Currently, css (cgroup_subsys_state) lifetime is tied to that of the
associated cgroup. With the planned unified hierarchy, css's will be
dynamically created and destroyed within the lifetime of a cgroup. To
enable such usages, css's will be individually RCU protected instead
of being tied to the cgroup.
cgroup->css_kill_cnt is used during cgroup destruction to wait for css
reference count disable; however, this model doesn't work once css's
lifetimes are managed separately from cgroup's. This patch replaces
it with cgroup->nr_css which is an cgroup_mutex protected integer
counting the number of attached css's. The count is incremented from
online_css() and decremented after refcnt kill is confirmed. If the
count reaches zero and the cgroup is marked dead, the second stage of
cgroup destruction is kicked off. If a cgroup doesn't have any css
attached at the time of rmdir, cgroup_destroy_locked() now invokes the
second stage directly as no css kill confirmation would happen.
cgroup_offline_fn() - the second step of cgroup destruction - is
renamed to cgroup_destroy_css_killed() and now expects to be called
with cgroup_mutex held.
While this patch changes how css destruction is punted to work items,
it shouldn't change any visible behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
css (cgroup_subsys_state) offlining, which requires process context,
will be moved to ref kill confirmation. In preparation, bounce
css_killed handling through css->destroy_work.
css_ref_killed_fn() is renamed to css_killed_ref_fn() so that it's
consistent with the new css_killed_work_fn().
This patch adds an additional work item bouncing but doesn't change
the actual logic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, css (cgroup_subsys_state) lifetime is tied to that of the
associated cgroup. With the planned unified hierarchy, css's will be
dynamically created and destroyed within the lifetime of a cgroup. To
enable such usages, css's will be individually RCU protected instead
of being tied to the cgroup.
In preparation, this patch moves cgroup->subsys[] assignment from
init_css() to online_css(). As this means that a newly initialized
css should be remembered separately and that cgroup_css() returns NULL
between init and online, cgroup_create() is updated so that it stores
newly created css's in a local array css_ar[] and
cgroup_init/load_subsys() are updated to use local variable @css
instead of using cgroup_css(). This change also slightly simplifies
error path of cgroup_create().
While this patch changes when cgroup->subsys[] is initialized, this
change isn't visible to subsystems or userland.
v2: This patch wasn't updated accordingly after the previous "cgroup:
reorganize css init / exit paths" was updated leading to missing a
css_ar[] conversion in cgroup_create() and thus boot failure. Fix
it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
css (cgroup_subsys_state) lifetime management is about to be
restructured. In prepartion, make the following mostly trivial
changes.
* init_cgroup_css() is renamed to init_css() so that it's consistent
with other css handling functions.
* alloc_css_id(), online_css() and offline_css() updated to take @css
instead of cgroups and subsys IDs.
This patch doesn't make any functional changes.
v2: v1 merged two for_each_root_subsys() loops in cgroup_create() but
Li Zefan pointed out that it breaks error path. Dropped.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
For the planned unified hierarchy, each css (cgroup_subsys_state) will
be RCU protected so that it can be created and destroyed individually
while allowing RCU accesses. Previous changes ensured that all
cgroup->subsys[] accesses use the cgroup_css() accessor. This patch
adds __rcu modifier to cgroup->subsys[], add matching RCU dereference
in cgroup_css() and convert all assignments to either
rcu_assign_pointer() or RCU_INIT_POINTER().
This change prepares for the actual RCUfication of css's and doesn't
introduce any visible behavior change. The conversion is verified
with sparse and all accesses are properly RCU annotated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
For the planned unified hierarchy, each css (cgroup_subsys_state) will
be RCU protected so that it can be created and destroyed individually
while allowing RCU accesses, and cgroup_css() will soon require either
holding cgroup_mutex or RCU read lock.
This patch updates cgroup_file_open() such that it acquires the
associated css under rcu_read_lock(). While cgroup_file_css() usages
in other file operations are safe due to the reference from open,
cgroup_css() wouldn't know that and will still trigger warnings. It'd
be cleanest to store the acquired css in file->prvidate_data for
further file operations but that's already used by seqfile. This
patch instead adds cfent->css to cache the associated css. Note that
while this field is initialized during cfe init, it should only be
considered valid while the file is open.
