LIBBPF_OPTS is implemented as a mix of field declaration and memset
+ assignment. This makes it neither variable declaration nor purely
statements, which is a problem, because you can't mix it with either
other variable declarations nor other function statements, because C90
compiler mode emits warning on mixing all that together.
This patch changes LIBBPF_OPTS into a strictly declaration of variable
and solves this problem, as can be seen in case of bpftool, which
previously would emit compiler warning, if done this way (LIBBPF_OPTS as
part of function variables declaration block).
This patch also renames LIBBPF_OPTS into DECLARE_LIBBPF_OPTS to follow
kernel convention for similar macros more closely.
v1->v2:
- rename LIBBPF_OPTS into DECLARE_LIBBPF_OPTS (Jakub Sitnicki).
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191022172100.3281465-1-andriin@fb.com
There are bpf_program__set_type() and
bpf_program__set_expected_attach_type(), but no corresponding getters,
which seems rather incomplete. Fix this.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191021033902.3856966-3-andriin@fb.com
Add support for BPF_FRK_EXISTS relocation kind to detect existence of
captured field in a destination BTF, allowing conditional logic to
handle incompatible differences between kernels.
Also introduce opt-in relaxed CO-RE relocation handling option, which
makes libbpf emit warning for failed relocations, but proceed with other
relocations. Instruction, for which relocation failed, is patched with
(u32)-1 value.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191015182849.3922287-4-andriin@fb.com
Add new set of bpf_object__open APIs using new approach to optional
parameters extensibility allowing simpler ABI compatibility approach.
This patch demonstrates an approach to implementing libbpf APIs that
makes it easy to extend existing APIs with extra optional parameters in
such a way, that ABI compatibility is preserved without having to do
symbol versioning and generating lots of boilerplate code to handle it.
To facilitate succinct code for working with options, add OPTS_VALID,
OPTS_HAS, and OPTS_GET macros that hide all the NULL, size, and zero
checks.
Additionally, newly added libbpf APIs are encouraged to follow similar
pattern of having all mandatory parameters as formal function parameters
and always have optional (NULL-able) xxx_opts struct, which should
always have real struct size as a first field and the rest would be
optional parameters added over time, which tune the behavior of existing
API, if specified by user.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Kernel version enforcement for kprobes/kretprobes was removed from
5.0 kernel in 6c4fc209fc ("bpf: remove useless version check for prog load").
Since then, BPF programs were specifying SEC("version") just to please
libbpf. We should stop enforcing this in libbpf, if even kernel doesn't
care. Furthermore, libbpf now will pre-populate current kernel version
of the host system, in case we are still running on old kernel.
This patch also removes __bpf_object__open_xattr from libbpf.h, as
nothing in libbpf is relying on having it in that header. That function
was never exported as LIBBPF_API and even name suggests its internal
version. So this should be safe to remove, as it doesn't break ABI.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch implements the core logic for BPF CO-RE offsets relocations.
Every instruction that needs to be relocated has corresponding
bpf_offset_reloc as part of BTF.ext. Relocations are performed by trying
to match recorded "local" relocation spec against potentially many
compatible "target" types, creating corresponding spec. Details of the
algorithm are noted in corresponding comments in the code.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
By returning previously set print callback from libbpf_set_print, it's
possible to restore it, eventually. This is useful when running many
independent test with one default print function, but overriding log
verbosity for particular subset of tests.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF_MAP_TYPE_PERF_EVENT_ARRAY map is often used to send data from BPF program
to user space for additional processing. libbpf already has very low-level API
to read single CPU perf buffer, bpf_perf_event_read_simple(), but it's hard to
use and requires a lot of code to set everything up. This patch adds
perf_buffer abstraction on top of it, abstracting setting up and polling
per-CPU logic into simple and convenient API, similar to what BCC provides.
perf_buffer__new() sets up per-CPU ring buffers and updates corresponding BPF
map entries. It accepts two user-provided callbacks: one for handling raw
samples and one for get notifications of lost samples due to buffer overflow.
perf_buffer__new_raw() is similar, but provides more control over how
perf events are set up (by accepting user-provided perf_event_attr), how
they are handled (perf_event_header pointer is passed directly to
user-provided callback), and on which CPUs ring buffers are created
(it's possible to provide a list of CPUs and corresponding map keys to
update). This API allows advanced users fuller control.
perf_buffer__poll() is used to fetch ring buffer data across all CPUs,
utilizing epoll instance.
perf_buffer__free() does corresponding clean up and unsets FDs from BPF map.
