Commit Graph

148 Commits

Author SHA1 Message Date
Frederic Weisbecker
68cbd415dd task_work: s/task_work_cancel()/task_work_cancel_func()/
A proper task_work_cancel() API that actually cancels a callback and not
*any* callback pointing to a given function is going to be needed for
perf events event freeing. Do the appropriate rename to prepare for
that.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240621091601.18227-2-frederic@kernel.org
2024-07-09 13:26:31 +02:00
Luis Henriques
9578e327b2 keys: update key quotas in key_put()
Delaying key quotas update when key's refcount reaches 0 in key_put() has
been causing some issues in fscrypt testing, specifically in fstest
generic/581.  This commit fixes this test flakiness by dealing with the
quotas immediately, and leaving all the other clean-ups to the key garbage
collector.

This is done by moving the updates to the qnkeys and qnbytes fields in
struct key_user from key_gc_unused_keys() into key_put().  Unfortunately,
this also means that we need to switch to the irq-version of the spinlock
that protects these fields and use spin_lock_{irqsave,irqrestore} in all
the code that touches these fields.

Signed-off-by: Luis Henriques <lhenriques@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@kernel.org>
2024-05-09 16:28:58 +03:00
Jens Axboe
9fd7874c0e
iov_iter: replace import_single_range() with import_ubuf()
With the removal of the 'iov' argument to import_single_range(), the two
functions are now fully identical. Convert the import_single_range()
callers to import_ubuf(), and remove the former fully.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/20231204174827.1258875-3-axboe@kernel.dk
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-12-05 11:57:37 +01:00
Jens Axboe
6ac805d138
iov_iter: remove unused 'iov' argument from import_single_range()
It is entirely unused, just get rid of it.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/20231204174827.1258875-2-axboe@kernel.dk
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-12-05 11:57:34 +01:00
Christian Göttsche
2d7f105edb security: keys: perform capable check only on privileged operations
If the current task fails the check for the queried capability via
`capable(CAP_SYS_ADMIN)` LSMs like SELinux generate a denial message.
Issuing such denial messages unnecessarily can lead to a policy author
granting more privileges to a subject than needed to silence them.

Reorder CAP_SYS_ADMIN checks after the check whether the operation is
actually privileged.

Signed-off-by: Christian Göttsche <cgzones@googlemail.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2023-07-28 18:07:41 +00:00
Al Viro
de4eda9de2 use less confusing names for iov_iter direction initializers
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.

Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2022-11-25 13:01:55 -05:00
Randy Dunlap
328c95db01 security: keys: delete repeated words in comments
Drop repeated words in comments.
{to, will, the}

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Reviewed-by: Ben Boeckel <mathstuf@gmail.com>
Cc: keyrings@vger.kernel.org
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: linux-security-module@vger.kernel.org
2021-01-21 16:16:09 +00:00
Jens Axboe
91989c7078 task_work: cleanup notification modes
A previous commit changed the notification mode from true/false to an
int, allowing notify-no, notify-yes, or signal-notify. This was
backwards compatible in the sense that any existing true/false user
would translate to either 0 (on notification sent) or 1, the latter
which mapped to TWA_RESUME. TWA_SIGNAL was assigned a value of 2.

Clean this up properly, and define a proper enum for the notification
mode. Now we have:

- TWA_NONE. This is 0, same as before the original change, meaning no
  notification requested.
- TWA_RESUME. This is 1, same as before the original change, meaning
  that we use TIF_NOTIFY_RESUME.
- TWA_SIGNAL. This uses TIF_SIGPENDING/JOBCTL_TASK_WORK for the
  notification.

Clean up all the callers, switching their 0/1/false/true to using the
appropriate TWA_* mode for notifications.

Fixes: e91b481623 ("task_work: teach task_work_add() to do signal_wake_up()")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-17 15:05:30 -06:00
Christoph Hellwig
5d47b39479 security/keys: remove compat_keyctl_instantiate_key_iov
Now that import_iovec handles compat iovecs, the native version of
keyctl_instantiate_key_iov can be used for the compat case as well.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-10-03 00:02:16 -04:00
Linus Torvalds
6c32978414 Notifications over pipes + Keyring notifications
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl7U/i8ACgkQ+7dXa6fL
 C2u2eg/+Oy6ybq0hPovYVkFI9WIG7ZCz7w9Q6BEnfYMqqn3dnfJxKQ3l4pnQEOWw
 f4QfvpvevsYfMtOJkYcG6s66rQgbFdqc5TEyBBy0QNp3acRolN7IXkcopvv9xOpQ
 JxedpbFG1PTFLWjvBpyjlrUPouwLzq2FXAf1Ox0ZIMw6165mYOMWoli1VL8dh0A0
 Ai7JUB0WrvTNbrwhV413obIzXT/rPCdcrgbQcgrrLPex8lQ47ZAE9bq6k4q5HiwK
 KRzEqkQgnzId6cCNTFBfkTWsx89zZunz7jkfM5yx30MvdAtPSxvvpfIPdZRZkXsP
 E2K9Fk1/6OQZTC0Op3Pi/bt+hVG/mD1p0sQUDgo2MO3qlSS+5mMkR8h3mJEgwK12
 72P4YfOJkuAy2z3v4lL0GYdUDAZY6i6G8TMxERKu/a9O3VjTWICDOyBUS6F8YEAK
 C7HlbZxAEOKTVK0BTDTeEUBwSeDrBbvH6MnRlZCG5g1Fos2aWP0udhjiX8IfZLO7
 GN6nWBvK1fYzfsUczdhgnoCzQs3suoDo04HnsTPGJ8De52T4x2RsjV+gPx0nrNAq
 eWChl1JvMWsY2B3GLnl9XQz4NNN+EreKEkk+PULDGllrArrPsp5Vnhb9FJO1PVCU
 hMDJHohPiXnKbc8f4Bd78OhIvnuoGfJPdM5MtNe2flUKy2a2ops=
 =YTGf
 -----END PGP SIGNATURE-----

Merge tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull notification queue from David Howells:
 "This adds a general notification queue concept and adds an event
  source for keys/keyrings, such as linking and unlinking keys and
  changing their attributes.

  Thanks to Debarshi Ray, we do have a pull request to use this to fix a
  problem with gnome-online-accounts - as mentioned last time:

     https://gitlab.gnome.org/GNOME/gnome-online-accounts/merge_requests/47

  Without this, g-o-a has to constantly poll a keyring-based kerberos
  cache to find out if kinit has changed anything.

  [ There are other notification pending: mount/sb fsinfo notifications
    for libmount that Karel Zak and Ian Kent have been working on, and
    Christian Brauner would like to use them in lxc, but let's see how
    this one works first ]

  LSM hooks are included:

   - A set of hooks are provided that allow an LSM to rule on whether or
     not a watch may be set. Each of these hooks takes a different
     "watched object" parameter, so they're not really shareable. The
     LSM should use current's credentials. [Wanted by SELinux & Smack]

   - A hook is provided to allow an LSM to rule on whether or not a
     particular message may be posted to a particular queue. This is
     given the credentials from the event generator (which may be the
     system) and the watch setter. [Wanted by Smack]

  I've provided SELinux and Smack with implementations of some of these
  hooks.

  WHY
  ===

  Key/keyring notifications are desirable because if you have your
  kerberos tickets in a file/directory, your Gnome desktop will monitor
  that using something like fanotify and tell you if your credentials
  cache changes.

  However, we also have the ability to cache your kerberos tickets in
  the session, user or persistent keyring so that it isn't left around
  on disk across a reboot or logout. Keyrings, however, cannot currently
  be monitored asynchronously, so the desktop has to poll for it - not
  so good on a laptop. This facility will allow the desktop to avoid the
  need to poll.

  DESIGN DECISIONS
  ================

   - The notification queue is built on top of a standard pipe. Messages
     are effectively spliced in. The pipe is opened with a special flag:

        pipe2(fds, O_NOTIFICATION_PIPE);

     The special flag has the same value as O_EXCL (which doesn't seem
     like it will ever be applicable in this context)[?]. It is given up
     front to make it a lot easier to prohibit splice&co from accessing
     the pipe.

     [?] Should this be done some other way?  I'd rather not use up a new
         O_* flag if I can avoid it - should I add a pipe3() system call
         instead?

     The pipe is then configured::

        ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);
        ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);

     Messages are then read out of the pipe using read().

   - It should be possible to allow write() to insert data into the
     notification pipes too, but this is currently disabled as the
     kernel has to be able to insert messages into the pipe *without*
     holding pipe->mutex and the code to make this work needs careful
     auditing.

   - sendfile(), splice() and vmsplice() are disabled on notification
     pipes because of the pipe->mutex issue and also because they
     sometimes want to revert what they just did - but one or more
     notification messages might've been interleaved in the ring.

   - The kernel inserts messages with the wait queue spinlock held. This
     means that pipe_read() and pipe_write() have to take the spinlock
     to update the queue pointers.