This patch doesn't change visible behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup->subsys[] will become RCU protected and thus all cgroup_css()
usages should either be under RCU read lock or cgroup_mutex. This
patch updates cgroup_css_from_dir() which returns the matching
cgroup_subsys_state given a directory file and subsys_id so that it
requires RCU read lock and updates its sole user
perf_cgroup_connect().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
With the planned unified hierarchy, css's (cgroup_subsys_state) will
be RCU protected and allowed to be attached and detached dynamically
over the course of a cgroup's lifetime. This means that css's will
stay accessible after being detached from its cgroup - the matching
pointer in cgroup->subsys[] cleared - for ref draining and RCU grace
period.
cgroup core still wants to guarantee that the parent css is never
destroyed before its children and css_parent() always returns the
parent regardless of the state of the child css as long as it's
accessible.
This patch makes css's hold onto their parents and adds css->parent so
that the parent css is never detroyed before its children and can be
determined without consulting the cgroups.
cgroup->dummy_css is also updated to point to the parent dummy_css;
however, it doesn't need to worry about object lifetime as the parent
cgroup is already pinned by the child.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
css (cgroup_subsys_state) will become RCU protected and there will be
two stages which require punting to work item during release. To
prepare for using the work item for multiple times, rename
css->dput_work to css->destroy_work and css_dput_fn() to
css_free_work_fn() and move work item initialization from css init to
right before the actual usage.
This reorganization doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_css() is the accessor for cgroup->subsys[] but is not used
consistently. cgroup->subsys[] will become RCU protected and
cgroup_css() will grow synchronization sanity checks. In preparation,
make all cgroup->subsys[] dereferences use cgroup_css() consistently.
This patch doesn't introduce any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Previously, all css descendant iterators didn't include the origin
(root of subtree) css in the iteration. The reasons were maintaining
consistency with css_for_each_child() and that at the time of
introduction more use cases needed skipping the origin anyway;
however, given that css_is_descendant() considers self to be a
descendant, omitting the origin css has become more confusing and
looking at the accumulated use cases rather clearly indicates that
including origin would result in simpler code overall.
While this is a change which can easily lead to subtle bugs, cgroup
API including the iterators has recently gone through major
restructuring and no out-of-tree changes will be applicable without
adjustments making this a relatively acceptable opportunity for this
type of change.
The conversions are mostly straight-forward. If the iteration block
had explicit origin handling before or after, it's moved inside the
iteration. If not, if (pos == origin) continue; is added. Some
conversions add extra reference get/put around origin handling by
consolidating origin handling and the rest. While the extra ref
operations aren't strictly necessary, this shouldn't cause any
noticeable difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup_css() no longer has any user left outside cgroup.c proper and
we don't want subsystems to grow new usages of the function. cgroup
core should always provide the css to use to the subsystems, which
will make dynamic creation and destruction of css's across the
lifetime of a cgroup much more manageable than exposing the cgroup
directly to subsystems and let them dereference css's from it.
Make cgroup_css() a static function in cgroup.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle. This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.
cgroup_taskset which is used by the subsystem attach methods is the
last cgroup subsystem API which isn't using css as the handle. Update
cgroup_taskset_cur_cgroup() to cgroup_taskset_cur_css() and
cgroup_taskset_for_each() to take @skip_css instead of @skip_cgrp.
The conversions are pretty mechanical. One exception is
cpuset::cgroup_cs(), which lost its last user and got removed.
This patch shouldn't introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle. This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.
cftype->[un]register_event() is among the remaining couple interfaces
which still use struct cgroup. Convert it to cgroup_subsys_state.
The conversion is mostly mechanical and removes the last users of
mem_cgroup_from_cont() and cg_to_vmpressure(), which are removed.
v2: indentation update as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup is in the process of converting to css (cgroup_subsys_state)
from cgroup as the principal subsystem interface handle. This is
mostly to prepare for the unified hierarchy support where css's will
be created and destroyed dynamically but also helps cleaning up
subsystem implementations as css is usually what they are interested
in anyway.
This patch converts task iterators to deal with css instead of cgroup.
