Certain types of filesystem metadata can only be checked by scanning
every file in the entire filesystem. Specific examples of this include
quota counts, file link counts, and reverse mappings of file extents.
Directory and parent pointer reconstruction may also fall into this
category. File scanning is much trickier than scanning AG metadata
because we have to take inode locks in the same order as the rest of
[VX]FS, we can't be holding buffer locks when we do that, and scanning
the whole filesystem takes time.
Earlier versions of the online repair patchset relied heavily on
fsfreeze as a means to quiesce the filesystem so that we could take
locks in the proper order without worrying about concurrent updates from
other writers. Reviewers of those patches opined that freezing the
entire fs to check and repair something was not sufficiently better than
unmounting to run fsck offline. I don't agree with that 100%, but the
message was clear: find a way to repair things that minimizes the
quiet period where nobody can write to the filesystem.
Generally, building btree indexes online can be split into two phases: a
collection phase where we compute the records that will be put into the
new btree; and a construction phase, where we construct the physical
btree blocks and persist them. While it's simple to hold resource locks
for the entirety of the two phases to ensure that the new index is
consistent with the rest of the system, we don't need to hold resource
locks during the collection phase if we have a means to receive live
updates of other work going on elsewhere in the system.
The goal of this patch, then, is to enable online fsck to learn about
metadata updates going on in other threads while it constructs a shadow
copy of the metadata records to verify or correct the real metadata. To
minimize the overhead when online fsck isn't running, we use srcu
notifiers because they prioritize fast access to the notifier call chain
(particularly when the chain is empty) at a cost to configuring
notifiers. Online fsck should be relatively infrequent, so this is
acceptable.
The intended usage model is fairly simple. Code that modifies a
metadata structure of interest should declare a xfs_hook_chain structure
in some well defined place, and call xfs_hook_call whenever an update
happens. Online fsck code should define a struct notifier_block and use
xfs_hook_add to attach the block to the chain, along with a function to
be called. This function should synchronize with the fsck scanner to
update whatever in-memory data the scanner is collecting. When
finished, xfs_hook_del removes the notifier from the list and waits for
them all to complete.
Originally, I selected srcu notifiers over blocking notifiers to
implement live hooks because they seemed to have fewer impacts to
scalability. The per-call cost of srcu_notifier_call_chain is higher
(19ns) than blocking_notifier_ (4ns) in the single threaded case, but
blocking notifiers use an rwsem to stabilize the list. Cacheline
bouncing for that rwsem is costly to runtime code when there are a lot
of CPUs running regular filesystem operations. If there are no hooks
installed, this is a total waste of CPU time.
Therefore, I stuck with srcu notifiers, despite trading off single
threaded performance for multithreaded performance. I also wasn't
thrilled with the very high teardown time for srcu notifiers, since the
caller has to wait for the next rcu grace period. This can take a long
time if there are a lot of CPUs.
Then I discovered the jump label implementation of static keys.
Jump labels use kernel code patching to replace a branch with a nop sled
when the key is disabled. IOWs, they can eliminate the overhead of
_call_chain when there are no hooks enabled. This makes blocking
notifiers competitive again -- scrub runs faster because teardown of the
chain is a lot cheaper, and runtime code only pays the rwsem locking
overhead when scrub is actually running.
With jump labels enabled, calls to empty notifier chains are elided from
the call sites when there are no hooks registered, which means that the
overhead is 0.36ns when fsck is not running. This is perfect for most
of the architectures that XFS is expected to run on (e.g. x86, powerpc,
arm64, s390x, riscv).
For architectures that don't support jump labels (e.g. m68k) the runtime
overhead of checking the static key is an atomic counter read. This
isn't great, but it's still cheaper than taking a shared rwsem.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
mrlock was an rwsem wrapper that also recorded whether the lock was
held for read or write. Now that we can ask the generic code whether
the lock is held for read or write, we can remove this wrapper and use
an rwsem directly.
As the comment says, we can't use lockdep to assert that the ILOCK is
held for write, because we might be in a workqueue, and we aren't able
to tell lockdep that we do in fact own the lock.
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.
This conversion was done with:
$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Move it to the general xfs linux wrapper header file so we can
prepare to remove kmem.h
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Avoid the costs of integer division (32-bit and 64-bit) if the realtime
extent size is a power of two.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Set up debugfs directories for xfs as a whole, and a subdirectory for
each mounted filesystem. This will enable the creation of debugfs files
in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain. Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.