   - Records in the buffer are binary, typed and have a length so that
     they can be of varying size.

     This allows multiple heterogeneous sources to share a common
     buffer; there are 16 million types available, of which I've used
     just a few, so there is scope for others to be used. Tags may be
     specified when a watchpoint is created to help distinguish the
     sources.

   - Records are filterable as types have up to 256 subtypes that can be
     individually filtered. Other filtration is also available.

   - Notification pipes don't interfere with each other; each may be
     bound to a different set of watches. Any particular notification
     will be copied to all the queues that are currently watching for it
     - and only those that are watching for it.

   - When recording a notification, the kernel will not sleep, but will
     rather mark a queue as having lost a message if there's
     insufficient space. read() will fabricate a loss notification
     message at an appropriate point later.

   - The notification pipe is created and then watchpoints are attached
     to it, using one of:

        keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);
        watch_mount(AT_FDCWD, "/", 0, fd, 0x02);
        watch_sb(AT_FDCWD, "/mnt", 0, fd, 0x03);

     where in both cases, fd indicates the queue and the number after is
     a tag between 0 and 255.

   - Watches are removed if either the notification pipe is destroyed or
     the watched object is destroyed. In the latter case, a message will
     be generated indicating the enforced watch removal.

  Things I want to avoid:

   - Introducing features that make the core VFS dependent on the
     network stack or networking namespaces (ie. usage of netlink).

   - Dumping all this stuff into dmesg and having a daemon that sits
     there parsing the output and distributing it as this then puts the
     responsibility for security into userspace and makes handling
     namespaces tricky. Further, dmesg might not exist or might be
     inaccessible inside a container.

   - Letting users see events they shouldn't be able to see.

  TESTING AND MANPAGES
  ====================

   - The keyutils tree has a pipe-watch branch that has keyctl commands
     for making use of notifications. Proposed manual pages can also be
     found on this branch, though a couple of them really need to go to
     the main manpages repository instead.

     If the kernel supports the watching of keys, then running "make
     test" on that branch will cause the testing infrastructure to spawn
     a monitoring process on the side that monitors a notifications pipe
     for all the key/keyring changes induced by the tests and they'll
     all be checked off to make sure they happened.

        https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log/?h=pipe-watch

   - A test program is provided (samples/watch_queue/watch_test) that
     can be used to monitor for keyrings, mount and superblock events.
     Information on the notifications is simply logged to stdout"

* tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  smack: Implement the watch_key and post_notification hooks
  selinux: Implement the watch_key security hook
  keys: Make the KEY_NEED_* perms an enum rather than a mask
  pipe: Add notification lossage handling
  pipe: Allow buffers to be marked read-whole-or-error for notifications
  Add sample notification program
  watch_queue: Add a key/keyring notification facility
  security: Add hooks to rule on setting a watch
  pipe: Add general notification queue support
  pipe: Add O_NOTIFICATION_PIPE
  security: Add a hook for the point of notification insertion
  uapi: General notification queue definitions
2020-06-13 09:56:21 -07:00
Michel Lespinasse
c1e8d7c6a7 mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Waiman Long
d4eaa28378 mm: add kvfree_sensitive() for freeing sensitive data objects
For kvmalloc'ed data object that contains sensitive information like
cryptographic keys, we need to make sure that the buffer is always cleared
before freeing it.  Using memset() alone for buffer clearing may not
provide certainty as the compiler may compile it away.  To be sure, the
special memzero_explicit() has to be used.

This patch introduces a new kvfree_sensitive() for freeing those sensitive
data objects allocated by kvmalloc().  The relevant places where
kvfree_sensitive() can be used are modified to use it.

Fixes: 4f0882491a ("KEYS: Avoid false positive ENOMEM error on key read")
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Link: http://lkml.kernel.org/r/20200407200318.11711-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:22 -07:00
David Howells
8c0637e950 keys: Make the KEY_NEED_* perms an enum rather than a mask
Since the meaning of combining the KEY_NEED_* constants is undefined, make
it so that you can't do that by turning them into an enum.

The enum is also given some extra values to represent special
circumstances, such as:

 (1) The '0' value is reserved and causes a warning to trap the parameter
     being unset.

 (2) The key is to be unlinked and we require no permissions on it, only
     the keyring, (this replaces the KEY_LOOKUP_FOR_UNLINK flag).

 (3) An override due to CAP_SYS_ADMIN.

 (4) An override due to an instantiation token being present.

 (5) The permissions check is being deferred to later key_permission()
     calls.

The extra values give the opportunity for LSMs to audit these situations.

[Note: This really needs overhauling so that lookup_user_key() tells
 key_task_permission() and the LSM what operation is being done and leaves
 it to those functions to decide how to map that onto the available
 permits.  However, I don't really want to make these change in the middle
 of the notifications patchset.]

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
cc: Paul Moore <paul@paul-moore.com>
cc: Stephen Smalley <stephen.smalley.work@gmail.com>
cc: Casey Schaufler <casey@schaufler-ca.com>
cc: keyrings@vger.kernel.org
cc: selinux@vger.kernel.org
2020-05-19 15:42:22 +01:00
David Howells
f7e47677e3 watch_queue: Add a key/keyring notification facility
Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

	pipe2(fds, O_NOTIFICATION_PIPE);
	ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

	struct watch_notification_filter filter = {
		.nr_filters = 1,
		.filters = {
			[0] = {
				.type = WATCH_TYPE_KEY_NOTIFY,
				.subtype_filter[0] = UINT_MAX,
			},
		},
	};
	ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
	keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way.  Records are of the following format:

	struct key_notification {
		struct watch_notification watch;
		__u32	key_id;
		__u32	aux;
	} *n;

Where:

	n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

	n->watch.subtype will indicate the type of event, such as
	NOTIFY_KEY_REVOKED.

	n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
	record.

	n->watch.info & WATCH_INFO_ID will be the second argument to
	keyctl_watch_key(), shifted.

	n->key will be the ID of the affected key.

	n->aux will hold subtype-dependent information, such as the key
	being linked into the keyring specified by n->key in the case of
	NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype.  Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
2020-05-19 15:19:06 +01:00
Linus Torvalds
4c205c84e2 Keyrings fixes
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl6AiV4ACgkQ+7dXa6fL
 C2uCDg/+NevZHjgevGpFS9WByBtzFXKbewSSO0VZqS8RcFcy7+jRdTkcP66HJkGD
 3JxfI4wQm2LOiaX8tHDlmWIPfp3G5Tnjae8peOEVBrCZ5WZMcD3CzquMv18kd8KK
 5iiFzsTYDCywP/BwHCJgVQjPNpSp9drNCL5T+oql0nWeEUVAmiVziTIZgM9cAiyj
 S/sfe76KxdNzaEEvpL5Mg/ieq1es/ssGA1jZ8jZI+YfN8mtBBH8KebckskKSgVTK
 OjBLQAEanCbq3UsEqSsvEqbBpK7JkQJPOE153VRr6Nq/0MDSniwZjqIYOkgeB9pR
 YStIrK9LyL/D0aMe8A52I7Ml1zuUUXb9zVAo3yLgubWPDYXvLs8n8Cgl8ZCQBFXy
 0t86rlSq9SooGf3M2ket8Gk/XgymcRNP9LHr6MUGEO23l2ELBoO8hsWvUTAHoKVx
 kn27S4YceW4+5UYfYm87ZQpUTbKPNATuBkts+QxiSrZMCnk82G6keA8JqNgKCe4d
 xvUJew/JEGx2J0T8vYiBfpB1zEbtYdluglYyyzHpl0wkafYGRj1tTvwRZwQNhxw5
 IFQvxEK2kVFTKcoLBGq909udb4QlQOfMAYal0u/4iCNiipNgxZawcWSfIMGN4qbG
 tPvvBL2ocRmycmoMS7EHwWUSWIzwggi7zosDsM8jfLHBshBLeAE=
 =vvN4
 -----END PGP SIGNATURE-----

Merge tag 'keys-fixes-20200329' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull keyrings fixes from David Howells:
 "Here's a couple of patches that fix a circular dependency between
  holding key->sem and mm->mmap_sem when reading data from a key.

  One potential issue is that a filesystem looking to use a key inside,
  say, ->readpages() could deadlock if the key being read is the key
  that's required and the buffer the key is being read into is on a page
  that needs to be fetched.

  The case actually detected is a bit more involved - with a filesystem
  calling request_key() and locking the target keyring for write - which
  could be being read"

* tag 'keys-fixes-20200329' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  KEYS: Avoid false positive ENOMEM error on key read
  KEYS: Don't write out to userspace while holding key semaphore
2020-04-04 12:24:47 -07:00
Waiman Long
4f0882491a KEYS: Avoid false positive ENOMEM error on key read
By allocating a kernel buffer with a user-supplied buffer length, it
is possible that a false positive ENOMEM error may be returned because
the user-supplied length is just too large even if the system do have
enough memory to hold the actual key data.