Note that under unified hierarchy, different sets of tasks will be
considered belonging to a given cgroup depending on the subsystem in
question and making the iterators deal with css instead cgroup
provides them with enough information about the iteration.
While at it, fix several function comment formats in cpuset.c.
This patch doesn't introduce any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
cgroup_scan_tasks() takes a pointer to struct cgroup_scanner as its
sole argument and the only function of that struct is packing the
arguments of the function call which are consisted of five fields.
It's not too unusual to pack parameters into a struct when the number
of arguments gets excessive or the whole set needs to be passed around
a lot, but neither holds here making it just weird.
Drop struct cgroup_scanner and pass the params directly to
cgroup_scan_tasks(). Note that struct cpuset_change_nodemask_arg was
added to cpuset.c to pass both ->cs and ->newmems pointer to
cpuset_change_nodemask() using single data pointer.
This doesn't make any functional differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently all cgroup_task_iter functions require @cgrp to be passed
in, which is superflous and increases chance of usage error. Make
cgroup_task_iter remember the cgroup being iterated and drop @cgrp
argument from next and end functions.
This patch doesn't introduce any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
cgroup now has multiple iterators and it's quite confusing to have
something which walks over tasks of a single cgroup named cgroup_iter.
Let's rename it to cgroup_task_iter.
While at it, reformat / update comments and replace the overview
comment above the interface function decls with proper function
comments. Such overview can be useful but function comments should be
more than enough here.
This is pure rename and doesn't introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
For some reason, cgroup_advance_iter() is standing lonely all away
from its iter comrades. Relocate it.
This is cosmetic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup is currently in the process of transitioning to using css
(cgroup_subsys_state) as the primary handle instead of cgroup in
subsystem API. For hierarchy iterators, this is beneficial because
* In most cases, css is the only thing subsystems care about anyway.
* On the planned unified hierarchy, iterations for different
subsystems will need to skip over different subtrees of the
hierarchy depending on which subsystems are enabled on each cgroup.
Passing around css makes it unnecessary to explicitly specify the
subsystem in question as css is intersection between cgroup and
subsystem
* For the planned unified hierarchy, css's would need to be created
and destroyed dynamically independent from cgroup hierarchy. Having
cgroup core manage css iteration makes enforcing deref rules a lot
easier.
Most subsystem conversions are straight-forward. Noteworthy changes
are
* blkio: cgroup_to_blkcg() is no longer used. Removed.
* freezer: cgroup_freezer() is no longer used. Removed.
* devices: cgroup_to_devcgroup() is no longer used. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
There are several places where the children list is accessed directly.
This patch converts those places to use cgroup_next_child(). This
will help updating the hierarchy iterators to use @css instead of
@cgrp.
While cgroup_next_child() can be heavy in pathological cases - e.g. a
lot of dead children, this shouldn't cause any noticeable behavior
differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup is transitioning to using css (cgroup_subsys_state) as the main
subsys interface handle instead of cgroup and the iterators will be
updated to use css too. The iterators need to walk the cgroup
hierarchy and return the css's matching the origin css, which is a bit
cumbersome to open code.
This patch converts cgroup_next_sibling() to cgroup_next_child() so
that it can handle all steps of direct child iteration. This will be
used to update iterators to take @css instead of @cgrp. In addition
to the new iteration init handling, cgroup_next_child() is
restructured so that the different branches share the end of iteration
condition check.
This patch doesn't change any behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup.
Please see the previous commit which converts the subsystem methods
for rationale.
This patch converts all cftype file operations to take @css instead of
@cgroup. cftypes for the cgroup core files don't have their subsytem
pointer set. These will automatically use the dummy_css added by the
previous patch and can be converted the same way.
Most subsystem conversions are straight forwards but there are some
interesting ones.
* freezer: update_if_frozen() is also converted to take @css instead
of @cgroup for consistency. This will make the code look simpler
too once iterators are converted to use css.
* memory/vmpressure: mem_cgroup_from_css() needs to be exported to
vmpressure while mem_cgroup_from_cont() can be made static.
Updated accordingly.
* cpu: cgroup_tg() doesn't have any user left. Removed.