When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.
Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.
One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter. A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata. In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.
Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started. As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count. The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.
A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction. When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it. The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.
In the next patches we'll improve on this facility, but this patch
provides the basic functionality.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The file locking definitions have lived in fs.h since the dawn of time,
but they are only used by a small subset of the source files that
include it.
Move the file locking definitions to a new header file, and add the
appropriate #include directives to the source files that need them. By
doing this we trim down fs.h a bit and limit the amount of rebuilding
that has to be done when we make changes to the file locking APIs.
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Acked-by: Steve French <stfrench@microsoft.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Improve static type checking by using the enum req_op type for variables
that represent a request operation and the new blk_opf_t type for the
combination of a request operation with request flags.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20220714180729.1065367-63-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Jan Kara reported a performance regression in dbench that he
bisected down to commit bad77c375e ("xfs: CIL checkpoint
flushes caches unconditionally").
Whilst developing the journal flush/fua optimisations this cache was
part of, it appeared to made a significant difference to
performance. However, now that this patchset has settled and all the
correctness issues fixed, there does not appear to be any
significant performance benefit to asynchronous cache flushes.
In fact, the opposite is true on some storage types and workloads,
where additional cache flushes that can occur from fsync heavy
workloads have measurable and significant impact on overall
throughput.
Local dbench testing shows little difference on dbench runs with
sync vs async cache flushes on either fast or slow SSD storage, and
no difference in streaming concurrent async transaction workloads
like fs-mark.
Fast NVME storage.
From `dbench -t 30`, CIL scale:
clients async sync
BW Latency BW Latency
1 935.18 0.855 915.64 0.903
8 2404.51 6.873 2341.77 6.511
16 3003.42 6.460 2931.57 6.529
32 3697.23 7.939 3596.28 7.894
128 7237.43 15.495 7217.74 11.588
512 5079.24 90.587 5167.08 95.822
fsmark, 32 threads, create w/ 64 byte xattr w/32k logbsize
create chown unlink
async 1m41s 1m16s 2m03s
sync 1m40s 1m19s 1m54s
Slower SATA SSD storage:
From `dbench -t 30`, CIL scale:
clients async sync
BW Latency BW Latency
1 78.59 15.792 83.78 10.729
8 367.88 92.067 404.63 59.943
16 564.51 72.524 602.71 76.089
32 831.66 105.984 870.26 110.482
128 1659.76 102.969 1624.73 91.356
512 2135.91 223.054 2603.07 161.160
fsmark, 16 threads, create w/32k logbsize
create unlink
async 5m06s 4m15s
sync 5m00s 4m22s
And on Jan's test machine:
5.18-rc8-vanilla 5.18-rc8-patched
Amean 1 71.22 ( 0.00%) 64.94 * 8.81%*
Amean 2 93.03 ( 0.00%) 84.80 * 8.85%*
Amean 4 150.54 ( 0.00%) 137.51 * 8.66%*
Amean 8 252.53 ( 0.00%) 242.24 * 4.08%*
Amean 16 454.13 ( 0.00%) 439.08 * 3.31%*
Amean 32 835.24 ( 0.00%) 829.74 * 0.66%*
Amean 64 1740.59 ( 0.00%) 1686.73 * 3.09%*
Performance and cache flush behaviour is restored to pre-regression
levels.
As such, we can now consider the async cache flush mechanism an
unnecessary exercise in premature optimisation and hence we can
now remove it and the infrastructure it requires completely.
Fixes: bad77c375e ("xfs: CIL checkpoint flushes caches unconditionally")
Reported-and-tested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The low-level mapping helpers were so far crammed into fs.h. They are
out of place there. The fs.h header should just contain the higher-level
mapping helpers that interact directly with vfs objects such as struct
super_block or struct inode and not the bare mapping helpers. Similarly,
only vfs and specific fs code shall interact with low-level mapping
helpers. And so they won't be made accessible automatically through
regular {g,u}id helpers.
Link: https://lore.kernel.org/r/20211123114227.3124056-3-brauner@kernel.org (v1)
Link: https://lore.kernel.org/r/20211130121032.3753852-3-brauner@kernel.org (v2)
Link: https://lore.kernel.org/r/20211203111707.3901969-3-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The new checkpoint cache flush mechanism requires us to issue an
unconditional cache flush before we start a new checkpoint. We don't
want to block for this if we can help it, and we have a fair chunk
of CPU work to do between starting the checkpoint and issuing the
first journal IO.