Moreover, if the buffer length is larger than the maximum amount of
memory that can be returned by kmalloc() (2^(MAX_ORDER-1) number of
pages), a warning message will also be printed.

To reduce this possibility, we set a threshold (PAGE_SIZE) over which we
do check the actual key length first before allocating a buffer of the
right size to hold it. The threshold is arbitrary, it is just used to
trigger a buffer length check. It does not limit the actual key length
as long as there is enough memory to satisfy the memory request.

To further avoid large buffer allocation failure due to page
fragmentation, kvmalloc() is used to allocate the buffer so that vmapped
pages can be used when there is not a large enough contiguous set of
pages available for allocation.

In the extremely unlikely scenario that the key keeps on being changed
and made longer (still <= buflen) in between 2 __keyctl_read_key()
calls, the __keyctl_read_key() calling loop in keyctl_read_key() may
have to be iterated a large number of times, but definitely not infinite.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-03-29 12:40:41 +01:00
Waiman Long
d3ec10aa95 KEYS: Don't write out to userspace while holding key semaphore
A lockdep circular locking dependency report was seen when running a
keyutils test:

[12537.027242] ======================================================
[12537.059309] WARNING: possible circular locking dependency detected
[12537.088148] 4.18.0-147.7.1.el8_1.x86_64+debug #1 Tainted: G OE    --------- -  -
[12537.125253] ------------------------------------------------------
[12537.153189] keyctl/25598 is trying to acquire lock:
[12537.175087] 000000007c39f96c (&mm->mmap_sem){++++}, at: __might_fault+0xc4/0x1b0
[12537.208365]
[12537.208365] but task is already holding lock:
[12537.234507] 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220
[12537.270476]
[12537.270476] which lock already depends on the new lock.
[12537.270476]
[12537.307209]
[12537.307209] the existing dependency chain (in reverse order) is:
[12537.340754]
[12537.340754] -> #3 (&type->lock_class){++++}:
[12537.367434]        down_write+0x4d/0x110
[12537.385202]        __key_link_begin+0x87/0x280
[12537.405232]        request_key_and_link+0x483/0xf70
[12537.427221]        request_key+0x3c/0x80
[12537.444839]        dns_query+0x1db/0x5a5 [dns_resolver]
[12537.468445]        dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs]
[12537.496731]        cifs_reconnect+0xe04/0x2500 [cifs]
[12537.519418]        cifs_readv_from_socket+0x461/0x690 [cifs]
[12537.546263]        cifs_read_from_socket+0xa0/0xe0 [cifs]
[12537.573551]        cifs_demultiplex_thread+0x311/0x2db0 [cifs]
[12537.601045]        kthread+0x30c/0x3d0
[12537.617906]        ret_from_fork+0x3a/0x50
[12537.636225]
[12537.636225] -> #2 (root_key_user.cons_lock){+.+.}:
[12537.664525]        __mutex_lock+0x105/0x11f0
[12537.683734]        request_key_and_link+0x35a/0xf70
[12537.705640]        request_key+0x3c/0x80
[12537.723304]        dns_query+0x1db/0x5a5 [dns_resolver]
[12537.746773]        dns_resolve_server_name_to_ip+0x1e1/0x4d0 [cifs]
[12537.775607]        cifs_reconnect+0xe04/0x2500 [cifs]
[12537.798322]        cifs_readv_from_socket+0x461/0x690 [cifs]
[12537.823369]        cifs_read_from_socket+0xa0/0xe0 [cifs]
[12537.847262]        cifs_demultiplex_thread+0x311/0x2db0 [cifs]
[12537.873477]        kthread+0x30c/0x3d0
[12537.890281]        ret_from_fork+0x3a/0x50
[12537.908649]
[12537.908649] -> #1 (&tcp_ses->srv_mutex){+.+.}:
[12537.935225]        __mutex_lock+0x105/0x11f0
[12537.954450]        cifs_call_async+0x102/0x7f0 [cifs]
[12537.977250]        smb2_async_readv+0x6c3/0xc90 [cifs]
[12538.000659]        cifs_readpages+0x120a/0x1e50 [cifs]
[12538.023920]        read_pages+0xf5/0x560
[12538.041583]        __do_page_cache_readahead+0x41d/0x4b0
[12538.067047]        ondemand_readahead+0x44c/0xc10
[12538.092069]        filemap_fault+0xec1/0x1830
[12538.111637]        __do_fault+0x82/0x260
[12538.129216]        do_fault+0x419/0xfb0
[12538.146390]        __handle_mm_fault+0x862/0xdf0
[12538.167408]        handle_mm_fault+0x154/0x550
[12538.187401]        __do_page_fault+0x42f/0xa60
[12538.207395]        do_page_fault+0x38/0x5e0
[12538.225777]        page_fault+0x1e/0x30
[12538.243010]
[12538.243010] -> #0 (&mm->mmap_sem){++++}:
[12538.267875]        lock_acquire+0x14c/0x420
[12538.286848]        __might_fault+0x119/0x1b0
[12538.306006]        keyring_read_iterator+0x7e/0x170
[12538.327936]        assoc_array_subtree_iterate+0x97/0x280
[12538.352154]        keyring_read+0xe9/0x110
[12538.370558]        keyctl_read_key+0x1b9/0x220
[12538.391470]        do_syscall_64+0xa5/0x4b0
[12538.410511]        entry_SYSCALL_64_after_hwframe+0x6a/0xdf
[12538.435535]
[12538.435535] other info that might help us debug this:
[12538.435535]
[12538.472829] Chain exists of:
[12538.472829]   &mm->mmap_sem --> root_key_user.cons_lock --> &type->lock_class
[12538.472829]
[12538.524820]  Possible unsafe locking scenario:
[12538.524820]
[12538.551431]        CPU0                    CPU1
[12538.572654]        ----                    ----
[12538.595865]   lock(&type->lock_class);
[12538.613737]                                lock(root_key_user.cons_lock);
[12538.644234]                                lock(&type->lock_class);
[12538.672410]   lock(&mm->mmap_sem);
[12538.687758]
[12538.687758]  *** DEADLOCK ***
[12538.687758]
[12538.714455] 1 lock held by keyctl/25598:
[12538.732097]  #0: 000000003de5b58d (&type->lock_class){++++}, at: keyctl_read_key+0x15a/0x220
[12538.770573]
[12538.770573] stack backtrace:
[12538.790136] CPU: 2 PID: 25598 Comm: keyctl Kdump: loaded Tainted: G
[12538.844855] Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 Gen9, BIOS P89 12/27/2015
[12538.881963] Call Trace:
[12538.892897]  dump_stack+0x9a/0xf0
[12538.907908]  print_circular_bug.isra.25.cold.50+0x1bc/0x279
[12538.932891]  ? save_trace+0xd6/0x250
[12538.948979]  check_prev_add.constprop.32+0xc36/0x14f0
[12538.971643]  ? keyring_compare_object+0x104/0x190
[12538.992738]  ? check_usage+0x550/0x550
[12539.009845]  ? sched_clock+0x5/0x10
[12539.025484]  ? sched_clock_cpu+0x18/0x1e0
[12539.043555]  __lock_acquire+0x1f12/0x38d0
[12539.061551]  ? trace_hardirqs_on+0x10/0x10
[12539.080554]  lock_acquire+0x14c/0x420
[12539.100330]  ? __might_fault+0xc4/0x1b0
[12539.119079]  __might_fault+0x119/0x1b0
[12539.135869]  ? __might_fault+0xc4/0x1b0
[12539.153234]  keyring_read_iterator+0x7e/0x170
[12539.172787]  ? keyring_read+0x110/0x110
[12539.190059]  assoc_array_subtree_iterate+0x97/0x280
[12539.211526]  keyring_read+0xe9/0x110
[12539.227561]  ? keyring_gc_check_iterator+0xc0/0xc0
[12539.249076]  keyctl_read_key+0x1b9/0x220
[12539.266660]  do_syscall_64+0xa5/0x4b0
[12539.283091]  entry_SYSCALL_64_after_hwframe+0x6a/0xdf

One way to prevent this deadlock scenario from happening is to not
allow writing to userspace while holding the key semaphore. Instead,
an internal buffer is allocated for getting the keys out from the
read method first before copying them out to userspace without holding
the lock.

That requires taking out the __user modifier from all the relevant
read methods as well as additional changes to not use any userspace
write helpers. That is,

  1) The put_user() call is replaced by a direct copy.
  2) The copy_to_user() call is replaced by memcpy().
  3) All the fault handling code is removed.

Compiling on a x86-64 system, the size of the rxrpc_read() function is
reduced from 3795 bytes to 2384 bytes with this patch.

Fixes: ^1da177e4c3f4 ("Linux-2.6.12-rc2")
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-03-29 12:40:41 +01:00
Yang Xu
2e356101e7 KEYS: reaching the keys quotas correctly
Currently, when we add a new user key, the calltrace as below:

add_key()
  key_create_or_update()
    key_alloc()
    __key_instantiate_and_link
      generic_key_instantiate
        key_payload_reserve
          ......