* cpuacct: cgroup_ca() doesn't have any user left. Removed.
* hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left.
Removed.
* net_cls: cgrp_cls_state() doesn't have any user left. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
cgroup subsystem API is being converted to use css
(cgroup_subsys_state) as the main handle, which makes things a bit
awkward for subsystem agnostic core features - the "cgroup.*"
interface files and various iterations - a bit awkward as they don't
have a css to use.
This patch adds cgroup->dummy_css which has NULL ->ss and whose only
role is pointing back to the cgroup. This will be used to support
subsystem agnostic features on the coming css based API.
css_parent() is updated to handle dummy_css's. Note that css will
soon grow its own ->parent field and css_parent() will be made
trivial.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Previously, each file read/write operation relied on the inode
reference count pinning the cgroup and simply checked whether the
cgroup was marked dead before proceeding to invoke the per-subsystem
callback. This was rather silly as it didn't have any synchronization
or css pinning around the check and the cgroup may be removed and all
css refs drained between the DEAD check and actual method invocation.
This patch pins the css between open() and release() so that it is
guaranteed to be alive for all file operations and remove the silly
DEAD checks from cgroup_file_read/write().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup is transitioning to using css (cgroup_subsys_state) instead of
cgroup as the primary subsystem handle. The cgroupfs file interface
will be converted to use css's which requires finding out the
subsystem from cftype so that the matching css can be determined from
the cgroup.
This patch adds cftype->ss which points to the subsystem the file
belongs to. The field is initialized while a cftype is being
registered. This makes it unnecessary to explicitly specify the
subsystem for other cftype handling functions. @ss argument dropped
from various cftype handling functions.
This patch shouldn't introduce any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup *
in subsystem implementations for the following reasons.
* With unified hierarchy, subsystems will be dynamically bound and
unbound from cgroups and thus css's (cgroup_subsys_state) may be
created and destroyed dynamically over the lifetime of a cgroup,
which is different from the current state where all css's are
allocated and destroyed together with the associated cgroup. This
in turn means that cgroup_css() should be synchronized and may
return NULL, making it more cumbersome to use.
* Differing levels of per-subsystem granularity in the unified
hierarchy means that the task and descendant iterators should behave
differently depending on the specific subsystem the iteration is
being performed for.
* In majority of the cases, subsystems only care about its part in the
cgroup hierarchy - ie. the hierarchy of css's. Subsystem methods
often obtain the matching css pointer from the cgroup and don't
bother with the cgroup pointer itself. Passing around css fits
much better.
This patch converts all cgroup_subsys methods to take @css instead of
@cgroup. The conversions are mostly straight-forward. A few
noteworthy changes are
* ->css_alloc() now takes css of the parent cgroup rather than the
pointer to the new cgroup as the css for the new cgroup doesn't
exist yet. Knowing the parent css is enough for all the existing
subsystems.
* In kernel/cgroup.c::offline_css(), unnecessary open coded css
dereference is replaced with local variable access.
This patch shouldn't cause any behavior differences.
v2: Unnecessary explicit cgrp->subsys[] deref in css_online() replaced
with local variable @css as suggested by Li Zefan.
Rebased on top of new for-3.12 which includes for-3.11-fixes so
that ->css_free() invocation added by da0a12caff ("cgroup: fix a
leak when percpu_ref_init() fails") is converted too. Suggested
by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Currently, controllers have to explicitly follow the cgroup hierarchy
to find the parent of a given css. cgroup is moving towards using
cgroup_subsys_state as the main controller interface construct, so
let's provide a way to climb the hierarchy using just csses.
This patch implements css_parent() which, given a css, returns its
parent. The function is guarnateed to valid non-NULL parent css as
long as the target css is not at the top of the hierarchy.
freezer, cpuset, cpu, cpuacct, hugetlb, memory, net_cls and devices
are converted to use css_parent() instead of accessing cgroup->parent
directly.
* __parent_ca() is dropped from cpuacct and its usage is replaced with
parent_ca(). The only difference between the two was NULL test on
cgroup->parent which is now embedded in css_parent() making the
distinction moot. Note that eventually a css->parent field will be
added to css and the NULL check in css_parent() will go away.
