ARMv8 cores have the exact same timer as ARMv7 cores. Make sure the
KVM timer code can match it in the device tree.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Pull kvm updates from Gleb Natapov:
"Highlights of the updates are:
general:
- new emulated device API
- legacy device assignment is now optional
- irqfd interface is more generic and can be shared between arches
x86:
- VMCS shadow support and other nested VMX improvements
- APIC virtualization and Posted Interrupt hardware support
- Optimize mmio spte zapping
ppc:
- BookE: in-kernel MPIC emulation with irqfd support
- Book3S: in-kernel XICS emulation (incomplete)
- Book3S: HV: migration fixes
- BookE: more debug support preparation
- BookE: e6500 support
ARM:
- reworking of Hyp idmaps
s390:
- ioeventfd for virtio-ccw
And many other bug fixes, cleanups and improvements"
* tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
kvm: Add compat_ioctl for device control API
KVM: x86: Account for failing enable_irq_window for NMI window request
KVM: PPC: Book3S: Add API for in-kernel XICS emulation
kvm/ppc/mpic: fix missing unlock in set_base_addr()
kvm/ppc: Hold srcu lock when calling kvm_io_bus_read/write
kvm/ppc/mpic: remove users
kvm/ppc/mpic: fix mmio region lists when multiple guests used
kvm/ppc/mpic: remove default routes from documentation
kvm: KVM_CAP_IOMMU only available with device assignment
ARM: KVM: iterate over all CPUs for CPU compatibility check
KVM: ARM: Fix spelling in error message
ARM: KVM: define KVM_ARM_MAX_VCPUS unconditionally
KVM: ARM: Fix API documentation for ONE_REG encoding
ARM: KVM: promote vfp_host pointer to generic host cpu context
ARM: KVM: add architecture specific hook for capabilities
ARM: KVM: perform HYP initilization for hotplugged CPUs
ARM: KVM: switch to a dual-step HYP init code
ARM: KVM: rework HYP page table freeing
ARM: KVM: enforce maximum size for identity mapped code
ARM: KVM: move to a KVM provided HYP idmap
...
Pull ARM updates from Russell King:
"The major items included in here are:
- MCPM, multi-cluster power management, part of the infrastructure
required for ARMs big.LITTLE support.
- A rework of the ARM KVM code to allow re-use by ARM64.
- Error handling cleanups of the IS_ERR_OR_NULL() madness and fixes
of that stuff for arch/arm
- Preparatory patches for Cortex-M3 support from Uwe Kleine-König.
There is also a set of three patches in here from Hugh/Catalin to
address freeing of inappropriate page tables on LPAE. You already
have these from akpm, but they were already part of my tree at the
time he sent them, so unfortunately they'll end up with duplicate
commits"
* 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (77 commits)
ARM: EXYNOS: remove unnecessary use of IS_ERR_VALUE()
ARM: IMX: remove unnecessary use of IS_ERR_VALUE()
ARM: OMAP: use consistent error checking
ARM: cleanup: OMAP hwmod error checking
ARM: 7709/1: mcpm: Add explicit AFLAGS to support v6/v7 multiplatform kernels
ARM: 7700/2: Make cpu_init() notrace
ARM: 7702/1: Set the page table freeing ceiling to TASK_SIZE
ARM: 7701/1: mm: Allow arch code to control the user page table ceiling
ARM: 7703/1: Disable preemption in broadcast_tlb*_a15_erratum()
ARM: mcpm: provide an interface to set the SMP ops at run time
ARM: mcpm: generic SMP secondary bringup and hotplug support
ARM: mcpm_head.S: vlock-based first man election
ARM: mcpm: Add baremetal voting mutexes
ARM: mcpm: introduce helpers for platform coherency exit/setup
ARM: mcpm: introduce the CPU/cluster power API
ARM: multi-cluster PM: secondary kernel entry code
ARM: cacheflush: add synchronization helpers for mixed cache state accesses
ARM: cpu hotplug: remove majority of cache flushing from platforms
ARM: smp: flush L1 cache in cpu_die()
ARM: tegra: remove tegra specific cpu_disable()
...
kvm_target_cpus() checks the compatibility of the used CPU with
KVM, which is currently limited to ARM Cortex-A15 cores.
However by calling it only once on any random CPU it assumes that
all cores are the same, which is not necessarily the case (for example
in Big.Little).