Since commit a08bf91ce2 ("KEYS: allow reaching the keys quotas exactly"),
we can reach max bytes/keys in key_alloc, but we forget to remove this
limit when we reserver space for payload in key_payload_reserve. So we
can only reach max keys but not max bytes when having delta between plen
and type->def_datalen. Remove this limit when instantiating the key, so we
can keep consistent with key_alloc.

Also, fix the similar problem in keyctl_chown_key().

Fixes: 0b77f5bfb4 ("keys: make the keyring quotas controllable through /proc/sys")
Fixes: a08bf91ce2 ("KEYS: allow reaching the keys quotas exactly")
Cc: stable@vger.kernel.org # 5.0.x
Cc: Eric Biggers <ebiggers@google.com>
Signed-off-by: Yang Xu <xuyang2018.jy@cn.fujitsu.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2020-03-15 20:59:50 +02:00
Linus Torvalds
028db3e290 Revert "Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs"
This reverts merge 0f75ef6a9c (and thus
effectively commits

   7a1ade8475 ("keys: Provide KEYCTL_GRANT_PERMISSION")
   2e12256b9a ("keys: Replace uid/gid/perm permissions checking with an ACL")

that the merge brought in).

It turns out that it breaks booting with an encrypted volume, and Eric
biggers reports that it also breaks the fscrypt tests [1] and loading of
in-kernel X.509 certificates [2].

The root cause of all the breakage is likely the same, but David Howells
is off email so rather than try to work it out it's getting reverted in
order to not impact the rest of the merge window.

 [1] https://lore.kernel.org/lkml/20190710011559.GA7973@sol.localdomain/
 [2] https://lore.kernel.org/lkml/20190710013225.GB7973@sol.localdomain/

Link: https://lore.kernel.org/lkml/CAHk-=wjxoeMJfeBahnWH=9zShKp2bsVy527vo3_y8HfOdhwAAw@mail.gmail.com/
Reported-by: Eric Biggers <ebiggers@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-10 18:43:43 -07:00
Linus Torvalds
0f75ef6a9c Keyrings ACL
-----BEGIN PGP SIGNATURE-----
 
 iQIVAwUAXRyyVvu3V2unywtrAQL3xQ//eifjlELkRAPm2EReWwwahdM+9QL/0bAy
 e8eAzP9EaphQGUhpIzM9Y7Cx+a8XW2xACljY8hEFGyxXhDMoLa35oSoJOeay6vQt
 QcgWnDYsET8Z7HOsFCP3ZQqlbbqfsB6CbIKtZoEkZ8ib7eXpYcy1qTydu7wqrl4A
 AaJalAhlUKKUx9hkGGJTh2xvgmxgSJkxx3cNEWJQ2uGgY/ustBpqqT4iwFDsgA/q
 fcYTQFfNQBsC8/SmvQgxJSc+reUdQdp0z1vd8qjpSdFFcTq1qOtK0qDdz1Bbyl24
 hAxvNM1KKav83C8aF7oHhEwLrkD+XiYKixdEiCJJp+A2i+vy2v8JnfgtFTpTgLNK
 5xu2VmaiWmee9SLCiDIBKE4Ghtkr8DQ/5cKFCwthT8GXgQUtdsdwAaT3bWdCNfRm
 DqgU/AyyXhoHXrUM25tPeF3hZuDn2yy6b1TbKA9GCpu5TtznZIHju40Px/XMIpQH
 8d6s/pg+u/SnkhjYWaTvTcvsQ2FB/vZY/UzAVyosnoMBkVfL4UtAHGbb8FBVj1nf
 Dv5VjSjl4vFjgOr3jygEAeD2cJ7L6jyKbtC/jo4dnOmPrSRShIjvfSU04L3z7FZS
 XFjMmGb2Jj8a7vAGFmsJdwmIXZ1uoTwX56DbpNL88eCgZWFPGKU7TisdIWAmJj8U
 N9wholjHJgw=
 =E3bF
 -----END PGP SIGNATURE-----

Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull keyring ACL support from David Howells:
 "This changes the permissions model used by keys and keyrings to be
  based on an internal ACL by the following means:

   - Replace the permissions mask internally with an ACL that contains a
     list of ACEs, each with a specific subject with a permissions mask.
     Potted default ACLs are available for new keys and keyrings.

     ACE subjects can be macroised to indicate the UID and GID specified
     on the key (which remain). Future commits will be able to add
     additional subject types, such as specific UIDs or domain
     tags/namespaces.

     Also split a number of permissions to give finer control. Examples
     include splitting the revocation permit from the change-attributes
     permit, thereby allowing someone to be granted permission to revoke
     a key without allowing them to change the owner; also the ability
     to join a keyring is split from the ability to link to it, thereby
     stopping a process accessing a keyring by joining it and thus
     acquiring use of possessor permits.

   - Provide a keyctl to allow the granting or denial of one or more
     permits to a specific subject. Direct access to the ACL is not
     granted, and the ACL cannot be viewed"

* tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  keys: Provide KEYCTL_GRANT_PERMISSION
  keys: Replace uid/gid/perm permissions checking with an ACL
2019-07-08 19:56:57 -07:00
Linus Torvalds
c84ca912b0 Keyrings namespacing
-----BEGIN PGP SIGNATURE-----
 
 iQIVAwUAXRU89Pu3V2unywtrAQIdBBAAmMBsrfv+LUN4Vru/D6KdUO4zdYGcNK6m
 S56bcNfP6oIDEj6HrNNnzKkWIZpdZ61Odv1zle96+v4WZ/6rnLCTpcsdaFNTzaoO
 YT2jk7jplss0ImrMv1DSoykGqO3f0ThMIpGCxHKZADGSu0HMbjSEh+zLPV4BaMtT
 BVuF7P3eZtDRLdDtMtYcgvf5UlbdoBEY8w1FUjReQx8hKGxVopGmCo5vAeiY8W9S
 ybFSZhPS5ka33ynVrLJH2dqDo5A8pDhY8I4bdlcxmNtRhnPCYZnuvTqeAzyUKKdI
 YN9zJeDu1yHs9mi8dp45NPJiKy6xLzWmUwqH8AvR8MWEkrwzqbzNZCEHZ41j74hO
 YZWI0JXi72cboszFvOwqJERvITKxrQQyVQLPRQE2vVbG0bIZPl8i7oslFVhitsl+
 evWqHb4lXY91rI9cC6JIXR1OiUjp68zXPv7DAnxv08O+PGcioU1IeOvPivx8QSx4
 5aUeCkYIIAti/GISzv7xvcYh8mfO76kBjZSB35fX+R9DkeQpxsHmmpWe+UCykzWn
 EwhHQn86+VeBFP6RAXp8CgNCLbrwkEhjzXQl/70s1eYbwvK81VcpDAQ6+cjpf4Hb
 QUmrUJ9iE0wCNl7oqvJZoJvWVGlArvPmzpkTJk3N070X2R0T7x1WCsMlPDMJGhQ2
 fVHvA3QdgWs=
 =Push
 -----END PGP SIGNATURE-----

Merge tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull keyring namespacing from David Howells:
 "These patches help make keys and keyrings more namespace aware.

  Firstly some miscellaneous patches to make the process easier:

   - Simplify key index_key handling so that the word-sized chunks
     assoc_array requires don't have to be shifted about, making it
     easier to add more bits into the key.

   - Cache the hash value in the key so that we don't have to calculate
     on every key we examine during a search (it involves a bunch of
     multiplications).

   - Allow keying_search() to search non-recursively.

  Then the main patches:

   - Make it so that keyring names are per-user_namespace from the point
     of view of KEYCTL_JOIN_SESSION_KEYRING so that they're not
     accessible cross-user_namespace.

     keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEYRING_NAME for this.

   - Move the user and user-session keyrings to the user_namespace
     rather than the user_struct. This prevents them propagating
     directly across user_namespaces boundaries (ie. the KEY_SPEC_*
     flags will only pick from the current user_namespace).

   - Make it possible to include the target namespace in which the key
     shall operate in the index_key. This will allow the possibility of
     multiple keys with the same description, but different target
     domains to be held in the same keyring.

     keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEY_TAG for this.

   - Make it so that keys are implicitly invalidated by removal of a
     domain tag, causing them to be garbage collected.

   - Institute a network namespace domain tag that allows keys to be
     differentiated by the network namespace in which they operate. New
     keys that are of a type marked 'KEY_TYPE_NET_DOMAIN' are assigned
     the network domain in force when they are created.

   - Make it so that the desired network namespace can be handed down
     into the request_key() mechanism. This allows AFS, NFS, etc. to
     request keys specific to the network namespace of the superblock.

     This also means that the keys in the DNS record cache are
     thenceforth namespaced, provided network filesystems pass the
     appropriate network namespace down into dns_query().