This patch shouldn't cause any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
css (cgroup_subsys_state) is usually embedded in a subsys specific
data structure. Subsystems either use container_of() directly to cast
from css to such data structure or has an accessor function wrapping
such cast. As cgroup as whole is moving towards using css as the main
interface handle, add and update such accessors to ease dealing with
css's.
All accessors explicitly handle NULL input and return NULL in those
cases. While this looks like an extra branch in the code, as all
controllers specific data structures have css as the first field, the
casting doesn't involve any offsetting and the compiler can trivially
optimize out the branch.
* blkio, freezer, cpuset, cpu, cpuacct and net_cls didn't have such
accessor. Added.
* memory, hugetlb and devices already had one but didn't explicitly
handle NULL input. Updated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, given a cgroup_subsys_state, there's no way to find out
which subsystem the css is for, which we'll need to convert the cgroup
controller API to primarily use @css instead of @cgroup. This patch
adds cgroup_subsys_state->ss which points to the subsystem the @css
belongs to.
While at it, remove the comment about accessing @css->cgroup to
determine the hierarchy. cgroup core will provide API to traverse
hierarchy of css'es and we don't want subsystems to directly walk
cgroup hierarchies anymore.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cpuset uses "const" qualifiers on struct cpuset in some functions;
however, it doesn't work well when a value derived from returned const
pointer has to be passed to an accessor. It's C after all.
Drop the "const" qualifiers except for the trivially leaf ones. This
patch doesn't make any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.
We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward. Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.
Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css(). This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
for-3.12 branch is about to receive invasive updates which are
dependent on da0a12caff ("cgroup: fix a leak when percpu_ref_init()
fails"). Given the amount of scheduled changes, I think it'd less
painful to pull in for-3.11-fixes as preparation. Pull in
for-3.11-fixes into for-3.12.
Signed-off-by: Tejun Heo <tj@kernel.org>
It uses a single label and checks the validity of each pointer. This
is err-prone, and actually we had a bug because one of the check was
insufficient.
Use multi lables as we do in other places.
v2:
- drop initializations of local variables.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This enables us to lookup a cgroup by its id.
v4:
- add a comment for idr_remove() in cgroup_offline_fn().
v3:
- on success, idr_alloc() returns the id but not 0, so fix the BUG_ON()
in cgroup_init().
- pass the right value to idr_alloc() so that the id for dummy cgroup is 0.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Constantly use @cset for css_set variables and use @cgrp as cgroup
variables.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We can use struct cfent instead.
v2:
- remove cgroup_seqfile_release().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This should have been removed in commit d7eeac1913
("cgroup: hold cgroup_mutex before calling css_offline").
While at it, update the comments.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Comment for cpuset_css_offline() was on top of cpuset_css_free().
Move it.
Signed-off-by: Zhao Hongjiang <zhaohongjiang@huawei.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
get rid of the useless forward declaration of the struct cpuset cause the
below define it.
Signed-off-by: Zhao Hongjiang <zhaohongjiang@huawei.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
rebind_subsystems() performs santiy checks even on subsystems which
aren't specified to be added or removed and the checks aren't all that
useful given that these are in a very cold path while the violations
they check would trip up in much hotter paths.
Let's remove these from rebind_subsystems().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Module ref handling in cgroup is rather weird.
parse_cgroupfs_options() grabs all the modules for the specified
subsystems. A module ref is kept if the specified subsystem is newly
bound to the hierarchy. If not, or the operation fails, the refs are
dropped. This scatters module ref handling across multiple functions
making it difficult to track. It also make the function nasty to use
for dynamic subsystem binding which is necessary for the planned
unified hierarchy.
There's nothing which requires the subsystem modules to be pinned
between parse_cgroupfs_options() and rebind_subsystems() in both mount
and remount paths. parse_cgroupfs_options() can just parse and
rebind_subsystems() can handle pinning the subsystems that it wants to
bind, which is a natural part of its task - binding - anyway.