All APIs are not thread-safe. User should ensure proper locking/coordination if
used in multi-threaded set up.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add a wrapper utilizing bpf_link "infrastructure" to allow attaching BPF
programs to raw tracepoints.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow attaching BPF programs to kernel tracepoint BPF hooks specified by
category and name.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add ability to attach to kernel and user probes and retprobes.
Implementation depends on perf event support for kprobes/uprobes.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
bpf_program__attach_perf_event allows to attach BPF program to existing
perf event hook, providing most generic and most low-level way to attach BPF
programs. It returns struct bpf_link, which should be passed to
bpf_link__destroy to detach and free resources, associated with a link.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
bpf_link is an abstraction of an association of a BPF program and one of
many possible BPF attachment points (hooks). This allows to have uniform
interface for detaching BPF programs regardless of the nature of link
and how it was created. Details of creation and setting up of a specific
bpf_link is handled by corresponding attachment methods
(bpf_program__attach_xxx) added in subsequent commits. Once successfully
created, bpf_link has to be eventually destroyed with
bpf_link__destroy(), at which point BPF program is disassociated from
a hook and all the relevant resources are freed.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add const qualifiers to bpf_object/bpf_program/bpf_map arguments for
getter APIs. There is no need for them to not be const pointers.
Verified that
make -C tools/lib/bpf
make -C tools/testing/selftests/bpf
make -C tools/perf
all build without warnings.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Adding a new API libbpf_num_possible_cpus() that helps user with
per-CPU map operations.
Signed-off-by: Hechao Li <hechaol@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
libbpf was recently made aware of the log_level attribute for programs,
used to specify the level of information expected to be dumped by the
verifier. Function bpf_prog_load_xattr() got support for this log_level
parameter.
But some applications using libbpf rely on another function to load
programs, bpf_object__load(), which does accept any parameter for log
level. Create an API function based on bpf_object__load(), but accepting
an "attr" object as a parameter. Then add a log_level field to that
object, so that applications calling the new bpf_object__load_xattr()
can pick the desired log level.
v3:
- Rewrite commit log.
v2:
- We are in a new cycle, bump libbpf extraversion number.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
libbpf doesn't allow passing "prog_flags" during bpf program load in a
couple of load related APIs, "bpf_load_program_xattr", "load_program" and
"bpf_prog_load_xattr".
It makes sense to allow passing "prog_flags" which is useful for
customizing program loading.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This adds libbpf support for BTF Var and DataSec kinds. Main point
here is that libbpf needs to do some preparatory work before the
whole BTF object can be loaded into the kernel, that is, fixing up
of DataSec size taken from the ELF section size and non-static
variable offset which needs to be taken from the ELF's string section.
Upstream LLVM doesn't fix these up since at time of BTF emission
it is too early in the compilation process thus this information
isn't available yet, hence loader needs to take care of it.
Note, deduplication handling has not been in the scope of this work
and needs to be addressed in a future commit.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://reviews.llvm.org/D59441
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This work adds BPF loader support for global data sections
to libbpf. This allows to write BPF programs in more natural
C-like way by being able to define global variables and const
data.
Back at LPC 2018 [0] we presented a first prototype which
implemented support for global data sections by extending BPF
syscall where union bpf_attr would get additional memory/size
pair for each section passed during prog load in order to later
add this base address into the ldimm64 instruction along with
the user provided offset when accessing a variable. Consensus
from LPC was that for proper upstream support, it would be
more desirable to use maps instead of bpf_attr extension as
this would allow for introspection of these sections as well
as potential live updates of their content. This work follows
this path by taking the following steps from loader side:
1) In bpf_object__elf_collect() step we pick up ".data",
".rodata", and ".bss" section information.
2) If present, in bpf_object__init_internal_map() we add
maps to the obj's map array that corresponds to each
of the present sections. Given section size and access
properties can differ, a single entry array map is
created with value size that is corresponding to the
ELF section size of .data, .bss or .rodata. These
internal maps are integrated into the normal map
handling of libbpf such that when user traverses all
obj maps, they can be differentiated from user-created
ones via bpf_map__is_internal(). In later steps when
we actually create these maps in the kernel via
bpf_object__create_maps(), then for .data and .rodata
sections their content is copied into the map through
bpf_map_update_elem(). For .bss this is not necessary
since array map is already zero-initialized by default.
