadav Amit
0e88904cb7 userfaultfd: mark uffd_wp regardless of VM_WRITE flag
When a PTE is set by UFFD operations such as UFFDIO_COPY, the PTE is
currently only marked as write-protected if the VMA has VM_WRITE flag
set.  This seems incorrect or at least would be unexpected by the users.

Consider the following sequence of operations that are being performed
on a certain page:

	mprotect(PROT_READ)
	UFFDIO_COPY(UFFDIO_COPY_MODE_WP)
	mprotect(PROT_READ|PROT_WRITE)

At this point the user would expect to still get UFFD notification when
the page is accessed for write, but the user would not get one, since
the PTE was not marked as UFFD_WP during UFFDIO_COPY.

Fix it by always marking PTEs as UFFD_WP regardless on the
write-permission in the VMA flags.

Link: https://lkml.kernel.org/r/20220217211602.2769-1-namit@vmware.com
Fixes: 292924b260 ("userfaultfd: wp: apply _PAGE_UFFD_WP bit")
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:09 -07:00
Shakeel Butt
9b3016154c memcg: sync flush only if periodic flush is delayed
Daniel Dao has reported [1] a regression on workloads that may trigger a
lot of refaults (anon and file).  The underlying issue is that flushing
rstat is expensive.  Although rstat flush are batched with (nr_cpus *
MEMCG_BATCH) stat updates, it seems like there are workloads which
genuinely do stat updates larger than batch value within short amount of
time.  Since the rstat flush can happen in the performance critical
codepaths like page faults, such workload can suffer greatly.

This patch fixes this regression by making the rstat flushing
conditional in the performance critical codepaths.  More specifically,
the kernel relies on the async periodic rstat flusher to flush the stats
and only if the periodic flusher is delayed by more than twice the
amount of its normal time window then the kernel allows rstat flushing
from the performance critical codepaths.

Now the question: what are the side-effects of this change? The worst
that can happen is the refault codepath will see 4sec old lruvec stats
and may cause false (or missed) activations of the refaulted page which
may under-or-overestimate the workingset size.  Though that is not very
concerning as the kernel can already miss or do false activations.

There are two more codepaths whose flushing behavior is not changed by
this patch and we may need to come to them in future.  One is the
writeback stats used by dirty throttling and second is the deactivation
heuristic in the reclaim.  For now keeping an eye on them and if there
is report of regression due to these codepaths, we will reevaluate then.

Link: https://lore.kernel.org/all/CA+wXwBSyO87ZX5PVwdHm-=dBjZYECGmfnydUicUyrQqndgX2MQ@mail.gmail.com [1]
Link: https://lkml.kernel.org/r/20220304184040.1304781-1-shakeelb@google.com
Fixes: 1f828223b7 ("memcg: flush lruvec stats in the refault")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Daniel Dao <dqminh@cloudflare.com>
Tested-by: Ivan Babrou <ivan@cloudflare.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Frank Hofmann <fhofmann@cloudflare.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:09 -07:00
Xu Yu
d173d5417f mm/memory-failure.c: skip huge_zero_page in memory_failure()
Kernel panic when injecting memory_failure for the global
huge_zero_page, when CONFIG_DEBUG_VM is enabled, as follows.

  Injecting memory failure for pfn 0x109ff9 at process virtual address 0x20ff9000
  page:00000000fb053fc3 refcount:2 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x109e00
  head:00000000fb053fc3 order:9 compound_mapcount:0 compound_pincount:0
  flags: 0x17fffc000010001(locked|head|node=0|zone=2|lastcpupid=0x1ffff)
  raw: 017fffc000010001 0000000000000000 dead000000000122 0000000000000000
  raw: 0000000000000000 0000000000000000 00000002ffffffff 0000000000000000
  page dumped because: VM_BUG_ON_PAGE(is_huge_zero_page(head))
  ------------[ cut here ]------------
  kernel BUG at mm/huge_memory.c:2499!
  invalid opcode: 0000 [#1] PREEMPT SMP PTI
  CPU: 6 PID: 553 Comm: split_bug Not tainted 5.18.0-rc1+ #11
  Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 3288b3c 04/01/2014
  RIP: 0010:split_huge_page_to_list+0x66a/0x880
  Code: 84 9b fb ff ff 48 8b 7c 24 08 31 f6 e8 9f 5d 2a 00 b8 b8 02 00 00 e9 e8 fb ff ff 48 c7 c6 e8 47 3c 82 4c b
  RSP: 0018:ffffc90000dcbdf8 EFLAGS: 00010246
  RAX: 000000000000003c RBX: 0000000000000001 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: ffffffff823e4c4f RDI: 00000000ffffffff
  RBP: ffff88843fffdb40 R08: 0000000000000000 R09: 00000000fffeffff
  R10: ffffc90000dcbc48 R11: ffffffff82d68448 R12: ffffea0004278000
  R13: ffffffff823c6203 R14: 0000000000109ff9 R15: ffffea000427fe40
  FS:  00007fc375a26740(0000) GS:ffff88842fd80000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fc3757c9290 CR3: 0000000102174006 CR4: 00000000003706e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   try_to_split_thp_page+0x3a/0x130
   memory_failure+0x128/0x800
   madvise_inject_error.cold+0x8b/0xa1
   __x64_sys_madvise+0x54/0x60
   do_syscall_64+0x35/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x7fc3754f8bf9
  Code: 01 00 48 81 c4 80 00 00 00 e9 f1 fe ff ff 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8
  RSP: 002b:00007ffeda93a1d8 EFLAGS: 00000217 ORIG_RAX: 000000000000001c
  RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fc3754f8bf9
  RDX: 0000000000000064 RSI: 0000000000003000 RDI: 0000000020ff9000
  RBP: 00007ffeda93a200 R08: 0000000000000000 R09: 0000000000000000
  R10: 00000000ffffffff R11: 0000000000000217 R12: 0000000000400490
  R13: 00007ffeda93a2e0 R14: 0000000000000000 R15: 0000000000000000