[ I cut some of the commit message and changed the formatting of the
code slightly to pass checkpatch and look more like the rest of the
kvm/arm init code - Christoffer ]
Signed-off-by: Andre Przywara <andre.przywara@linaro.org>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
The CONFIG_KVM_ARM_MAX_VCPUS symbol is needed in order to build the
kernel/context_tracking.c code, which includes the vgic data structures
implictly through the kvm headers. Definining the symbol to zero
on builds without KVM resolves this build error:
In file included from include/linux/kvm_host.h:33:0,
from kernel/context_tracking.c:18:
arch/arm/include/asm/kvm_host.h:28:23: warning: "CONFIG_KVM_ARM_MAX_VCPUS" is not defined [-Wundef]
#define KVM_MAX_VCPUS CONFIG_KVM_ARM_MAX_VCPUS
^
arch/arm/include/asm/kvm_vgic.h:34:24: note: in expansion of macro 'KVM_MAX_VCPUS'
#define VGIC_MAX_CPUS KVM_MAX_VCPUS
^
arch/arm/include/asm/kvm_vgic.h:38:6: note: in expansion of macro 'VGIC_MAX_CPUS'
#if (VGIC_MAX_CPUS > 8)
^
In file included from arch/arm/include/asm/kvm_host.h:41:0,
from include/linux/kvm_host.h:33,
from kernel/context_tracking.c:18:
arch/arm/include/asm/kvm_vgic.h:59:11: error: 'CONFIG_KVM_ARM_MAX_VCPUS' undeclared here (not in a function)
} percpu[VGIC_MAX_CPUS];
^
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <cdall@cs.columbia.edu>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
We use the vfp_host pointer to store the host VFP context, should
the guest start using VFP itself.
Actually, we can use this pointer in a more generic way to store
CPU speficic data, and arm64 is using it to dump the whole host
state before switching to the guest.
Simply rename the vfp_host field to host_cpu_context, and the
corresponding type to kvm_cpu_context_t. No change in functionnality.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Most of the capabilities are common to both arm and arm64, but
we still need to handle the exceptions.
Introduce kvm_arch_dev_ioctl_check_extension, which both architectures
implement (in the 32bit case, it just returns 0).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Now that we have the necessary infrastructure to boot a hotplugged CPU
at any point in time, wire a CPU notifier that will perform the HYP
init for the incoming CPU.
Note that this depends on the platform code and/or firmware to boot the
incoming CPU with HYP mode enabled and return to the kernel by following
the normal boot path (HYP stub installed).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Our HYP init code suffers from two major design issues:
- it cannot support CPU hotplug, as we tear down the idmap very early
- it cannot perform a TLB invalidation when switching from init to
runtime mappings, as pages are manipulated from PL1 exclusively
The hotplug problem mandates that we keep two sets of page tables
(boot and runtime). The TLB problem mandates that we're able to
transition from one PGD to another while in HYP, invalidating the TLBs
in the process.
To be able to do this, we need to share a page between the two page
tables. A page that will have the same VA in both configurations. All we
need is a VA that has the following properties:
- This VA can't be used to represent a kernel mapping.
- This VA will not conflict with the physical address of the kernel text
The vectors page seems to satisfy this requirement:
- The kernel never maps anything else there
- The kernel text being copied at the beginning of the physical memory,
it is unlikely to use the last 64kB (I doubt we'll ever support KVM
on a system with something like 4MB of RAM, but patches are very
welcome).
Let's call this VA the trampoline VA.
Now, we map our init page at 3 locations:
- idmap in the boot pgd
- trampoline VA in the boot pgd
- trampoline VA in the runtime pgd
The init scenario is now the following:
- We jump in HYP with four parameters: boot HYP pgd, runtime HYP pgd,
runtime stack, runtime vectors
- Enable the MMU with the boot pgd
- Jump to a target into the trampoline page (remember, this is the same
physical page!)
- Now switch to the runtime pgd (same VA, and still the same physical
page!)
- Invalidate TLBs
- Set stack and vectors
- Profit! (or eret, if you only care about the code).
Note that we keep the boot mapping permanently (it is not strictly an
idmap anymore) to allow for CPU hotplug in later patches.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
There is no point in freeing HYP page tables differently from Stage-2.
They now have the same requirements, and should be dealt with the same way.
Promote unmap_stage2_range to be The One True Way, and get rid of a number
of nasty bugs in the process (good thing we never actually called free_hyp_pmds
before...).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
After the HYP page table rework, it is pretty easy to let the KVM
code provide its own idmap, rather than expecting the kernel to
provide it. It takes actually less code to do so.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
The current code for creating HYP mapping doesn't like to wrap
around zero, which prevents from mapping anything into the last
page of the virtual address space.