Hence it makes sense to amortise the latency cost of the cache flush
by issuing it asynchronously and then waiting for it only when we
need to issue the first IO in the transaction.
To do this, we need async cache flush primitives to submit the cache
flush bio and to wait on it. The block layer has no such primitives
for filesystems, so roll our own for the moment.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the flags
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Remove the separate cowblocks work items and knob so that we can control
and run everything from a single blockgc work queue. Note that the
speculative_prealloc_lifetime sysfs knob retains its historical name
even though the functions move to prefix xfs_blockgc_*.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In commit fe341eb151, I forgot that xfs_free_file_space isn't strictly
a "remove mapped blocks" function. It is actually a function to zero
file space by punching out the middle and writing zeroes to the
unaligned ends of the specified range. Therefore, putting a rtextsize
alignment check in that function is wrong because that breaks unaligned
ZERO_RANGE on the realtime volume.
Furthermore, xfs_file_fallocate already has alignment checks for the
functions require the file range to be aligned to the size of a
fundamental allocation unit (which is 1 FSB on the data volume and 1 rt
extent on the realtime volume). Create a new helper to check fallocate
arguments against the realtiem allocation unit size, fix the fallocate
frontend to use it, fix free_file_space to delete the correct range, and
remove a now redundant check from insert_file_space.
NOTE: The realtime extent size is not required to be a power of two!
Fixes: fe341eb151 ("xfs: ensure that fpunch, fcollapse, and finsert operations are aligned to rt extent size")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
There are no callers of the SYNCHRONIZE() macro, so remove it.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove current_pid(), current_test_flags() and
current_clear_flags_nested(), because they are useless.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The ATTR_* flags have a long IRIX history, where they a userspace
interface, the on-disk format and an internal interface. We've split
out the on-disk interface to the XFS_ATTR_* values, but despite (or
because?) of that the flag have still been a mess. Switch the
internal interface to pass the on-disk XFS_ATTR_* flags for the
namespace and the Linux XATTR_* flags for the actual flags instead.
The ATTR_* values that are actually used are move to xfs_fs.h with a
new XFS_IOC_* prefix to not conflict with the userspace version that
has the same name and must have the same value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the XFS wrappers for converting from and to the kuid/kgid types.
Mostly this means switching to VFS i_{u,g}id_{read,write} helpers, but
in a few spots the calls to the conversion functions is open coded.
To match the use of sb->s_user_ns in the helpers and other file systems,
sb->s_user_ns is also used in the quota code. The ACL code already does
the conversion in a grotty layering violation in the VFS xattr code,
so it keeps using init_user_ns for the identity mapping.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Redefine XFS_IS_CORRUPT so that it reports corruptions only via
xfs_corruption_report. Since these are on-disk contents (and not checks
of internal state), we don't ever want to panic the kernel. This also
amends the corruption report to recommend unmounting and running
xfs_repair.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a new macro, XFS_IS_CORRUPT, which we will use to integrate some
corruption reporting when the corruption test expression is true. This
will be used in the next patch to remove the ugly XFS_WANT_CORRUPT*
macros.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Make the assfail and asswarn functions take a struct xfs_mount so that
we can start tying debugging and corruption messages to a particular
mount.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The xfs_buf structure is basically used as a glorified container for
a memory allocation in the log recovery code. Replace it with a
call to kmem_alloc_large and a simple abstraction to read into or
write from it synchronously using chained bios.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
do_mod() is a hold-over from when we have different sizes for file
offsets and and other internal values for 40 bit XFS filesystems.
Hence depending on build flags variables passed to do_mod() could
change size. We no longer support those small format filesystems and
hence everything is of fixed size theses days, even on 32 bit
platforms.
As such, we can convert all the do_mod() callers to platform
optimised modulus operations as defined by linux/math64.h.
Individual conversions depend on the types of variables being used.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Get rid of the MIN/MAX macros and just use the native min/max macros
directly in the XFS code.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_reflink_convert_cow() manipulates the incore extent list
in GFP_KERNEL context in the IO submission path whilst holding
locked pages under writeback. This is a memory reclaim deadlock
vector. This code is not in a transaction, so any memory allocations
it makes aren't protected via the memalloc_nofs_save() context that
transactions carry.