This makes huge_zero_page bail out explicitly before split in
memory_failure(), thus the panic above won't happen again.

Link: https://lkml.kernel.org/r/497d3835612610e370c74e697ea3c721d1d55b9c.1649775850.git.xuyu@linux.alibaba.com
Fixes: 6a46079cf5 ("HWPOISON: The high level memory error handler in the VM v7")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Reported-by: Abaci <abaci@linux.alibaba.com>
Suggested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:09 -07:00
Naoya Horiguchi
405ce05123 mm/hwpoison: fix race between hugetlb free/demotion and memory_failure_hugetlb()
There is a race condition between memory_failure_hugetlb() and hugetlb
free/demotion, which causes setting PageHWPoison flag on the wrong page.
The one simple result is that wrong processes can be killed, but another
(more serious) one is that the actual error is left unhandled, so no one
prevents later access to it, and that might lead to more serious results
like consuming corrupted data.

Think about the below race window:

  CPU 1                                   CPU 2
  memory_failure_hugetlb
  struct page *head = compound_head(p);
                                          hugetlb page might be freed to
                                          buddy, or even changed to another
                                          compound page.

  get_hwpoison_page -- page is not what we want now...

The current code first does prechecks roughly and then reconfirms after
taking refcount, but it's found that it makes code overly complicated,
so move the prechecks in a single hugetlb_lock range.

A newly introduced function, try_memory_failure_hugetlb(), always takes
hugetlb_lock (even for non-hugetlb pages).  That can be improved, but
memory_failure() is rare in principle, so should not be a big problem.

Link: https://lkml.kernel.org/r/20220408135323.1559401-2-naoya.horiguchi@linux.dev
Fixes: 761ad8d7c7 ("mm: hwpoison: introduce memory_failure_hugetlb()")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-21 20:01:09 -07:00
Song Liu
559089e0a9 vmalloc: replace VM_NO_HUGE_VMAP with VM_ALLOW_HUGE_VMAP
Huge page backed vmalloc memory could benefit performance in many cases.
However, some users of vmalloc may not be ready to handle huge pages for
various reasons: hardware constraints, potential pages split, etc.
VM_NO_HUGE_VMAP was introduced to allow vmalloc users to opt-out huge
pages.  However, it is not easy to track down all the users that require
the opt-out, as the allocation are passed different stacks and may cause
issues in different layers.

To address this issue, replace VM_NO_HUGE_VMAP with an opt-in flag,
VM_ALLOW_HUGE_VMAP, so that users that benefit from huge pages could ask
specificially.

Also, remove vmalloc_no_huge() and add opt-in helper vmalloc_huge().

Fixes: fac54e2bfb ("x86/Kconfig: Select HAVE_ARCH_HUGE_VMALLOC with HAVE_ARCH_HUGE_VMAP")
Link: https://lore.kernel.org/netdev/14444103-d51b-0fb3-ee63-c3f182f0b546@molgen.mpg.de/"
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Song Liu <song@kernel.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-19 12:08:57 -07:00
Patrick Wang
23c2d497de mm: kmemleak: take a full lowmem check in kmemleak_*_phys()
The kmemleak_*_phys() apis do not check the address for lowmem's min
boundary, while the caller may pass an address below lowmem, which will
trigger an oops:

  # echo scan > /sys/kernel/debug/kmemleak
  Unable to handle kernel paging request at virtual address ff5fffffffe00000
  Oops [#1]
  Modules linked in:
  CPU: 2 PID: 134 Comm: bash Not tainted 5.18.0-rc1-next-20220407 #33
  Hardware name: riscv-virtio,qemu (DT)
  epc : scan_block+0x74/0x15c
   ra : scan_block+0x72/0x15c
  epc : ffffffff801e5806 ra : ffffffff801e5804 sp : ff200000104abc30
   gp : ffffffff815cd4e8 tp : ff60000004cfa340 t0 : 0000000000000200
   t1 : 00aaaaaac23954cc t2 : 00000000000003ff s0 : ff200000104abc90
   s1 : ffffffff81b0ff28 a0 : 0000000000000000 a1 : ff5fffffffe01000
   a2 : ffffffff81b0ff28 a3 : 0000000000000002 a4 : 0000000000000001
   a5 : 0000000000000000 a6 : ff200000104abd7c a7 : 0000000000000005
   s2 : ff5fffffffe00ff9 s3 : ffffffff815cd998 s4 : ffffffff815d0e90
   s5 : ffffffff81b0ff28 s6 : 0000000000000020 s7 : ffffffff815d0eb0
   s8 : ffffffffffffffff s9 : ff5fffffffe00000 s10: ff5fffffffe01000
   s11: 0000000000000022 t3 : 00ffffffaa17db4c t4 : 000000000000000f
   t5 : 0000000000000001 t6 : 0000000000000000
  status: 0000000000000100 badaddr: ff5fffffffe00000 cause: 000000000000000d
    scan_gray_list+0x12e/0x1a6
    kmemleak_scan+0x2aa/0x57e
    kmemleak_write+0x32a/0x40c
    full_proxy_write+0x56/0x82
    vfs_write+0xa6/0x2a6
    ksys_write+0x6c/0xe2
    sys_write+0x22/0x2a
    ret_from_syscall+0x0/0x2

The callers may not quite know the actual address they pass(e.g. from
devicetree).  So the kmemleak_*_phys() apis should guarantee the address
they finally use is in lowmem range, so check the address for lowmem's
min boundary.

Link: https://lkml.kernel.org/r/20220413122925.33856-1-patrick.wang.shcn@gmail.com
Signed-off-by: Patrick Wang <patrick.wang.shcn@gmail.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:56 -07:00
Omar Sandoval
c12cd77cb0 mm/vmalloc: fix spinning drain_vmap_work after reading from /proc/vmcore
Commit 3ee48b6af4 ("mm, x86: Saving vmcore with non-lazy freeing of
vmas") introduced set_iounmap_nonlazy(), which sets vmap_lazy_nr to
lazy_max_pages() + 1, ensuring that any future vunmaps() immediately
purge the vmap areas instead of doing it lazily.

Commit 690467c81b ("mm/vmalloc: Move draining areas out of caller
context") moved the purging from the vunmap() caller to a worker thread.
Unfortunately, set_iounmap_nonlazy() can cause the worker thread to spin
(possibly forever).  For example, consider the following scenario:

 1. Thread reads from /proc/vmcore. This eventually calls
    __copy_oldmem_page() -> set_iounmap_nonlazy(), which sets
    vmap_lazy_nr to lazy_max_pages() + 1.

 2. Then it calls free_vmap_area_noflush() (via iounmap()), which adds 2
    pages (one page plus the guard page) to the purge list and
    vmap_lazy_nr. vmap_lazy_nr is now lazy_max_pages() + 3, so the
    drain_vmap_work is scheduled.

 3. Thread returns from the kernel and is scheduled out.

 4. Worker thread is scheduled in and calls drain_vmap_area_work(). It
    frees the 2 pages on the purge list. vmap_lazy_nr is now
    lazy_max_pages() + 1.

 5. This is still over the threshold, so it tries to purge areas again,
    but doesn't find anything.

 6. Repeat 5.

If the system is running with only one CPU (which is typicial for kdump)
and preemption is disabled, then this will never make forward progress:
there aren't any more pages to purge, so it hangs.  If there is more
than one CPU or preemption is enabled, then the worker thread will spin
forever in the background.  (Note that if there were already pages to be
purged at the time that set_iounmap_nonlazy() was called, this bug is
avoided.)

This can be reproduced with anything that reads from /proc/vmcore
multiple times.  E.g., vmcore-dmesg /proc/vmcore.

It turns out that improvements to vmap() over the years have obsoleted
the need for this "optimization".  I benchmarked `dd if=/proc/vmcore
of=/dev/null` with 4k and 1M read sizes on a system with a 32GB vmcore.
The test was run on 5.17, 5.18-rc1 with a fix that avoided the hang, and
5.18-rc1 with set_iounmap_nonlazy() removed entirely:

    |5.17  |5.18+fix|5.18+removal
  4k|40.86s|  40.09s|      26.73s
  1M|24.47s|  23.98s|      21.84s

The removal was the fastest (by a wide margin with 4k reads).  This
patch removes set_iounmap_nonlazy().

Link: https://lkml.kernel.org/r/52f819991051f9b865e9ce25605509bfdbacadcd.1649277321.git.osandov@fb.com
Fixes: 690467c81b  ("mm/vmalloc: Move draining areas out of caller context")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:56 -07:00
Mike Kravetz
5a317412ef hugetlb: do not demote poisoned hugetlb pages
It is possible for poisoned hugetlb pages to reside on the free lists.
The huge page allocation routines which dequeue entries from the free
lists make a point of avoiding poisoned pages.  There is no such check
and avoidance in the demote code path.