     For DNS, AFS and NFS are good, whilst CIFS and Ceph are not. Other
     cache keyrings, such as idmapper keyrings, also need to set the
     domain tag - for which they need access to the network namespace of
     the superblock"

* tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  keys: Pass the network namespace into request_key mechanism
  keys: Network namespace domain tag
  keys: Garbage collect keys for which the domain has been removed
  keys: Include target namespace in match criteria
  keys: Move the user and user-session keyrings to the user_namespace
  keys: Namespace keyring names
  keys: Add a 'recurse' flag for keyring searches
  keys: Cache the hash value to avoid lots of recalculation
  keys: Simplify key description management
2019-07-08 19:36:47 -07:00
Linus Torvalds
d44a62742d Keyrings miscellany
-----BEGIN PGP SIGNATURE-----
 
 iQIVAwUAXQo23fu3V2unywtrAQJghA/+Oi2W9tSfz67zMupYiqa71x5Zg5XlUVIz
 RJxSIwYhE4bhGwodTmqgRlT6f64Gbgt0K8YapGUIbtV/T6d1w02oEmt0V9vad9Zi
 wTH79hH5QKNvewUDhrWODsWhtOBWu1sGt9OozI+c65lsvTpHY4Ox7zIl4DtfBdNK
 nLUxl82h7EHF9H4TtIKxfKlLkIkmt7NRbK3z1eUP+IG/7MBzoyXgXo/gvoHUCOMR
 lhGxttZfxYdZuR9JoR2FBckvKulgafbwjoUc69EDfr8a8IZZrpaUuSTvSPbCfzj1
 j0yXfoowiWvsI1lFFBHeE0BfteJRQ9O2Pkwh1Z9M6v4zjwNNprDOw9a3VroeSgS/
 OWJyHNjeNLDMMZDm1YYCYs0B416q+lZtdAoE/nhR/lGZlBfKTyAa6Cfo4r0RBpYb
 zAxk6K4HcLBL0dkxkTXkxUJPnoDts5bMEL3YuZeVWd7Ef5s5GHW34JI+CFrMR29s
 fC9W+ZEZ74fVo2goPz2ekeiSyp28TkWusXxUCk07g0BsXQzB7v5XXUGtU9hAJ6pe
 aMBfLwAvQkkGi56CPnGWn6WlZ+AgxbRqnlYWpWf0q+PLiuyo4OeRZzhn6AdNQcCR
 2QsTBILOvZbhjEki84ZfsuLLq2k79C2xluEd9JlSAvx5/D93xjMB2qVzR1M6DbdA
 +u1nS8Z6WHA=
 =Oy7N
 -----END PGP SIGNATURE-----

Merge tag 'keys-misc-20190619' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull misc keyring updates from David Howells:
 "These are some miscellaneous keyrings fixes and improvements:

   - Fix a bunch of warnings from sparse, including missing RCU bits and
     kdoc-function argument mismatches

   - Implement a keyctl to allow a key to be moved from one keyring to
     another, with the option of prohibiting key replacement in the
     destination keyring.

   - Grant Link permission to possessors of request_key_auth tokens so
     that upcall servicing daemons can more easily arrange things such
     that only the necessary auth key is passed to the actual service
     program, and not all the auth keys a daemon might possesss.

   - Improvement in lookup_user_key().

   - Implement a keyctl to allow keyrings subsystem capabilities to be
     queried.

  The keyutils next branch has commits to make available, document and
  test the move-key and capabilities code:

        https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log

  They're currently on the 'next' branch"

* tag 'keys-misc-20190619' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  keys: Add capability-checking keyctl function
  keys: Reuse keyring_index_key::desc_len in lookup_user_key()
  keys: Grant Link permission to possessers of request_key auth keys
  keys: Add a keyctl to move a key between keyrings
  keys: Hoist locking out of __key_link_begin()
  keys: Break bits out of key_unlink()
  keys: Change keyring_serialise_link_sem to a mutex
  keys: sparse: Fix kdoc mismatches
  keys: sparse: Fix incorrect RCU accesses
  keys: sparse: Fix key_fs[ug]id_changed()
2019-07-08 19:02:11 -07:00
David Howells
7a1ade8475 keys: Provide KEYCTL_GRANT_PERMISSION
Provide a keyctl() operation to grant/remove permissions.  The grant
operation, wrapped by libkeyutils, looks like:

	int ret = keyctl_grant_permission(key_serial_t key,
					  enum key_ace_subject_type type,
					  unsigned int subject,
					  unsigned int perm);

Where key is the key to be modified, type and subject represent the subject
to which permission is to be granted (or removed) and perm is the set of
permissions to be granted.  0 is returned on success.  SET_SECURITY
permission is required for this.

The subject type currently must be KEY_ACE_SUBJ_STANDARD for the moment
(other subject types will come along later).

For subject type KEY_ACE_SUBJ_STANDARD, the following subject values are
available:

	KEY_ACE_POSSESSOR	The possessor of the key
	KEY_ACE_OWNER		The owner of the key
	KEY_ACE_GROUP		The key's group
	KEY_ACE_EVERYONE	Everyone

perm lists the permissions to be granted:

	KEY_ACE_VIEW		Can view the key metadata
	KEY_ACE_READ		Can read the key content
	KEY_ACE_WRITE		Can update/modify the key content
	KEY_ACE_SEARCH		Can find the key by searching/requesting
	KEY_ACE_LINK		Can make a link to the key
	KEY_ACE_SET_SECURITY	Can set security
	KEY_ACE_INVAL		Can invalidate
	KEY_ACE_REVOKE		Can revoke
	KEY_ACE_JOIN		Can join this keyring
	KEY_ACE_CLEAR		Can clear this keyring

If an ACE already exists for the subject, then the permissions mask will be
overwritten; if perm is 0, it will be deleted.

Currently, the internal ACL is limited to a maximum of 16 entries.

For example:

	int ret = keyctl_grant_permission(key,
					  KEY_ACE_SUBJ_STANDARD,
					  KEY_ACE_OWNER,
					  KEY_ACE_VIEW | KEY_ACE_READ);

Signed-off-by: David Howells <dhowells@redhat.com>
2019-07-03 13:05:22 +01:00
David Howells
2e12256b9a keys: Replace uid/gid/perm permissions checking with an ACL
Replace the uid/gid/perm permissions checking on a key with an ACL to allow
the SETATTR and SEARCH permissions to be split.  This will also allow a
greater range of subjects to represented.

============
WHY DO THIS?
============

The problem is that SETATTR and SEARCH cover a slew of actions, not all of
which should be grouped together.

For SETATTR, this includes actions that are about controlling access to a
key:

 (1) Changing a key's ownership.

 (2) Changing a key's security information.

 (3) Setting a keyring's restriction.

And actions that are about managing a key's lifetime:

 (4) Setting an expiry time.

 (5) Revoking a key.

and (proposed) managing a key as part of a cache:

 (6) Invalidating a key.

Managing a key's lifetime doesn't really have anything to do with
controlling access to that key.

Expiry time is awkward since it's more about the lifetime of the content
and so, in some ways goes better with WRITE permission.  It can, however,
be set unconditionally by a process with an appropriate authorisation token
for instantiating a key, and can also be set by the key type driver when a
key is instantiated, so lumping it with the access-controlling actions is
probably okay.

As for SEARCH permission, that currently covers:

 (1) Finding keys in a keyring tree during a search.

 (2) Permitting keyrings to be joined.

 (3) Invalidation.

But these don't really belong together either, since these actions really
need to be controlled separately.

Finally, there are number of special cases to do with granting the
administrator special rights to invalidate or clear keys that I would like
to handle with the ACL rather than key flags and special checks.


===============
WHAT IS CHANGED
===============

The SETATTR permission is split to create two new permissions:

 (1) SET_SECURITY - which allows the key's owner, group and ACL to be
     changed and a restriction to be placed on a keyring.

 (2) REVOKE - which allows a key to be revoked.

The SEARCH permission is split to create:

 (1) SEARCH - which allows a keyring to be search and a key to be found.

 (2) JOIN - which allows a keyring to be joined as a session keyring.

 (3) INVAL - which allows a key to be invalidated.

The WRITE permission is also split to create:

 (1) WRITE - which allows a key's content to be altered and links to be
     added, removed and replaced in a keyring.

 (2) CLEAR - which allows a keyring to be cleared completely.  This is
     split out to make it possible to give just this to an administrator.

 (3) REVOKE - see above.


Keys acquire ACLs which consist of a series of ACEs, and all that apply are
unioned together.  An ACE specifies a subject, such as:

 (*) Possessor - permitted to anyone who 'possesses' a key
 (*) Owner - permitted to the key owner
 (*) Group - permitted to the key group
 (*) Everyone - permitted to everyone

Note that 'Other' has been replaced with 'Everyone' on the assumption that
you wouldn't grant a permit to 'Other' that you wouldn't also grant to
everyone else.

Further subjects may be made available by later patches.