Hence we need to run this call under memalloc_nofs_save() context to
prevent potential memory allocations from being run as GFP_KERNEL
and deadlocking.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Starting with commit 57e734423a ("vsprintf: refactor %pK code out of
pointer"), the behavior of the raw '%p' printk format specifier was
changed to print a 32-bit hash of the pointer value to avoid leaking
kernel pointers into dmesg. For most situations that's good.
This is /undesirable/ behavior when we're trying to debug XFS, however,
so define a PTR_FMT that prints the actual pointer when we're in debug
mode.
Note that %p for tracepoints still prints the raw pointer, so in the
long run we could consider rewriting some of these messages as
tracepoints.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
- Reports realtime device free blocks in statfs calls if (realtime)
inheritance bit is set on the inode of directory, or realtime flag
in the case of files. This is a bit more intuitive, especially for
use-cases which are using a much larger device for the realtime device.
- Add XFS_IS_REALTIME_MOUNT option to gate based on the existence of a
realtime device on the mount, similar to the XFS_IS_REALTIME_INODE
option.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Richard Wareing <rwareing@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
And move them to xfs_linux.h so that xfsprogs can stub them out more
easily.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Ever since we added the noinline tag there is no good reason to define
away the static for debug builds - we'll get just as good debug
information with our without it, so don't mess up sparse and other
checkers due to it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Refactor the btree block header checks to have an internal function that
returns the address of the failing check without logging errors. The
scrubber will call the internal function, while the external version
will maintain the current logging behavior.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If using a kernel with CONFIG_XFS_RT=y and we set the RHINHERIT flag on
a directory in a filesystem that does not have a realtime device and
create a new file in that directory, it gets marked as a real time file.
When data is written and a fsync is issued, the filesystem attempts to
flush a non-existent rt device during the fsync process.
This results in a crash dereferencing a null buftarg pointer in
xfs_blkdev_issue_flush():
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
IP: xfs_blkdev_issue_flush+0xd/0x20
.....
Call Trace:
xfs_file_fsync+0x188/0x1c0
vfs_fsync_range+0x3b/0xa0
do_fsync+0x3d/0x70
SyS_fsync+0x10/0x20
do_syscall_64+0x4d/0xb0
entry_SYSCALL64_slow_path+0x25/0x25
Setting RT inode flags does not require special privileges so any
unprivileged user can cause this oops to occur. To reproduce, confirm
kernel is compiled with CONFIG_XFS_RT=y and run:
# mkfs.xfs -f /dev/pmem0
# mount /dev/pmem0 /mnt/test
# mkdir /mnt/test/foo
# xfs_io -c 'chattr +t' /mnt/test/foo
# xfs_io -f -c 'pwrite 0 5m' -c fsync /mnt/test/foo/bar
Or just run xfstests with MKFS_OPTIONS="-d rtinherit=1" and wait.
Kernels built with CONFIG_XFS_RT=n are not exposed to this bug.
Fixes: f538d4da8d ("[XFS] write barrier support")
Cc: <stable@vger.kernel.org>
Signed-off-by: Richard Wareing <rwareing@fb.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Avoid quotacheck deadlocks
- Fix transaction overflows when bunmapping fragmented files
- Refactor directory readahead
- Allow admin to configure if ASSERT is fatal
- Improve transaction usage detail logging during overflows
- Minor cleanups
- Don't leak log items when the log shuts down
- Remove double-underscore typedefs
- Various preparation for online scrubbing
- Introduce new error injection configuration sysfs knobs
- Refactor dq_get_next to use extent map directly
- Fix problems with iterating the page cache for unwritten data
- Implement SEEK_{HOLE,DATA} via iomap
- Refactor XFS to use iomap SEEK_HOLE and SEEK_DATA
- Don't use MAXPATHLEN to check on-disk symlink target lengths