Move module ref handling into rebind_subsystems() which makes the code
a lot simpler - modules are gotten iff it's gonna be bound and put iff
unbound or binding fails.
v2: Li pointed out that if a controller module is unloaded between
parsing and binding, rebind_subsystems() won't notice the missing
controller as it only iterates through existing controllers. Fix
it by updating rebind_subsystems() to compare @added_mask to
@pinned and fail with -ENOENT if they don't match.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
task_cgroup_path_from_hierarchy() was added for the planned new users
and none of the currently planned users wants to know about multiple
hierarchies. This patch drops the multiple hierarchy part and makes
it always return the path in the first non-dummy hierarchy.
As unified hierarchy will always have id 1, this is guaranteed to
return the path for the unified hierarchy if mounted; otherwise, it
will return the path from the hierarchy which happens to occupy the
lowest hierarchy id, which will usually be the first hierarchy mounted
after boot.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Jan Kaluža <jkaluza@redhat.com>
rebind_subsystems() currently fails if the hierarchy has any !root
cgroups; however, on the planned unified hierarchy,
rebind_subsystems() will be used while populated. Move the test to
cgroup_remount(), which is the only place the test is necessary
anyway.
As it's impossible for the other two callers of rebind_subsystems() to
have populated hierarchy, this doesn't make any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, creating and removing cgroup files in the root directory
are handled separately from the actual subsystem binding and unbinding
which happens in rebind_subsystems(). Also, rebind_subsystems() users
aren't handling file creation errors properly. Let's integrate
top_cgroup file handling into rebind_subsystems() so that it's simpler
to use and everyone handles file creation errors correctly.
* On a successful return, rebind_subsystems() is guaranteed to have
created all files of the new subsystems and deleted the ones
belonging to the removed subsystems. After a failure, no file is
created or removed.
* cgroup_remount() no longer needs to make explicit populate/clear
calls as it's all handled by rebind_subsystems(), and it gets proper
error handling automatically.
* cgroup_mount() has been updated such that the root dentry and cgroup
are linked before rebind_subsystems(). Also, the init_cred dancing
and base file handling are moved right above rebind_subsystems()
call and proper error handling for the base files is added. While
at it, add a comment explaining what's going on with the cred thing.
* cgroup_kill_sb() calls rebind_subsystems() to unbind all subsystems
which now implies removing all subsystem files which requires the
directory's i_mutex. Grab it. This means that files on the root
cgroup are removed earlier - they used to be deleted from generic
super_block cleanup from vfs. This doesn't lead to any functional
difference and it's cleaner to do the clean up explicitly for all
files.
Combined with the previous changes, this makes all cgroup file
creation errors handled correctly.
v2: Added comment on init_cred.
v3: Li spotted that cgroup_mount() wasn't freeing tmp_links after base
file addition failure. Fix it by adding free_tmp_links error
handling label.
v4: v3 introduced build bugs which got noticed by Fengguang's awesome
kbuild test robot. Fixed, and shame on me.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
rebind_subsystems() will be updated to handle file creations and
removals with proper error handling and to do that will need to
perform file operations before actually adding the subsystem to the
hierarchy.
To enable such usage, update cgroup_populate/clear_dir() to use
for_each_subsys() instead of for_each_root_subsys() so that they
operate on all subsystems specified by @subsys_mask whether that
subsystem is currently bound to the hierarchy or not.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_populate_dir() didn't use to check whether the actual file
creations were successful and could return success with only subset of
the requested files created, which is nasty.
This patch udpates cgroup_populate_dir() so that it either succeeds
with all files or fails with no file.
v2: The original patch also converted for_each_root_subsys() usages to
for_each_subsys() without explaining why. That part has been
moved to a separate patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_populate/clear_dir() currently take @base_files and adds and
removes, respectively, cgroup_base_files[] to the directory. File
additions and removals are being reorganized for proper error handling
and more dynamic handling for the unified hierarchy, and mixing base
and subsys file handling into the same functions gets a bit confusing.
This patch moves base file handling out of cgroup_populate/clear_dir()
into their users - cgroup_mount(), cgroup_create() and
cgroup_destroy_locked().
Note that this changes the behavior of base file removal. If
@base_files is %true, cgroup_clear_dir() used to delete files
regardless of cftype until there's no files left. Now, only files
with matching cfts are removed. As files can only be created by the
base or registered cftypes, this shouldn't result in any behavior
difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>