The ACE also specifies a permissions mask.  The set of permissions is now:

	VIEW		Can view the key metadata
	READ		Can read the key content
	WRITE		Can update/modify the key content
	SEARCH		Can find the key by searching/requesting
	LINK		Can make a link to the key
	SET_SECURITY	Can change owner, ACL, expiry
	INVAL		Can invalidate
	REVOKE		Can revoke
	JOIN		Can join this keyring
	CLEAR		Can clear this keyring


The KEYCTL_SETPERM function is then deprecated.

The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set,
or if the caller has a valid instantiation auth token.

The KEYCTL_INVALIDATE function then requires INVAL.

The KEYCTL_REVOKE function then requires REVOKE.

The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an
existing keyring.

The JOIN permission is enabled by default for session keyrings and manually
created keyrings only.


======================
BACKWARD COMPATIBILITY
======================

To maintain backward compatibility, KEYCTL_SETPERM will translate the
permissions mask it is given into a new ACL for a key - unless
KEYCTL_SET_ACL has been called on that key, in which case an error will be
returned.

It will convert possessor, owner, group and other permissions into separate
ACEs, if each portion of the mask is non-zero.

SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY.  WRITE
permission turns on WRITE, REVOKE and, if a keyring, CLEAR.  JOIN is turned
on if a keyring is being altered.

The KEYCTL_DESCRIBE function translates the ACL back into a permissions
mask to return depending on possessor, owner, group and everyone ACEs.

It will make the following mappings:

 (1) INVAL, JOIN -> SEARCH

 (2) SET_SECURITY -> SETATTR

 (3) REVOKE -> WRITE if SETATTR isn't already set

 (4) CLEAR -> WRITE

Note that the value subsequently returned by KEYCTL_DESCRIBE may not match
the value set with KEYCTL_SETATTR.


=======
TESTING
=======

This passes the keyutils testsuite for all but a couple of tests:

 (1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now
     returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed
     if the type doesn't have ->read().  You still can't actually read the
     key.

 (2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't
     work as Other has been replaced with Everyone in the ACL.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-27 23:03:07 +01:00
David Howells
a58946c158 keys: Pass the network namespace into request_key mechanism
Create a request_key_net() function and use it to pass the network
namespace domain tag into DNS revolver keys and rxrpc/AFS keys so that keys
for different domains can coexist in the same keyring.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: netdev@vger.kernel.org
cc: linux-nfs@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: linux-afs@lists.infradead.org
2019-06-27 23:02:12 +01:00
David Howells
3b6e4de05e keys: Include target namespace in match criteria
Currently a key has a standard matching criteria of { type, description }
and this is used to only allow keys with unique criteria in a keyring.
This means, however, that you cannot have keys with the same type and
description but a different target namespace in the same keyring.

This is a potential problem for a containerised environment where, say, a
container is made up of some parts of its mount space involving netfs
superblocks from two different network namespaces.

This is also a problem for shared system management keyrings such as the
DNS records keyring or the NFS idmapper keyring that might contain keys
from different network namespaces.

Fix this by including a namespace component in a key's matching criteria.
Keyring types are marked to indicate which, if any, namespace is relevant
to keys of that type, and that namespace is set when the key is created
from the current task's namespace set.

The capability bit KEYCTL_CAPS1_NS_KEY_TAG is set if the kernel is
employing this feature.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-26 21:02:32 +01:00
David Howells
b206f281d0 keys: Namespace keyring names
Keyring names are held in a single global list that any process can pick
from by means of keyctl_join_session_keyring (provided the keyring grants
Search permission).  This isn't very container friendly, however.

Make the following changes:

 (1) Make default session, process and thread keyring names begin with a
     '.' instead of '_'.

 (2) Keyrings whose names begin with a '.' aren't added to the list.  Such
     keyrings are system specials.

 (3) Replace the global list with per-user_namespace lists.  A keyring adds
     its name to the list for the user_namespace that it is currently in.

 (4) When a user_namespace is deleted, it just removes itself from the
     keyring name list.

The global keyring_name_lock is retained for accessing the name lists.
This allows (4) to work.

This can be tested by:

	# keyctl newring foo @s
	995906392
	# unshare -U
	$ keyctl show
	...
	 995906392 --alswrv  65534 65534   \_ keyring: foo
	...
	$ keyctl session foo
	Joined session keyring: 935622349

As can be seen, a new session keyring was created.

The capability bit KEYCTL_CAPS1_NS_KEYRING_NAME is set if the kernel is
employing this feature.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
2019-06-26 21:02:32 +01:00
David Howells
dcf49dbc80 keys: Add a 'recurse' flag for keyring searches
Add a 'recurse' flag for keyring searches so that the flag can be omitted
and recursion disabled, thereby allowing just the nominated keyring to be
searched and none of the children.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-26 21:02:32 +01:00
David Howells
45e0f30c30 keys: Add capability-checking keyctl function
Add a keyctl function that requests a set of capability bits to find out
what features are supported.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-19 13:27:45 +01:00
David Howells
ed0ac5c7ec keys: Add a keyctl to move a key between keyrings
Add a keyctl to atomically move a link to a key from one keyring to
another.  The key must exist in "from" keyring and a flag can be given to
cause the operation to fail if there's a matching key already in the "to"
keyring.

This can be done with:

	keyctl(KEYCTL_MOVE,
	       key_serial_t key,
	       key_serial_t from_keyring,
	       key_serial_t to_keyring,
	       unsigned int flags);

The key being moved must grant Link permission and both keyrings must grant
Write permission.

flags should be 0 or KEYCTL_MOVE_EXCL, with the latter preventing
displacement of a matching key from the "to" keyring.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-30 22:44:48 +01:00
Thomas Gleixner
2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00
David Howells
7936d16df9 keys: sparse: Fix incorrect RCU accesses
Fix a pair of accesses that should be using RCU protection.

rcu_dereference_protected() is needed to access task_struct::real_parent.

current_cred() should be used to access current->cred.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
2019-05-29 22:32:05 +01:00
Linus Torvalds
ae5906ceee Merge branch 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates from James Morris:

 - Extend LSM stacking to allow sharing of cred, file, ipc, inode, and
   task blobs. This paves the way for more full-featured LSMs to be
   merged, and is specifically aimed at LandLock and SARA LSMs. This
   work is from Casey and Kees.

 - There's a new LSM from Micah Morton: "SafeSetID gates the setid
   family of syscalls to restrict UID/GID transitions from a given
   UID/GID to only those approved by a system-wide whitelist." This
   feature is currently shipping in ChromeOS.

* 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (62 commits)
  keys: fix missing __user in KEYCTL_PKEY_QUERY
  LSM: Update list of SECURITYFS users in Kconfig
  LSM: Ignore "security=" when "lsm=" is specified
  LSM: Update function documentation for cap_capable
  security: mark expected switch fall-throughs and add a missing break
  tomoyo: Bump version.
  LSM: fix return value check in safesetid_init_securityfs()
  LSM: SafeSetID: add selftest
  LSM: SafeSetID: remove unused include
  LSM: SafeSetID: 'depend' on CONFIG_SECURITY
  LSM: Add 'name' field for SafeSetID in DEFINE_LSM
  LSM: add SafeSetID module that gates setid calls
  LSM: add SafeSetID module that gates setid calls
  tomoyo: Allow multiple use_group lines.
  tomoyo: Coding style fix.
  tomoyo: Swicth from cred->security to task_struct->security.
  security: keys: annotate implicit fall throughs
  security: keys: annotate implicit fall throughs
  security: keys: annotate implicit fall through
  capabilities:: annotate implicit fall through
  ...
2019-03-07 11:44:01 -08:00
Ben Dooks
468e91cecb keys: fix missing __user in KEYCTL_PKEY_QUERY
The arg5 of KEYCTL_PKEY_QUERY should have a __user pointer tag on
it as it is a user pointer. This clears the following sparse warning
for this:

security/keys/keyctl.c:1755:43: warning: incorrect type in argument 3 (different address spaces)
security/keys/keyctl.c:1755:43:    expected struct keyctl_pkey_query [noderef] <asn:1>*<noident>
security/keys/keyctl.c:1755:43:    got struct keyctl_pkey_query *<noident>

Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2019-03-04 15:48:37 -08:00
David Howells
822ad64d7e keys: Fix dependency loop between construction record and auth key
In the request_key() upcall mechanism there's a dependency loop by which if
a key type driver overrides the ->request_key hook and the userspace side
manages to lose the authorisation key, the auth key and the internal
construction record (struct key_construction) can keep each other pinned.

Fix this by the following changes:

 (1) Killing off the construction record and using the auth key instead.

 (2) Including the operation name in the auth key payload and making the
     payload available outside of security/keys/.

 (3) The ->request_key hook is given the authkey instead of the cons
     record and operation name.

Changes (2) and (3) allow the auth key to naturally be cleaned up if the
keyring it is in is destroyed or cleared or the auth key is unlinked.