Additionally, for .rodata the map is frozen as read-only
after setup, such that neither from program nor syscall
side writes would be possible.
3) In bpf_program__collect_reloc() step, we record the
corresponding map, insn index, and relocation type for
the global data.
4) And last but not least in the actual relocation step in
bpf_program__relocate(), we mark the ldimm64 instruction
with src_reg = BPF_PSEUDO_MAP_VALUE where in the first
imm field the map's file descriptor is stored as similarly
done as in BPF_PSEUDO_MAP_FD, and in the second imm field
(as ldimm64 is 2-insn wide) we store the access offset
into the section. Given these maps have only single element
ldimm64's off remains zero in both parts.
5) On kernel side, this special marked BPF_PSEUDO_MAP_VALUE
load will then store the actual target address in order
to have a 'map-lookup'-free access. That is, the actual
map value base address + offset. The destination register
in the verifier will then be marked as PTR_TO_MAP_VALUE,
containing the fixed offset as reg->off and backing BPF
map as reg->map_ptr. Meaning, it's treated as any other
normal map value from verification side, only with
efficient, direct value access instead of actual call to
map lookup helper as in the typical case.
Currently, only support for static global variables has been
added, and libbpf rejects non-static global variables from
loading. This can be lifted until we have proper semantics
for how BPF will treat multi-object BPF loads. From BTF side,
libbpf will set the value type id of the types corresponding
to the ".bss", ".data" and ".rodata" names which LLVM will
emit without the object name prefix. The key type will be
left as zero, thus making use of the key-less BTF option in
array maps.
Simple example dump of program using globals vars in each
section:
# bpftool prog
[...]
6784: sched_cls name load_static_dat tag a7e1291567277844 gpl
loaded_at 2019-03-11T15:39:34+0000 uid 0
xlated 1776B jited 993B memlock 4096B map_ids 2238,2237,2235,2236,2239,2240
# bpftool map show id 2237
2237: array name test_glo.bss flags 0x0
key 4B value 64B max_entries 1 memlock 4096B
# bpftool map show id 2235
2235: array name test_glo.data flags 0x0
key 4B value 64B max_entries 1 memlock 4096B
# bpftool map show id 2236
2236: array name test_glo.rodata flags 0x80
key 4B value 96B max_entries 1 memlock 4096B
# bpftool prog dump xlated id 6784
int load_static_data(struct __sk_buff * skb):
; int load_static_data(struct __sk_buff *skb)
0: (b7) r6 = 0
; test_reloc(number, 0, &num0);
1: (63) *(u32 *)(r10 -4) = r6
2: (bf) r2 = r10
; int load_static_data(struct __sk_buff *skb)
3: (07) r2 += -4
; test_reloc(number, 0, &num0);
4: (18) r1 = map[id:2238]
6: (18) r3 = map[id:2237][0]+0 <-- direct addr in .bss area
8: (b7) r4 = 0
9: (85) call array_map_update_elem#100464
10: (b7) r1 = 1
; test_reloc(number, 1, &num1);
[...]
; test_reloc(string, 2, str2);
120: (18) r8 = map[id:2237][0]+16 <-- same here at offset +16
122: (18) r1 = map[id:2239]
124: (18) r3 = map[id:2237][0]+16
126: (b7) r4 = 0
127: (85) call array_map_update_elem#100464
128: (b7) r1 = 120
; str1[5] = 'x';
129: (73) *(u8 *)(r9 +5) = r1
; test_reloc(string, 3, str1);
130: (b7) r1 = 3
131: (63) *(u32 *)(r10 -4) = r1
132: (b7) r9 = 3
133: (bf) r2 = r10
; int load_static_data(struct __sk_buff *skb)
134: (07) r2 += -4
; test_reloc(string, 3, str1);
135: (18) r1 = map[id:2239]
137: (18) r3 = map[id:2235][0]+16 <-- direct addr in .data area
139: (b7) r4 = 0
140: (85) call array_map_update_elem#100464
141: (b7) r1 = 111
; __builtin_memcpy(&str2[2], "hello", sizeof("hello"));
142: (73) *(u8 *)(r8 +6) = r1 <-- further access based on .bss data
143: (b7) r1 = 108
144: (73) *(u8 *)(r8 +5) = r1
[...]