If a hugetlb page on the is on a free list, poison will only be set in
the head page rather then the page with the actual error.  If such a
page is demoted, then the poison flag may follow the wrong page.  A page
without error could have poison set, and a page with poison could not
have the flag set.

Check for poison before attempting to demote a hugetlb page.  Also,
return -EBUSY to the caller if only poisoned pages are on the free list.

Link: https://lkml.kernel.org/r/20220307215707.50916-1-mike.kravetz@oracle.com
Fixes: 8531fc6f52 ("hugetlb: add hugetlb demote page support")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:55 -07:00
Charan Teja Kalla
31ca72fa75 mm: compaction: fix compiler warning when CONFIG_COMPACTION=n
The below warning is reported when CONFIG_COMPACTION=n:

   mm/compaction.c:56:27: warning: 'HPAGE_FRAG_CHECK_INTERVAL_MSEC' defined but not used [-Wunused-const-variable=]
      56 | static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
         |                           ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fix it by moving 'HPAGE_FRAG_CHECK_INTERVAL_MSEC' under
CONFIG_COMPACTION defconfig.

Also since this is just a 'static const int' type, use #define for it.

Link: https://lkml.kernel.org/r/1647608518-20924-1-git-send-email-quic_charante@quicinc.com
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Reported-by: kernel test robot <lkp@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Nitin Gupta <nigupta@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:55 -07:00
Minchan Kim
e914d8f003 mm: fix unexpected zeroed page mapping with zram swap
Two processes under CLONE_VM cloning, user process can be corrupted by
seeing zeroed page unexpectedly.

      CPU A                        CPU B

  do_swap_page                do_swap_page
  SWP_SYNCHRONOUS_IO path     SWP_SYNCHRONOUS_IO path
  swap_readpage valid data
    swap_slot_free_notify
      delete zram entry
                              swap_readpage zeroed(invalid) data
                              pte_lock
                              map the *zero data* to userspace
                              pte_unlock
  pte_lock
  if (!pte_same)
    goto out_nomap;
  pte_unlock
  return and next refault will
  read zeroed data

The swap_slot_free_notify is bogus for CLONE_VM case since it doesn't
increase the refcount of swap slot at copy_mm so it couldn't catch up
whether it's safe or not to discard data from backing device.  In the
case, only the lock it could rely on to synchronize swap slot freeing is
page table lock.  Thus, this patch gets rid of the swap_slot_free_notify
function.  With this patch, CPU A will see correct data.

      CPU A                        CPU B

  do_swap_page                do_swap_page
  SWP_SYNCHRONOUS_IO path     SWP_SYNCHRONOUS_IO path
                              swap_readpage original data
                              pte_lock
                              map the original data
                              swap_free
                                swap_range_free
                                  bd_disk->fops->swap_slot_free_notify
  swap_readpage read zeroed data
                              pte_unlock
  pte_lock
  if (!pte_same)
    goto out_nomap;
  pte_unlock
  return
  on next refault will see mapped data by CPU B

The concern of the patch would increase memory consumption since it
could keep wasted memory with compressed form in zram as well as
uncompressed form in address space.  However, most of cases of zram uses
no readahead and do_swap_page is followed by swap_free so it will free
the compressed form from in zram quickly.

Link: https://lkml.kernel.org/r/YjTVVxIAsnKAXjTd@google.com
Fixes: 0bcac06f27 ("mm, swap: skip swapcache for swapin of synchronous device")
Reported-by: Ivan Babrou <ivan@cloudflare.com>
Tested-by: Ivan Babrou <ivan@cloudflare.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>	[4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:55 -07:00
Juergen Gross
e553f62f10 mm, page_alloc: fix build_zonerefs_node()
Since commit 6aa303defb ("mm, vmscan: only allocate and reclaim from
zones with pages managed by the buddy allocator") only zones with free
memory are included in a built zonelist.  This is problematic when e.g.
all memory of a zone has been ballooned out when zonelists are being
rebuilt.

The decision whether to rebuild the zonelists when onlining new memory
is done based on populated_zone() returning 0 for the zone the memory
will be added to.  The new zone is added to the zonelists only, if it
has free memory pages (managed_zone() returns a non-zero value) after
the memory has been onlined.  This implies, that onlining memory will
always free the added pages to the allocator immediately, but this is
not true in all cases: when e.g. running as a Xen guest the onlined new
memory will be added only to the ballooned memory list, it will be freed
only when the guest is being ballooned up afterwards.

Another problem with using managed_zone() for the decision whether a
zone is being added to the zonelists is, that a zone with all memory
used will in fact be removed from all zonelists in case the zonelists
happen to be rebuilt.

Use populated_zone() when building a zonelist as it has been done before
that commit.