Fixes: 7ee02a316600 ("keys: Fix dependency loop between construction record and auth key")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2019-02-15 14:12:09 -08:00
Paul Gortmaker
876979c930 security: audit and remove any unnecessary uses of module.h
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends.  That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig.

The advantage in removing such instances is that module.h itself
sources about 15 other headers; adding significantly to what we feed
cpp, and it can obscure what headers we are effectively using.

Since module.h might have been the implicit source for init.h
(for __init) and for export.h (for EXPORT_SYMBOL) we consider each
instance for the presence of either and replace as needed.

Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: linux-security-module@vger.kernel.org
Cc: linux-integrity@vger.kernel.org
Cc: keyrings@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2018-12-12 14:58:51 -08:00
David Howells
00d60fd3b9 KEYS: Provide keyctls to drive the new key type ops for asymmetric keys [ver #2]
Provide five keyctl functions that permit userspace to make use of the new
key type ops for accessing and driving asymmetric keys.

 (*) Query an asymmetric key.

	long keyctl(KEYCTL_PKEY_QUERY,
		    key_serial_t key, unsigned long reserved,
		    struct keyctl_pkey_query *info);

     Get information about an asymmetric key.  The information is returned
     in the keyctl_pkey_query struct:

	__u32	supported_ops;

     A bit mask of flags indicating which ops are supported.  This is
     constructed from a bitwise-OR of:

	KEYCTL_SUPPORTS_{ENCRYPT,DECRYPT,SIGN,VERIFY}

	__u32	key_size;

     The size in bits of the key.

	__u16	max_data_size;
	__u16	max_sig_size;
	__u16	max_enc_size;
	__u16	max_dec_size;

     The maximum sizes in bytes of a blob of data to be signed, a signature
     blob, a blob to be encrypted and a blob to be decrypted.

     reserved must be set to 0.  This is intended for future use to hand
     over one or more passphrases needed unlock a key.

     If successful, 0 is returned.  If the key is not an asymmetric key,
     EOPNOTSUPP is returned.

 (*) Encrypt, decrypt, sign or verify a blob using an asymmetric key.

	long keyctl(KEYCTL_PKEY_ENCRYPT,
		    const struct keyctl_pkey_params *params,
		    const char *info,
		    const void *in,
		    void *out);

	long keyctl(KEYCTL_PKEY_DECRYPT,
		    const struct keyctl_pkey_params *params,
		    const char *info,
		    const void *in,
		    void *out);

	long keyctl(KEYCTL_PKEY_SIGN,
		    const struct keyctl_pkey_params *params,
		    const char *info,
		    const void *in,
		    void *out);

	long keyctl(KEYCTL_PKEY_VERIFY,
		    const struct keyctl_pkey_params *params,
		    const char *info,
		    const void *in,
		    const void *in2);

     Use an asymmetric key to perform a public-key cryptographic operation
     a blob of data.

     The parameter block pointed to by params contains a number of integer
     values:

	__s32		key_id;
	__u32		in_len;
	__u32		out_len;
	__u32		in2_len;

     For a given operation, the in and out buffers are used as follows:

	Operation ID		in,in_len	out,out_len	in2,in2_len
	=======================	===============	===============	===========
	KEYCTL_PKEY_ENCRYPT	Raw data	Encrypted data	-
	KEYCTL_PKEY_DECRYPT	Encrypted data	Raw data	-
	KEYCTL_PKEY_SIGN	Raw data	Signature	-
	KEYCTL_PKEY_VERIFY	Raw data	-		Signature

     info is a string of key=value pairs that supply supplementary
     information.

     The __spare space in the parameter block must be set to 0.  This is
     intended, amongst other things, to allow the passing of passphrases
     required to unlock a key.

     If successful, encrypt, decrypt and sign all return the amount of data
     written into the output buffer.  Verification returns 0 on success.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Denis Kenzior <denkenz@gmail.com>
Tested-by: Denis Kenzior <denkenz@gmail.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2018-10-26 09:30:46 +01:00
Eric Biggers
18026d8668 KEYS: reject NULL restriction string when type is specified
keyctl_restrict_keyring() allows through a NULL restriction when the
"type" is non-NULL, which causes a NULL pointer dereference in
asymmetric_lookup_restriction() when it calls strcmp() on the
restriction string.

But no key types actually use a "NULL restriction" to mean anything, so
update keyctl_restrict_keyring() to reject it with EINVAL.

Reported-by: syzbot <syzkaller@googlegroups.com>
Fixes: 97d3aa0f31 ("KEYS: Add a lookup_restriction function for the asymmetric key type")
Cc: <stable@vger.kernel.org> # v4.12+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-12-08 15:13:29 +00:00
David Howells
363b02dab0 KEYS: Fix race between updating and finding a negative key
Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection
error into one field such that:

 (1) The instantiation state can be modified/read atomically.

 (2) The error can be accessed atomically with the state.

 (3) The error isn't stored unioned with the payload pointers.

This deals with the problem that the state is spread over three different
objects (two bits and a separate variable) and reading or updating them
atomically isn't practical, given that not only can uninstantiated keys
change into instantiated or rejected keys, but rejected keys can also turn
into instantiated keys - and someone accessing the key might not be using
any locking.

The main side effect of this problem is that what was held in the payload
may change, depending on the state.  For instance, you might observe the
key to be in the rejected state.  You then read the cached error, but if
the key semaphore wasn't locked, the key might've become instantiated
between the two reads - and you might now have something in hand that isn't
actually an error code.

The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error
code if the key is negatively instantiated.  The key_is_instantiated()
function is replaced with key_is_positive() to avoid confusion as negative
keys are also 'instantiated'.

Additionally, barriering is included:

 (1) Order payload-set before state-set during instantiation.

 (2) Order state-read before payload-read when using the key.

Further separate barriering is necessary if RCU is being used to access the
payload content after reading the payload pointers.

Fixes: 146aa8b145 ("KEYS: Merge the type-specific data with the payload data")
Cc: stable@vger.kernel.org # v4.4+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-10-18 09:12:40 +01:00
Eric Biggers
37863c43b2 KEYS: prevent KEYCTL_READ on negative key
Because keyctl_read_key() looks up the key with no permissions
requested, it may find a negatively instantiated key.  If the key is
also possessed, we went ahead and called ->read() on the key.  But the
key payload will actually contain the ->reject_error rather than the
normal payload.  Thus, the kernel oopses trying to read the
user_key_payload from memory address (int)-ENOKEY = 0x00000000ffffff82.

Fortunately the payload data is stored inline, so it shouldn't be
possible to abuse this as an arbitrary memory read primitive...

Reproducer:
    keyctl new_session
    keyctl request2 user desc '' @s
    keyctl read $(keyctl show | awk '/user: desc/ {print $1}')

It causes a crash like the following:
     BUG: unable to handle kernel paging request at 00000000ffffff92
     IP: user_read+0x33/0xa0
     PGD 36a54067 P4D 36a54067 PUD 0
     Oops: 0000 [#1] SMP
     CPU: 0 PID: 211 Comm: keyctl Not tainted 4.14.0-rc1 #337
     Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
     task: ffff90aa3b74c3c0 task.stack: ffff9878c0478000
     RIP: 0010:user_read+0x33/0xa0
     RSP: 0018:ffff9878c047bee8 EFLAGS: 00010246
     RAX: 0000000000000001 RBX: ffff90aa3d7da340 RCX: 0000000000000017
     RDX: 0000000000000000 RSI: 00000000ffffff82 RDI: ffff90aa3d7da340
     RBP: ffff9878c047bf00 R08: 00000024f95da94f R09: 0000000000000000
     R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
     R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
     FS:  00007f58ece69740(0000) GS:ffff90aa3e200000(0000) knlGS:0000000000000000
     CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
     CR2: 00000000ffffff92 CR3: 0000000036adc001 CR4: 00000000003606f0
     Call Trace:
      keyctl_read_key+0xac/0xe0
      SyS_keyctl+0x99/0x120
      entry_SYSCALL_64_fastpath+0x1f/0xbe
     RIP: 0033:0x7f58ec787bb9
     RSP: 002b:00007ffc8d401678 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa
     RAX: ffffffffffffffda RBX: 00007ffc8d402800 RCX: 00007f58ec787bb9
     RDX: 0000000000000000 RSI: 00000000174a63ac RDI: 000000000000000b
     RBP: 0000000000000004 R08: 00007ffc8d402809 R09: 0000000000000020
     R10: 0000000000000000 R11: 0000000000000206 R12: 00007ffc8d402800
     R13: 00007ffc8d4016e0 R14: 0000000000000000 R15: 0000000000000000
     Code: e5 41 55 49 89 f5 41 54 49 89 d4 53 48 89 fb e8 a4 b4 ad ff 85 c0 74 09 80 3d b9 4c 96 00 00 74 43 48 8b b3 20 01 00 00 4d 85 ed <0f> b7 5e 10 74 29 4d 85 e4 74 24 4c 39 e3 4c 89 e2 4c 89 ef 48
     RIP: user_read+0x33/0xa0 RSP: ffff9878c047bee8
     CR2: 00000000ffffff92

Fixes: 61ea0c0ba9 ("KEYS: Skip key state checks when checking for possession")
Cc: <stable@vger.kernel.org>	[v3.13+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers
7fc0786d95 KEYS: fix key refcount leak in keyctl_read_key()
In keyctl_read_key(), if key_permission() were to return an error code
other than EACCES, we would leak a the reference to the key.  This can't
actually happen currently because key_permission() can only return an
error code other than EACCES if security_key_permission() does, only
SELinux and Smack implement that hook, and neither can return an error
code other than EACCES.  But it should still be fixed, as it is a bug
waiting to happen.