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJZYDw4AAoJEPh/dxk0SrTr2IMP/3JLeygIDtKBBVRPvlCmEXQC
j8w1C/ntn46zZKQ8l14fAFV4HV2d+KJWf8+yDuPuGdMXJfPeKZf95otYhnSx/9Th
MvCH7Nzg63yjEGqXpBkfIVr/GT0KTx28lxiqNViChr7XiXWookgf3SSLINO+vU4J
L2jgLqieJfijiHTBs4qGCQPDwSXVoSOi5XCCQWDYQrXz6DI5UEJc70U53WkH4tRu
RctOgp1lralwEO0PhfomD3m/Gk94taE/4ZpX/j/5Y4tvH/yh5aY3/KTCLm6+mYT3
rgMpmg5hmm+UiCTNoTnQ5RxzGZWCfI1I9FZ3HqDsbhmFtaWh32ti0dEEDYsF8Opj
ARnTty3cRx41LH9dULrVWdwW105AHgwEz8/OZlG0JOca9qzj9GKERMg/hpHINAKN
TrBlkweg86LWZDy23udZJ/v35svNqSFsqL1yV8j5dXyBi+Yi2CGfU27zbBwnj4Jk
047l+OuRbBnEOUULqJTEVBY3euoclwl/yQrW2m409s7vPGkGQBLuFCsDKQdnvJ/A
D7frZqH8XypwnhFOkKybUnBkn4P7vZ2sEuCIZMsrH5k/ys8XyEkaBaOurjvMBOKA
vLIMD6RXDWrFbOoovfK/stEM6/UFoQkgMhBe7vB9EXk1AjM8NYyWZgp5BkHtytC7
qa6GRjtGefhc67hbwXJd
=/GZI
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull XFS updates from Darrick Wong:
"Here are some changes for you for 4.13. For the most part it's fixes
for bugs and deadlock problems, and preparation for online fsck in
some future merge window.
- Avoid quotacheck deadlocks
- Fix transaction overflows when bunmapping fragmented files
- Refactor directory readahead
- Allow admin to configure if ASSERT is fatal
- Improve transaction usage detail logging during overflows
- Minor cleanups
- Don't leak log items when the log shuts down
- Remove double-underscore typedefs
- Various preparation for online scrubbing
- Introduce new error injection configuration sysfs knobs
- Refactor dq_get_next to use extent map directly
- Fix problems with iterating the page cache for unwritten data
- Implement SEEK_{HOLE,DATA} via iomap
- Refactor XFS to use iomap SEEK_HOLE and SEEK_DATA
- Don't use MAXPATHLEN to check on-disk symlink target lengths"
* tag 'xfs-4.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (48 commits)
xfs: don't crash on unexpected holes in dir/attr btrees
xfs: rename MAXPATHLEN to XFS_SYMLINK_MAXLEN
xfs: fix contiguous dquot chunk iteration livelock
xfs: Switch to iomap for SEEK_HOLE / SEEK_DATA
vfs: Add iomap_seek_hole and iomap_seek_data helpers
vfs: Add page_cache_seek_hole_data helper
xfs: remove a whitespace-only line from xfs_fs_get_nextdqblk
xfs: rewrite xfs_dq_get_next_id using xfs_iext_lookup_extent
xfs: Check for m_errortag initialization in xfs_errortag_test
xfs: grab dquots without taking the ilock
xfs: fix semicolon.cocci warnings
xfs: Don't clear SGID when inheriting ACLs
xfs: free cowblocks and retry on buffered write ENOSPC
xfs: replace log_badcrc_factor knob with error injection tag
xfs: convert drop_writes to use the errortag mechanism
xfs: remove unneeded parameter from XFS_TEST_ERROR
xfs: expose errortag knobs via sysfs
xfs: make errortag a per-mountpoint structure
xfs: free uncommitted transactions during log recovery
xfs: don't allow bmap on rt files
...
XFS has a maximum symlink target length of 1024 bytes; this is a
holdover from the Irix days. Unfortunately, the constant establishing
this is 'MAXPATHLEN' and is /not/ the same as the Linux MAXPATHLEN,
which is 4096.
The kernel enforces its 1024 byte MAXPATHLEN on symlink targets, but
xfsprogs picks up the (Linux) system 4096 byte MAXPATHLEN, which means
that xfs_repair doesn't complain about oversized symlinks.
Since this is an on-disk format constraint, put the define in the XFS
namespace and move everything over to use the new name.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This is a purely mechanical patch that removes the private
__{u,}int{8,16,32,64}_t typedefs in favor of using the system
{u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform
the transformation and fix the resulting whitespace and indentation
errors:
s/typedef\t__uint8_t/typedef __uint8_t\t/g
s/typedef\t__uint/typedef __uint/g
s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
s/__uint8_t\t/__uint8_t\t\t/g
s/__uint/uint/g
s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
s/__int/int/g
/^typedef.*int[0-9]*_t;$/d
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use the common helper uuid_is_null() and remove the xfs specific
helper uuid_is_nil().