For Cilium use-case in particular, this enables migrating configuration
constants from Cilium daemon's generated header defines into global
data sections such that expensive runtime recompilations with LLVM can
be avoided altogether. Instead, the ELF file becomes effectively a
"template", meaning, it is compiled only once (!) and the Cilium daemon
will then rewrite relevant configuration data from the ELF's .data or
.rodata sections directly instead of recompiling the program. The
updated ELF is then loaded into the kernel and atomically replaces
the existing program in the networking datapath. More info in [0].
Based upon recent fix in LLVM, commit c0db6b6bd444 ("[BPF] Don't fail
for static variables").
[0] LPC 2018, BPF track, "ELF relocation for static data in BPF",
http://vger.kernel.org/lpc-bpf2018.html#session-3
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow bpf_prog_load_xattr() to specify log_level for program loading.
Teach libbpf to accept log_level with bit 2 set.
Increase default BPF_LOG_BUF_SIZE from 256k to 16M.
There is no downside to increase it to a maximum allowed by old kernels.
Existing 256k limit caused ENOSPC errors and users were not able to see
verifier error which is printed at the end of the verifier log.
If ENOSPC is hit, double the verifier log and try again to capture
the verifier error.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently, bpf_prog_info includes 9 arrays. The user has the option to
fetch any combination of these arrays. However, this requires a lot of
handling.
This work becomes more tricky when we need to store bpf_prog_info to a
file, because these arrays are allocated independently.
This patch introduces 'struct bpf_prog_info_linear', which stores arrays
of bpf_prog_info in continuous memory.
Helper functions are introduced to unify the work to get different sets
of bpf_prog_info. Specifically, bpf_program__get_prog_info_linear()
allows the user to select which arrays to fetch, and handles details for
the user.
Please see the comments right before 'enum bpf_prog_info_array' for more
details and examples.
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lkml.kernel.org/r/ce92c091-e80d-a0c1-4aa0-987706c42b20@iogearbox.net
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: kernel-team@fb.com
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stanislav Fomichev <sdf@google.com>
Link: http://lkml.kernel.org/r/20190312053051.2690567-3-songliubraving@fb.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The libbpf_print_fn_t typedef uses va_list without including the header
where that type is defined, stdarg.h, breaking in places where we're
unlucky for that type not to be already defined by some previously
included header.
Noticed while building on fedora 24 cross building tools/perf to the ARC
architecture using the uClibc C library:
28 fedora:24-x-ARC-uClibc : FAIL arc-linux-gcc (ARCompact ISA Linux uClibc toolchain 2017.09-rc2) 7.1.1 20170710
CC /tmp/build/perf/tests/llvm.o
In file included from tests/llvm.c:3:0:
/git/linux/tools/lib/bpf/libbpf.h:57:20: error: unknown type name 'va_list'
const char *, va_list ap);
^~~~~~~
/git/linux/tools/lib/bpf/libbpf.h:59:34: error: unknown type name 'libbpf_print_fn_t'
LIBBPF_API void libbpf_set_print(libbpf_print_fn_t fn);
^~~~~~~~~~~~~~~~~
mv: cannot stat '/tmp/build/perf/tests/.llvm.o.tmp': No such file or directory
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Jakub Kicinski <jakub.kicinski@netronome.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Quentin Monnet <quentin.monnet@netronome.com>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Yonghong Song <yhs@fb.com>
Fixes: a8a1f7d09c ("libbpf: fix libbpf_print")
Link: https://lkml.kernel.org/n/tip-5270n2quu2gqz22o7itfdx00@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
For historical reasons the helper to loop over maps in an object
is called bpf_map__for_each while it really should be called
bpf_object__for_each_map. Rename and add a correctly named
define for backward compatibility.
Switch all in-tree users to the correct name (Quentin).
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add new accessor for bpf_object to get opaque struct btf * from it.
struct btf * is needed for all operations with BTF and it's present in
bpf_object. The only thing missing is a way to get it.
Example use-case is to get BTF key_type_id and value_type_id for a map in
bpf_object. It can be done with btf__get_map_kv_tids() but that function
requires struct btf *.
Similar API can be added for struct btf_ext but no use-case for it yet.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add bpf_map__resize() to change max_entries for a map.
Quite often necessary map size is unknown at compile time and can be
calculated only at run time.