Fixes: 29db919063 ("[PATCH] Keys: Add LSM hooks for key management [try #3]")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers
884bee0215 KEYS: fix key refcount leak in keyctl_assume_authority()
In keyctl_assume_authority(), if keyctl_change_reqkey_auth() were to
fail, we would leak the reference to the 'authkey'.  Currently this can
only happen if prepare_creds() fails to allocate memory.  But it still
should be fixed, as it is a more severe bug waiting to happen.

This patch also moves the read of 'authkey->serial' to before the
reference to the authkey is dropped.  Doing the read after dropping the
reference is very fragile because it assumes we still hold another
reference to the key.  (Which we do, in current->cred->request_key_auth,
but there's no reason not to write it in the "obviously correct" way.)

Fixes: d84f4f992c ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25 15:19:57 +01:00
Eric Biggers
57070c850a KEYS: sanitize add_key() and keyctl() key payloads
Before returning from add_key() or one of the keyctl() commands that
takes in a key payload, zero the temporary buffer that was allocated to
hold the key payload copied from userspace.  This may contain sensitive
key material that should not be kept around in the slab caches.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:48 +10:00
Eric Biggers
5649645d72 KEYS: fix dereferencing NULL payload with nonzero length
sys_add_key() and the KEYCTL_UPDATE operation of sys_keyctl() allowed a
NULL payload with nonzero length to be passed to the key type's
->preparse(), ->instantiate(), and/or ->update() methods.  Various key
types including asymmetric, cifs.idmap, cifs.spnego, and pkcs7_test did
not handle this case, allowing an unprivileged user to trivially cause a
NULL pointer dereference (kernel oops) if one of these key types was
present.  Fix it by doing the copy_from_user() when 'plen' is nonzero
rather than when '_payload' is non-NULL, causing the syscall to fail
with EFAULT as expected when an invalid buffer is specified.

Cc: stable@vger.kernel.org # 2.6.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:47 +10:00
Michal Hocko
752ade68cb treewide: use kv[mz]alloc* rather than opencoded variants
There are many code paths opencoding kvmalloc.  Let's use the helper
instead.  The main difference to kvmalloc is that those users are
usually not considering all the aspects of the memory allocator.  E.g.
allocation requests <= 32kB (with 4kB pages) are basically never failing
and invoke OOM killer to satisfy the allocation.  This sounds too
disruptive for something that has a reasonable fallback - the vmalloc.
On the other hand those requests might fallback to vmalloc even when the
memory allocator would succeed after several more reclaim/compaction
attempts previously.  There is no guarantee something like that happens
though.

This patch converts many of those places to kv[mz]alloc* helpers because
they are more conservative.

Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390
Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim
Acked-by: David Sterba <dsterba@suse.com> # btrfs
Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph
Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Santosh Raspatur <santosh@chelsio.com>
Cc: Hariprasad S <hariprasad@chelsio.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: "Yan, Zheng" <zyan@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Linus Torvalds
0302e28dee Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates from James Morris:
 "Highlights:

  IMA:
   - provide ">" and "<" operators for fowner/uid/euid rules

  KEYS:
   - add a system blacklist keyring

   - add KEYCTL_RESTRICT_KEYRING, exposes keyring link restriction
     functionality to userland via keyctl()

  LSM:
   - harden LSM API with __ro_after_init

   - add prlmit security hook, implement for SELinux

   - revive security_task_alloc hook

  TPM:
   - implement contextual TPM command 'spaces'"

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (98 commits)
  tpm: Fix reference count to main device
  tpm_tis: convert to using locality callbacks
  tpm: fix handling of the TPM 2.0 event logs
  tpm_crb: remove a cruft constant
  keys: select CONFIG_CRYPTO when selecting DH / KDF
  apparmor: Make path_max parameter readonly
  apparmor: fix parameters so that the permission test is bypassed at boot
  apparmor: fix invalid reference to index variable of iterator line 836
  apparmor: use SHASH_DESC_ON_STACK
  security/apparmor/lsm.c: set debug messages
  apparmor: fix boolreturn.cocci warnings
  Smack: Use GFP_KERNEL for smk_netlbl_mls().
  smack: fix double free in smack_parse_opts_str()
  KEYS: add SP800-56A KDF support for DH
  KEYS: Keyring asymmetric key restrict method with chaining
  KEYS: Restrict asymmetric key linkage using a specific keychain
  KEYS: Add a lookup_restriction function for the asymmetric key type
  KEYS: Add KEYCTL_RESTRICT_KEYRING
  KEYS: Consistent ordering for __key_link_begin and restrict check
  KEYS: Add an optional lookup_restriction hook to key_type
  ...
2017-05-03 08:50:52 -07:00
Eric Biggers
c9f838d104 KEYS: fix keyctl_set_reqkey_keyring() to not leak thread keyrings
This fixes CVE-2017-7472.

Running the following program as an unprivileged user exhausts kernel
memory by leaking thread keyrings:

	#include <keyutils.h>

	int main()
	{
		for (;;)
			keyctl_set_reqkey_keyring(KEY_REQKEY_DEFL_THREAD_KEYRING);
	}

Fix it by only creating a new thread keyring if there wasn't one before.
To make things more consistent, make install_thread_keyring_to_cred()
and install_process_keyring_to_cred() both return 0 if the corresponding
keyring is already present.

Fixes: d84f4f992c ("CRED: Inaugurate COW credentials")
Cc: stable@vger.kernel.org # 2.6.29+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-04-18 15:31:49 +01:00
David Howells
ee8f844e3c KEYS: Disallow keyrings beginning with '.' to be joined as session keyrings
This fixes CVE-2016-9604.

Keyrings whose name begin with a '.' are special internal keyrings and so
userspace isn't allowed to create keyrings by this name to prevent
shadowing.  However, the patch that added the guard didn't fix
KEYCTL_JOIN_SESSION_KEYRING.  Not only can that create dot-named keyrings,
it can also subscribe to them as a session keyring if they grant SEARCH
permission to the user.

This, for example, allows a root process to set .builtin_trusted_keys as
its session keyring, at which point it has full access because now the
possessor permissions are added.  This permits root to add extra public
keys, thereby bypassing module verification.

This also affects kexec and IMA.

This can be tested by (as root):

	keyctl session .builtin_trusted_keys
	keyctl add user a a @s
	keyctl list @s

which on my test box gives me:

	2 keys in keyring:
	180010936: ---lswrv     0     0 asymmetric: Build time autogenerated kernel key: ae3d4a31b82daa8e1a75b49dc2bba949fd992a05
	801382539: --alswrv     0     0 user: a


Fix this by rejecting names beginning with a '.' in the keyctl.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
cc: linux-ima-devel@lists.sourceforge.net
cc: stable@vger.kernel.org
2017-04-18 15:31:35 +01:00
Stephan Mueller
f1c316a3ab KEYS: add SP800-56A KDF support for DH
SP800-56A defines the use of DH with key derivation function based on a
counter. The input to the KDF is defined as (DH shared secret || other
information). The value for the "other information" is to be provided by
the caller.

The KDF is implemented using the hash support from the kernel crypto API.
The implementation uses the symmetric hash support as the input to the
hash operation is usually very small. The caller is allowed to specify
the hash name that he wants to use to derive the key material allowing
the use of all supported hashes provided with the kernel crypto API.

As the KDF implements the proper truncation of the DH shared secret to
the requested size, this patch fills the caller buffer up to its size.

The patch is tested with a new test added to the keyutils user space
code which uses a CAVS test vector testing the compliance with
SP800-56A.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-04-04 22:33:38 +01:00
Mat Martineau
6563c91fd6 KEYS: Add KEYCTL_RESTRICT_KEYRING
Keyrings recently gained restrict_link capabilities that allow
individual keys to be validated prior to linking.  This functionality
was only available using internal kernel APIs.

With the KEYCTL_RESTRICT_KEYRING command existing keyrings can be
configured to check the content of keys before they are linked, and
then allow or disallow linkage of that key to the keyring.

To restrict a keyring, call:

  keyctl(KEYCTL_RESTRICT_KEYRING, key_serial_t keyring, const char *type,
         const char *restriction)

where 'type' is the name of a registered key type and 'restriction' is a
string describing how key linkage is to be restricted. The restriction
option syntax is specific to each key type.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-04 14:10:12 -07:00