There was a report that QubesOS (based on Xen) is hitting this problem.
Xen has switched to use the zone device functionality in kernel 5.9 and
QubesOS wants to use memory hotplugging for guests in order to be able
to start a guest with minimal memory and expand it as needed.  This was
the report leading to the patch.

Link: https://lkml.kernel.org/r/20220407120637.9035-1-jgross@suse.com
Fixes: 6aa303defb ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reported-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:55 -07:00
Marco Elver
2dfe63e61c mm, kfence: support kmem_dump_obj() for KFENCE objects
Calling kmem_obj_info() via kmem_dump_obj() on KFENCE objects has been
producing garbage data due to the object not actually being maintained
by SLAB or SLUB.

Fix this by implementing __kfence_obj_info() that copies relevant
information to struct kmem_obj_info when the object was allocated by
KFENCE; this is called by a common kmem_obj_info(), which also calls the
slab/slub/slob specific variant now called __kmem_obj_info().

For completeness, kmem_dump_obj() now displays if the object was
allocated by KFENCE.

Link: https://lore.kernel.org/all/20220323090520.GG16885@xsang-OptiPlex-9020/
Link: https://lkml.kernel.org/r/20220406131558.3558585-1-elver@google.com
Fixes: b89fb5ef0c ("mm, kfence: insert KFENCE hooks for SLUB")
Fixes: d3fb45f370 ("mm, kfence: insert KFENCE hooks for SLAB")
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>	[slab]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:55 -07:00
Vincenzo Frascino
b1add418d4 kasan: fix hw tags enablement when KUNIT tests are disabled
Kasan enables hw tags via kasan_enable_tagging() which based on the mode
passed via kernel command line selects the correct hw backend.
kasan_enable_tagging() is meant to be invoked indirectly via the cpu
features framework of the architectures that support these backends.
Currently the invocation of this function is guarded by
CONFIG_KASAN_KUNIT_TEST which allows the enablement of the correct backend
only when KUNIT tests are enabled in the kernel.

This inconsistency was introduced in commit:

  ed6d74446c ("kasan: test: support async (again) and asymm modes for HW_TAGS")

... and prevents to enable MTE on arm64 when KUNIT tests for kasan hw_tags are
disabled.

Fix the issue making sure that the CONFIG_KASAN_KUNIT_TEST guard does not
prevent the correct invocation of kasan_enable_tagging().

Link: https://lkml.kernel.org/r/20220408124323.10028-1-vincenzo.frascino@arm.com
Fixes: ed6d74446c ("kasan: test: support async (again) and asymm modes for HW_TAGS")
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:55 -07:00
Axel Rasmussen
f9b141f936 mm/secretmem: fix panic when growing a memfd_secret
When one tries to grow an existing memfd_secret with ftruncate, one gets
a panic [1].  For example, doing the following reliably induces the
panic:

    fd = memfd_secret();

    ftruncate(fd, 10);
    ptr = mmap(NULL, 10, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    strcpy(ptr, "123456789");

    munmap(ptr, 10);
    ftruncate(fd, 20);

The basic reason for this is, when we grow with ftruncate, we call down
into simple_setattr, and then truncate_inode_pages_range, and eventually
we try to zero part of the memory.  The normal truncation code does this
via the direct map (i.e., it calls page_address() and hands that to
memset()).

For memfd_secret though, we specifically don't map our pages via the
direct map (i.e.  we call set_direct_map_invalid_noflush() on every
fault).  So the address returned by page_address() isn't useful, and
when we try to memset() with it we panic.

This patch avoids the panic by implementing a custom setattr for
memfd_secret, which detects resizes specifically (setting the size for
the first time works just fine, since there are no existing pages to try
to zero), and rejects them with EINVAL.

One could argue growing should be supported, but I think that will
require a significantly more lengthy change.  So, I propose a minimal
fix for the benefit of stable kernels, and then perhaps to extend
memfd_secret to support growing in a separate patch.

[1]:

  BUG: unable to handle page fault for address: ffffa0a889277028
  #PF: supervisor write access in kernel mode
  #PF: error_code(0x0002) - not-present page
  PGD afa01067 P4D afa01067 PUD 83f909067 PMD 83f8bf067 PTE 800ffffef6d88060
  Oops: 0002 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
  CPU: 0 PID: 281 Comm: repro Not tainted 5.17.0-dbg-DEV #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
  RIP: 0010:memset_erms+0x9/0x10
  Code: c1 e9 03 40 0f b6 f6 48 b8 01 01 01 01 01 01 01 01 48 0f af c6 f3 48 ab 89 d1 f3 aa 4c 89 c8 c3 90 49 89 f9 40 88 f0 48 89 d1 <f3> aa 4c 89 c8 c3 90 49 89 fa 40 0f b6 ce 48 b8 01 01 01 01 01 01
  RSP: 0018:ffffb932c09afbf0 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: ffffda63c4249dc0 RCX: 0000000000000fd8
  RDX: 0000000000000fd8 RSI: 0000000000000000 RDI: ffffa0a889277028
  RBP: ffffb932c09afc00 R08: 0000000000001000 R09: ffffa0a889277028
  R10: 0000000000020023 R11: 0000000000000000 R12: ffffda63c4249dc0
  R13: ffffa0a890d70d98 R14: 0000000000000028 R15: 0000000000000fd8
  FS:  00007f7294899580(0000) GS:ffffa0af9bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: ffffa0a889277028 CR3: 0000000107ef6006 CR4: 0000000000370ef0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   ? zero_user_segments+0x82/0x190
   truncate_inode_partial_folio+0xd4/0x2a0
   truncate_inode_pages_range+0x380/0x830
   truncate_setsize+0x63/0x80
   simple_setattr+0x37/0x60
   notify_change+0x3d8/0x4d0
   do_sys_ftruncate+0x162/0x1d0
   __x64_sys_ftruncate+0x1c/0x20
   do_syscall_64+0x44/0xa0
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  Modules linked in: xhci_pci xhci_hcd virtio_net net_failover failover virtio_blk virtio_balloon uhci_hcd ohci_pci ohci_hcd evdev ehci_pci ehci_hcd 9pnet_virtio 9p netfs 9pnet
  CR2: ffffa0a889277028

[lkp@intel.com: secretmem_iops can be static]
  Signed-off-by: kernel test robot <lkp@intel.com>
[axelrasmussen@google.com: return EINVAL]

Link: https://lkml.kernel.org/r/20220324210909.1843814-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20220412193023.279320-1-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:54 -07:00
Hugh Dickins
1bdec44b1e tmpfs: fix regressions from wider use of ZERO_PAGE
Chuck Lever reported fsx-based xfstests generic 075 091 112 127 failing
when 5.18-rc1 NFS server exports tmpfs: bisected to recent tmpfs change.

Whilst nfsd_splice_action() does contain some questionable handling of
repeated pages, and Chuck was able to work around there, history from
Mark Hemment makes clear that there might be similar dangers elsewhere:
it was not a good idea for me to pass ZERO_PAGE down to unknown actors.

Revert shmem_file_read_iter() to using ZERO_PAGE for holes only when
iter_is_iovec(); in other cases, use the more natural iov_iter_zero()
instead of copy_page_to_iter().

We would use iov_iter_zero() throughout, but the x86 clear_user() is not
nearly so well optimized as copy to user (dd of 1T sparse tmpfs file
takes 57 seconds rather than 44 seconds).

And now pagecache_init() does not need to SetPageUptodate(ZERO_PAGE(0)):
which had caused boot failure on arm noMMU STM32F7 and STM32H7 boards

Link: https://lkml.kernel.org/r/9a978571-8648-e830-5735-1f4748ce2e30@google.com
Fixes: 56a8c8eb1e ("tmpfs: do not allocate pages on read")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Patrice CHOTARD <patrice.chotard@foss.st.com>
Reported-by: Chuck Lever III <chuck.lever@oracle.com>
Tested-by: Chuck Lever III <chuck.lever@oracle.com>
Cc: Mark Hemment <markhemm@googlemail.com>
Cc: Patrice CHOTARD <patrice.chotard@foss.st.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Lukas Czerner <lczerner@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15 14:49:54 -07:00
Linus Torvalds
50c94de67c - Allow the compiler to optimize away unused percpu accesses and change
the local_lock_* macros back to inline functions
 
 - A couple of fixes to static call insn patching
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmJStZ4ACgkQEsHwGGHe
 VUpUpA/8DHOMUQa7rM8z49ZWBV01HNVCLECTeeKshQBLyJfWc84MNOfdPbpgEGvY
 XE/eIZDnTMB5UKD0bfRqD+AQ0fXjl3NiLnJrdDZJqEQAiP/wGBswKNXMire8xPT8
 9MfaOKYWYPl0LY2uZBWVLcdC+lVe4kRGfhqAcl4LRx0ZSvMzgjcFy34NeXY8LlXD
 kFQJEzHa97CTROje54mtmXEt7Y5bxjxWwVTSyfEt0hJPGo1bJtJP6FaY01Muj+Xu
 h/OGNx3KLOYf9MqQC31caAwKgtUOptm8bTpvG3onaHg29qJgz2umKwONyOjYrUUn
 2PE3NREfMuKI38nf88pX+lOCs6/I1uVIjJPvAVJijIcuI1ZBXrfm26IP0lZ3LqG1
 h/9Y5gChiZPn1j90VnF4UCJUm4u3bYEAHqKIQgUdpcpUqX0NlxbDiXoYxJWfHnmB
 PBJ0PE7Vdo4MPK0n3BGVrzXAFeOyHsohAsKFijT8afRCMAOF/ebmVs/tI5NygFrK
 11e/U13/78iKkazZSxWew8vU3yXA39W5Rym7aPnhR2lWxvN+xQOjNTgZTxF9hUcZ
 6AcsaYJgHR7nD8SM7Y9+cwHWOWaDEdZMg9XSkgvyd1p0tHb4u+Ve/SQK7sA3j9q7
 ZmZyFSE1X3K+M1i+75rUSVmIEVM5cpfhodN89iRje/JIZ1KyRT8=
 =hSOc
 -----END PGP SIGNATURE-----