Currently the following approach is used to do so:
* bpf_object__open_buffer() to open Elf file from a buffer;
* bpf_object__find_map_by_name() to find relevant map;
* bpf_map__def() to get map attributes and create struct
bpf_create_map_attr from them;
* update max_entries in bpf_create_map_attr;
* bpf_create_map_xattr() to create new map with updated max_entries;
* bpf_map__reuse_fd() to replace the map in bpf_object with newly
created one.
And after all this bpf_object can finally be loaded. The map will have
new size.
It 1) is quite a lot of steps; 2) doesn't take BTF into account.
For "2)" even more steps should be made and some of them require changes
to libbpf (e.g. to get struct btf * from bpf_object).
Instead the whole problem can be solved by introducing simple
bpf_map__resize() API that checks the map and sets new max_entries if
the map is not loaded yet.
So the new steps are:
* bpf_object__open_buffer() to open Elf file from a buffer;
* bpf_object__find_map_by_name() to find relevant map;
* bpf_map__resize() to update max_entries.
That's much simpler and works with BTF.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
With the recent print rework we now have the following problem:
pr_{warning,info,debug} expand to __pr which calls libbpf_print.
libbpf_print does va_start and calls __libbpf_pr with va_list argument.
In __base_pr we again do va_start. Because the next argument is a
va_list, we don't get correct pointer to the argument (and print noting
in my case, I don't know why it doesn't crash tbh).
Fix this by changing libbpf_print_fn_t signature to accept va_list and
remove unneeded calls to va_start in the existing users.
Alternatively, this can we solved by exporting __libbpf_pr and
changing __pr macro to (and killing libbpf_print):
{
if (__libbpf_pr)
__libbpf_pr(level, "libbpf: " fmt, ##__VA_ARGS__)
}
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, the libbpf API function libbpf_set_print()
takes three function pointer parameters for warning, info
and debug printout respectively.
This patch changes the API to have just one function pointer
parameter and the function pointer has one additional
parameter "debugging level". So if in the future, if
the debug level is increased, the function signature
won't change.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A global function libbpf_print, which is invisible
outside the shared library, is defined to print based
on levels. The pr_warning, pr_info and pr_debug
macros are moved into the newly created header
common.h. So any .c file including common.h can
use these macros directly.
Currently btf__new and btf_ext__new API has an argument getting
__pr_debug function pointer into btf.c so the debugging information
can be printed there. This patch removed this parameter
from btf__new and btf_ext__new and directly using pr_debug in btf.c.
Another global function libbpf_print_level_available, also
invisible outside the shared library, can test
whether a particular level debug printing is
available or not. It is used in btf.c to
test whether DEBUG level debug printing is availabl or not,
based on which the log buffer will be allocated when loading
btf to the kernel.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since we have a dedicated netlink attributes for xdp setup on a
particular interface, it is now possible to retrieve the program id that
is currently attached to the interface. The use case is targeted for
sample xdp programs, which will store the program id just after loading
bpf program onto iface. On shutdown, the sample will make sure that it
can unload the program by querying again the iface and verifying that
both program id's matches.
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
XDP samples are mostly cooperating with eBPF maps through their file
descriptors. In case of a eBPF program that contains multiple maps it
might be tiresome to iterate through them and call bpf_map__fd for each
one. Add a helper mostly based on bpf_object__find_map_by_name, but
instead of returning the struct bpf_map pointer, return map fd.
Suggested-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Similarly to what was done for program types and map types, add a set of
probes to test the availability of the different eBPF helper functions
on the current system.
For each known program type, all known helpers are tested, in order to
establish a compatibility matrix. Output is provided as a set of lists
of available helpers, one per program type.
Sample output:
# bpftool feature probe kernel
...
Scanning eBPF helper functions...
eBPF helpers supported for program type socket_filter:
- bpf_map_lookup_elem
- bpf_map_update_elem
- bpf_map_delete_elem
...
eBPF helpers supported for program type kprobe:
- bpf_map_lookup_elem
- bpf_map_update_elem
- bpf_map_delete_elem
...
# bpftool --json --pretty feature probe kernel
{
...
"helpers": {
"socket_filter_available_helpers": ["bpf_map_lookup_elem", \
"bpf_map_update_elem","bpf_map_delete_elem", ...
],
"kprobe_available_helpers": ["bpf_map_lookup_elem", \
"bpf_map_update_elem","bpf_map_delete_elem", ...