It doesn't take much effort to remove this limitation, making
the code more consistent with the rest of the kernel in the process.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
The way we populate HYP mappings is a bit convoluted, to say the least.
Passing a pointer around to keep track of the current PFN is quite
odd, and we end-up having two different PTE accessors for no good
reason.
Simplify the whole thing by unifying the two PTE accessors, passing
a pgprot_t around, and moving the various validity checks to the
upper layers.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
In clocksource/arm_arch_timer.h we define useful symbolic constants.
Let's use them to make the KVM arch_timer code clearer.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
In order to be able to correctly profile what is happening on the
host, we need to be able to identify when we're running on the guest,
and log these events differently.
Perf offers a simple way to register callbacks into KVM. Mimic what
x86 does and enjoy being able to profile your KVM host.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Fix typo in printk and comments within various drivers.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
In the very unlikely event where a guest would be foolish enough to
*read* from a write-only cache maintainance register, we end up
with preemption disabled, due to a misplaced get_cpu().
Just move the "is_write" test outside of the critical section.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3401d54696 (KVM: ARM: Introduce KVM_ARM_SET_DEVICE_ADDR
ioctl) added support for the KVM_CAP_ARM_SET_DEVICE_ADDR capability,
but failed to add a break in the relevant case statement, returning
the number of CPUs instead.
Luckilly enough, the CONFIG_NR_CPUS=0 patch hasn't been merged yet
(https://lkml.org/lkml/diff/2012/3/31/131/1), so the bug wasn't
noticed.
Just give it a break!
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Commit aa2fbe6d broke the ARM KVM target by introducing a new parameter
to irq handling functions.
Fix the function prototype to get things compiling again and ignore the
parameter just like we did before
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Instead of hardcoding the maximum MMIO access to be 4 bytes,
compare it to sizeof(unsigned long), which will do the
right thing on both 32 and 64bit systems.
Same thing for sign extention.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Instead of trying to free everything from PAGE_OFFSET to the
top of memory, use the virt_addr_valid macro to check the
upper limit.
Also do the same for the vmalloc region where the IO mappings
are allocated.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
v8 is capable of invalidating Stage-2 by IPA, but v7 is not.
Change kvm_tlb_flush_vmid() to take an IPA parameter, which is
then ignored by the invalidation code (and nuke the whole TLB
as it always did).
This allows v8 to implement a more optimized strategy.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The virtual GIC is supposed to be 4kB aligned. On a 64kB page
system, comparing the alignment to PAGE_SIZE is wrong.
Use SZ_4K instead.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The ARM ARM says that HPFAR reports bits [39:12] of the faulting
IPA, and we need to complement it with the bottom 12 bits of the
faulting VA.
This is always 12 bits, irrespective of the page size. Makes it
clearer in the code.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
guest.c already contains some target-specific checks. Let's move
kvm_target_cpu() over there so arm.c is mostly target agnostic.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
__create_hyp_mappings() performs some kind of address validation before
creating the mapping, by verifying that the start address is above
PAGE_OFFSET.
This check is not completely correct for kernel memory (the upper
boundary has to be checked as well so we do not end up with highmem
pages), and wrong for IO mappings (the mapping must exist in the vmalloc
region).
Fix this by using the proper predicates (virt_addr_valid and
is_vmalloc_addr), which also work correctly on ARM64 (where the vmalloc
region is below PAGE_OFFSET).
Also change the BUG_ON() into a less agressive error return.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
arm64 cannot represent the kernel VAs in HYP mode, because of the lack
of TTBR1 at EL2. A way to cope with this situation is to have HYP VAs
to be an offset from the kernel VAs.
Introduce macros to convert a kernel VA to a HYP VA, make the HYP
mapping functions use these conversion macros. Also change the
documentation to reflect the existence of the offset.
On ARM, where we can have an identity mapping between kernel and HYP,
the macros are without any effect.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to keep the VFP allocation code common, use an abstract type
for the VFP containers. Maps onto struct vfp_hard_struct on ARM.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Make the split of the pgd_ptr an implementation specific thing
by moving the init call to an inline function.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move low level MMU-related operations to kvm_mmu.h. This makes
the MMU code reusable by the arm64 port.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This one got lost in the move to handle_exit, so let's reintroduce it
using an accessor to the immediate value field like the other ones.
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
The exit handler selection code cannot be shared with arm64
(two different modes, more exception classes...).
Move it to a separate file (handle_exit.c).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Bit 8 is cache maintenance, bit 9 is external abort.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>