Merge tag 'locking_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking fixes from Borislav Petkov:

 - Allow the compiler to optimize away unused percpu accesses and change
   the local_lock_* macros back to inline functions

 - A couple of fixes to static call insn patching

* tag 'locking_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Revert "mm/page_alloc: mark pagesets as __maybe_unused"
  Revert "locking/local_lock: Make the empty local_lock_*() function a macro."
  x86/percpu: Remove volatile from arch_raw_cpu_ptr().
  static_call: Remove __DEFINE_STATIC_CALL macro
  static_call: Properly initialise DEFINE_STATIC_CALL_RET0()
  static_call: Don't make __static_call_return0 static
  x86,static_call: Fix __static_call_return0 for i386
2022-04-10 06:56:46 -10:00
Linus Torvalds
911b2b9516 Merge branch 'akpm' (patches from Andrew)
Merge fixes from Andrew Morton:
 "9 patches.

  Subsystems affected by this patch series: mm (migration, highmem,
  sparsemem, mremap, mempolicy, and memcg), lz4, mailmap, and
  MAINTAINERS"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  MAINTAINERS: add Tom as clang reviewer
  mm/list_lru.c: revert "mm/list_lru: optimize memcg_reparent_list_lru_node()"
  mailmap: update Vasily Averin's email address
  mm/mempolicy: fix mpol_new leak in shared_policy_replace
  mmmremap.c: avoid pointless invalidate_range_start/end on mremap(old_size=0)
  mm/sparsemem: fix 'mem_section' will never be NULL gcc 12 warning
  lz4: fix LZ4_decompress_safe_partial read out of bound
  highmem: fix checks in __kmap_local_sched_{in,out}
  mm: migrate: use thp_order instead of HPAGE_PMD_ORDER for new page allocation.
2022-04-08 14:31:41 -10:00
Andrew Morton
b33e104447 mm/list_lru.c: revert "mm/list_lru: optimize memcg_reparent_list_lru_node()"
Commit 405cc51fc1 ("mm/list_lru: optimize memcg_reparent_list_lru_node()")
has subtle races which are proving ugly to fix.  Revert the original
optimization.  If quantitative testing indicates that we have a
significant problem here then other implementations can be looked at.

Fixes: 405cc51fc1 ("mm/list_lru: optimize memcg_reparent_list_lru_node()")
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-08 14:20:36 -10:00
Miaohe Lin
4ad099559b mm/mempolicy: fix mpol_new leak in shared_policy_replace
If mpol_new is allocated but not used in restart loop, mpol_new will be
freed via mpol_put before returning to the caller.  But refcnt is not
initialized yet, so mpol_put could not do the right things and might
leak the unused mpol_new.  This would happen if mempolicy was updated on
the shared shmem file while the sp->lock has been dropped during the
memory allocation.

This issue could be triggered easily with the below code snippet if
there are many processes doing the below work at the same time:

  shmid = shmget((key_t)5566, 1024 * PAGE_SIZE, 0666|IPC_CREAT);
  shm = shmat(shmid, 0, 0);
  loop many times {
    mbind(shm, 1024 * PAGE_SIZE, MPOL_LOCAL, mask, maxnode, 0);
    mbind(shm + 128 * PAGE_SIZE, 128 * PAGE_SIZE, MPOL_DEFAULT, mask,
          maxnode, 0);
  }

Link: https://lkml.kernel.org/r/20220329111416.27954-1-linmiaohe@huawei.com
Fixes: 42288fe366 ("mm: mempolicy: Convert shared_policy mutex to spinlock")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>	[3.8]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-08 14:20:36 -10:00
Paolo Bonzini
01e67e04c2 mmmremap.c: avoid pointless invalidate_range_start/end on mremap(old_size=0)
If an mremap() syscall with old_size=0 ends up in move_page_tables(), it
will call invalidate_range_start()/invalidate_range_end() unnecessarily,
i.e.  with an empty range.

This causes a WARN in KVM's mmu_notifier.  In the past, empty ranges
have been diagnosed to be off-by-one bugs, hence the WARNing.  Given the
low (so far) number of unique reports, the benefits of detecting more
buggy callers seem to outweigh the cost of having to fix cases such as
this one, where userspace is doing something silly.  In this particular
case, an early return from move_page_tables() is enough to fix the
issue.