],
...
}
}
v5:
- In libbpf.map, move global symbol to the new LIBBPF_0.0.2 section.
v4:
- Use "enum bpf_func_id" instead of "__u32" in bpf_probe_helper()
declaration for the type of the argument used to pass the id of
the helper to probe.
- Undef BPF_HELPER_MAKE_ENTRY after using it.
v3:
- Do not pass kernel version from bpftool to libbpf probes (kernel
version for testing program with kprobes is retrieved directly from
libbpf).
- Dump one list of available helpers per program type (instead of one
list of compatible program types per helper).
v2:
- Move probes from bpftool to libbpf.
- Test all program types for each helper, print a list of working prog
types for each helper.
- Fall back on include/uapi/linux/bpf.h for names and ids of helpers.
- Remove C-style macros output from this patch.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add new probes for eBPF map types, to detect what are the ones available
on the system. Try creating one map of each type, and see if the kernel
complains.
Sample output:
# bpftool feature probe kernel
...
Scanning eBPF map types...
eBPF map_type hash is available
eBPF map_type array is available
eBPF map_type prog_array is available
...
# bpftool --json --pretty feature probe kernel
{
...
"map_types": {
"have_hash_map_type": true,
"have_array_map_type": true,
"have_prog_array_map_type": true,
...
}
}
v5:
- In libbpf.map, move global symbol to the new LIBBPF_0.0.2 section.
v3:
- Use a switch with all enum values for setting specific map parameters,
so that gcc complains at compile time (-Wswitch-enum) if new map types
were added to the kernel but libbpf was not updated.
v2:
- Move probes from bpftool to libbpf.
- Remove C-style macros output from this patch.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce probes for supported BPF program types in libbpf, and call it
from bpftool to test what types are available on the system. The probe
simply consists in loading a very basic program of that type and see if
the verifier complains or not.
Sample output:
# bpftool feature probe kernel
...
Scanning eBPF program types...
eBPF program_type socket_filter is available
eBPF program_type kprobe is available
eBPF program_type sched_cls is available
...
# bpftool --json --pretty feature probe kernel
{
...
"program_types": {
"have_socket_filter_prog_type": true,
"have_kprobe_prog_type": true,
"have_sched_cls_prog_type": true,
...
}
}
v5:
- In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section.
- Rename (non-API function) prog_load() as probe_load().
v3:
- Get kernel version for checking kprobes availability from libbpf
instead of from bpftool. Do not pass kernel_version as an argument
when calling libbpf probes.
- Use a switch with all enum values for setting specific program
parameters just before probing, so that gcc complains at compile time
(-Wswitch-enum) if new prog types were added to the kernel but libbpf
was not updated.
- Add a comment in libbpf.h about setrlimit() usage to allow many
consecutive probe attempts.
v2:
- Move probes from bpftool to libbpf.
- Remove C-style macros output from this patch.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
idea is pretty simple. for specified map (pointed by struct bpf_map)
we would provide descriptor of already loaded map, which is going to be
used as a prototype for inner map. proposed workflow:
1) open bpf's object (bpf_object__open)
2) create bpf's map which is going to be used as a prototype
3) find (by name) map-in-map which you want to load and update w/
descriptor of inner map w/ a new helper from this patch
4) load bpf program w/ bpf_object__load
Signed-off-by: Nikita V. Shirokov <tehnerd@tehnerd.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Wrap headers in extern "C", to turn off C++ mangling.
This simplifies including libbpf in c++ and linking against it.
v2 changes:
* do the same for btf.h
v3 changes:
* test_libbpf.cpp to test for possible future c++ breakages
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
bpftool will use bpf_object__pin in the next commits to pin all programs
and maps from the file; in case of a partial failure, we need to get
back to the clean state (undo previous program/map pins).
As part of a cleanup, I've added and exported separate routines to
pin all maps (bpf_object__pin_maps) and progs (bpf_object__pin_programs)
of an object.
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Simplify bpf_perf_event_read_simple() a bit and fix up some minor
things along the way: the return code in the header is not of type
int but enum bpf_perf_event_ret instead. Once callback indicated
to break the loop walking event data, it also needs to be consumed
in data_tail since it has been processed already.
Moreover, bpf_perf_event_print_t callback should avoid void * as
we actually get a pointer to struct perf_event_header and thus
applications can make use of container_of() to have type checks.