The common helper does not check for the NULL pointer value as
xfs helper did, but xfs code never calls the helper with a pointer
that can be NULL.
Conform comments and warning strings to use the term 'null uuid'
instead of 'nil uuid', because this is the terminology used by
lib/uuid.c and its users. It is also the terminology used in
userspace by libuuid and xfsprogs.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
[hch: remove now unused uuid.[ch]]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Our "little endian" UUID really is a Wintel GUID, so rename it and its
helpers such (guid_t). The big endian UUID is the only true one, so
give it the name uuid_t. The uuid_le and uuid_be names are retained for
now, but will hopefully go away soon. The exception to that are the _cmp
helpers that will be replaced by better primitives ASAP and thus don't
get the new names.
Also the _to_bin helpers are named to match the better named uuid_parse
routine in userspace.
Also remove the existing typedef in XFS that's now been superceeded by
the generic type name.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[andy: also update the UUID_LE/UUID_BE macros including fallout]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Use the generic Linux definition to implement our UUID type, this will
allow using more generic infrastructure in the future.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Long ago, all this gunk was added with a lament about problems
with gcc's do_div, and a fun recommendation in the changelog:
egcs-2.91.66 is the recommended compiler version for building XFS.
All this special stuff was needed to work around an old gcc bug,
apparently, and it's been there ever since.
There should be no need for this anymore, so remove it.
Remove the special 32-bit xfs_do_mod as well; just let the
kernel's do_div() handle all this.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The ASSERT() condition is the normal case, not the exception,
so testing the condition should be likely(), not unlikely().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On filesystems with a lot of metadata and in metadata intensive workloads
xfs_buf_find() is showing up at the top of the CPU cycles trace. Most of
the CPU time is spent on CPU cache misses while traversing the rbtree.
As the buffer cache does not need any kind of ordering, but fast lookups
a hashtable is the natural data structure to use. The rhashtable
infrastructure provides a self-scaling hashtable implementation and
allows lookups to proceed while the table is going through a resize
operation.
This reduces the CPU-time spent for the lookups to 1/3 even for small
filesystems with a relatively small number of cached buffers, with
possibly much larger gains on higher loaded filesystems.
[dchinner: reduce minimum hash size to an acceptable size for large
filesystems with many AGs with no active use.]
[dchinner: remove stale rbtree asserts.]
[dchinner: use xfs_buf_map for compare function argument.]
[dchinner: make functions static.]
[dchinner: remove redundant comments.]
Signed-off-by: Lucas Stach <dev@lynxeye.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Trim CoW reservations made on behalf of a cowextsz hint if they get too
old or we run low on quota, so long as we don't have dirty data awaiting
writeback or directio operations in progress.
Garbage collection of the cowextsize extents are kept separate from
prealloc extent reaping because setting the CoW prealloc lifetime to a
(much) higher value than the regular prealloc extent lifetime has been
useful for combatting CoW fragmentation on VM hosts where the VMs
experience bursty write behaviors and we can keep the utilization ratios
low enough that we don't start to run out of space. IOWs, it benefits
us to keep the CoW fork reservations around for as long as we can unless
we run out of blocks or hit inode reclaim.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Instead we always declare struct xfs_dir2_sf_hdr as packed. That's
the expected layout, and while most major architectures do the packing
by default the new structure size and offset checker showed that not
only the ARM old ABI got this wrong, but various minor embedded
architectures did as well.
[Verified that no code change on x86-64 results from this change]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is the next step toward per-fs xfs stats. The patch makes
the show and clear routines able to handle any stats structure
associated with a kobject.
Instead of a single global xfsstats structure, add kobject and a pointer
to a per-cpu struct xfsstats. Modify the macros that manipulate the stats
accordingly: XFS_STATS_INC, XFS_STATS_DEC, and XFS_STATS_ADD now access
xfsstats->xs_stats.
The sysfs functions need to get from the kobject back to the xfsstats
structure which contains it, and pass the pointer to the ->xs_stats
percpu structure into the show & clear routines.
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Just use char pointers directly instead of the confusing typedef to a
pointer type.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>