Link: https://lkml.kernel.org/r/20220329173155.172439-1-pbonzini@redhat.com
Reported-by: syzbot+6bde52d89cfdf9f61425@syzkaller.appspotmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-08 14:20:36 -10:00
Max Filippov
66f133ceab highmem: fix checks in __kmap_local_sched_{in,out}
When CONFIG_DEBUG_KMAP_LOCAL is enabled __kmap_local_sched_{in,out} check
that even slots in the tsk->kmap_ctrl.pteval are unmapped.  The slots are
initialized with 0 value, but the check is done with pte_none.  0 pte
however does not necessarily mean that pte_none will return true.  e.g.
on xtensa it returns false, resulting in the following runtime warnings:

 WARNING: CPU: 0 PID: 101 at mm/highmem.c:627 __kmap_local_sched_out+0x51/0x108
 CPU: 0 PID: 101 Comm: touch Not tainted 5.17.0-rc7-00010-gd3a1cdde80d2-dirty #13
 Call Trace:
   dump_stack+0xc/0x40
   __warn+0x8f/0x174
   warn_slowpath_fmt+0x48/0xac
   __kmap_local_sched_out+0x51/0x108
   __schedule+0x71a/0x9c4
   preempt_schedule_irq+0xa0/0xe0
   common_exception_return+0x5c/0x93
   do_wp_page+0x30e/0x330
   handle_mm_fault+0xa70/0xc3c
   do_page_fault+0x1d8/0x3c4
   common_exception+0x7f/0x7f

 WARNING: CPU: 0 PID: 101 at mm/highmem.c:664 __kmap_local_sched_in+0x50/0xe0
 CPU: 0 PID: 101 Comm: touch Tainted: G        W         5.17.0-rc7-00010-gd3a1cdde80d2-dirty #13
 Call Trace:
   dump_stack+0xc/0x40
   __warn+0x8f/0x174
   warn_slowpath_fmt+0x48/0xac
   __kmap_local_sched_in+0x50/0xe0
   finish_task_switch$isra$0+0x1ce/0x2f8
   __schedule+0x86e/0x9c4
   preempt_schedule_irq+0xa0/0xe0
   common_exception_return+0x5c/0x93
   do_wp_page+0x30e/0x330
   handle_mm_fault+0xa70/0xc3c
   do_page_fault+0x1d8/0x3c4
   common_exception+0x7f/0x7f

Fix it by replacing !pte_none(pteval) with pte_val(pteval) != 0.

Link: https://lkml.kernel.org/r/20220403235159.3498065-1-jcmvbkbc@gmail.com
Fixes: 5fbda3ecd1 ("sched: highmem: Store local kmaps in task struct")
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-08 14:20:36 -10:00
Zi Yan
a04cd1600b mm: migrate: use thp_order instead of HPAGE_PMD_ORDER for new page allocation.
Fix a VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages) crash.

With folios support, it is possible to have other than HPAGE_PMD_ORDER
THPs, in the form of folios, in the system.  Use thp_order() to correctly
determine the source page order during migration.

Link: https://lkml.kernel.org/r/20220404165325.1883267-1-zi.yan@sent.com
Link: https://lore.kernel.org/linux-mm/20220404132908.GA785673@u2004/
Fixes: d68eccad37 ("mm/filemap: Allow large folios to be added to the page cache")
Reported-by: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-08 14:20:36 -10:00
zhenwei pi
98ea02597b mm/rmap: Fix handling of hugetlbfs pages in page_vma_mapped_walk
page_mapped_in_vma() sets nr_pages to 1, which is usually correct as we
only want to know about the precise page and not about other pages in
the folio.  However, hugetlbfs does want to know about the entire hpage,
and using nr_pages to get the size of the hpage is wrong.  We could
change page_mapped_in_vma() to special-case hugetlbfs pages, but it's
better to ignore nr_pages in page_vma_mapped_walk() and get the size
from the VMA instead.

Fixes: 2aff7a4755 ("mm: Convert page_vma_mapped_walk to work on PFNs")
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
[edit commit message, use hstate directly]
2022-04-07 10:11:20 -04:00
Matthew Wilcox (Oracle)
ec4858e07e mm/mempolicy: Use vma_alloc_folio() in new_page()
Simplify new_page() by unifying the THP and base page cases, and
handle orders other than 0 and HPAGE_PMD_ORDER correctly.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-04-07 09:43:41 -04:00
Matthew Wilcox (Oracle)
f584b68005 mm: Add vma_alloc_folio()
This wrapper around alloc_pages_vma() calls prep_transhuge_page(),
removing the obligation from the caller.  This is in the same spirit
as __folio_alloc().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-04-07 09:43:41 -04:00
Matthew Wilcox (Oracle)
c185e494ae mm/migrate: Use a folio in migrate_misplaced_transhuge_page()
Unify alloc_misplaced_dst_page() and alloc_misplaced_dst_page_thp().
Removes an assumption that compound pages are HPAGE_PMD_ORDER.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-04-07 09:43:41 -04:00
Matthew Wilcox (Oracle)
ffe06786b5 mm/migrate: Use a folio in alloc_migration_target()
This removes an assumption that a large folio is HPAGE_PMD_ORDER
as well as letting us remove the call to prep_transhuge_page()
and a few hidden calls to compound_head().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-04-07 09:43:41 -04:00