The walk also doesn't have to use modulo op since the ring size is
required to be power of two.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Make global symbols in libbpf DSO hidden by default with
-fvisibility=hidden and export symbols that are part of ABI explicitly
with __attribute__((visibility("default"))).
This is common practice that should prevent from accidentally exporting
a symbol, that is not supposed to be a part of ABI what, in turn,
improves both libbpf developer- and user-experiences. See [1] for more
details.
Export control becomes more important since more and more projects use
libbpf.
The patch doesn't export a bunch of netlink related functions since as
agreed in [2] they'll be reworked. That doesn't break bpftool since
bpftool links libbpf statically.
[1] https://www.akkadia.org/drepper/dsohowto.pdf (2.2 Export Control)
[2] https://www.mail-archive.com/netdev@vger.kernel.org/msg251434.html
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Multiple map definition structures exist and user may have non-zero
fields in their definition that are not recognized by bpftool and
libbpf. The normal behavior is to then fail loading the map. Although
this is a good default behavior users may still want to load the map
for debugging or other reasons. This patch adds a --mapcompat flag
that can be used to override the default behavior and allow loading
the map even when it has additional non-zero fields.
For now the only user is 'bpftool prog' we can switch over other
subcommands as needed. The library exposes an API that consumes
a flags field now but I kept the original API around also in case
users of the API don't want to expose this. The flags field is an
int in case we need more control over how the API call handles
errors/features/etc in the future.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
libbpf is maturing as a library and gaining features that no other bpf libraries support
(BPF Type Format, bpf to bpf calls, etc)
Many Apache2 licensed projects (like bcc, bpftrace, gobpf, cilium, etc)
would like to use libbpf, but cannot do this yet, since Apache Foundation explicitly
states that LGPL is incompatible with Apache2.
Hence let's relicense libbpf as dual license LGPL-2.1 or BSD-2-Clause,
since BSD-2 is compatible with Apache2.
Dual LGPL or Apache2 is invalid combination.
Fix license mistake in Makefile as well.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Arnaldo Carvalho de Melo <acme@kernel.org>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Beckett <david.beckett@netronome.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Joe Stringer <joe@ovn.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Wang Nan <wangnan0@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Make bpf_program__load consistent with other interfaces: use __u32
instead of u32. That in turn fixes build of samples:
In file included from ./samples/bpf/trace_output_user.c:21:0:
./tools/lib/bpf/libbpf.h:132:9: error: unknown type name ‘u32’
u32 kern_version);
^
Fixes: commit 29cd77f416 ("libbpf: Support loading individual progs")
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Rename include guards to have consistent names "__LIBBPF_<header_name>".
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
libbpf is used more and more outside kernel tree. That means the library
should follow good practices in library design and implementation to
play well with third party code that uses it.
One of such practices is to have a common prefix (or a few) for every
interface, function or data structure, library provides. I helps to
avoid name conflicts with other libraries and keeps API consistent.
Inconsistent names in libbpf already cause problems in real life. E.g.
an application can't use both libbpf and libnl due to conflicting
symbols.
Having common prefix will help to fix current and avoid future problems.
libbpf already uses the following prefixes for its interfaces:
* bpf_ for bpf system call wrappers, program/map/elf-object
abstractions and a few other things;
* btf_ for BTF related API;
* libbpf_ for everything else.
The patch adds libbpf_ prefix to functions and typedef in libbpf.h that
use none of mentioned above prefixes and doesn't fit well into the first
two categories.
Since affected part of API is used in bpftool, the patch applies
corresponding change to bpftool as well. Having it in a separate patch
will cause a state of tree where bpftool is broken what may not be a
good idea.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This typedef is used only by implementation in netlink.c. Nothing uses
it in public API. Move it to netlink.c.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow the individual program load to be invoked. This will help with
testing, where a single ELF may contain several sections, some of which
denote subprograms that are expected to fail verification, along with
some which are expected to pass verification. By allowing programs to be
iterated and individually loaded, each program can be independently
checked against its expected verification result.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
There is a common use-case when ELF object contains multiple BPF
programs and every program has its own section name. If it's cgroup-bpf
then programs have to be 1) loaded and 2) attached to a cgroup.
It's convenient to have information necessary to load BPF program
together with program itself. This is where section name works fine in
conjunction with libbpf_prog_type_by_name that identifies prog_type and
expected_attach_type and these can be used with BPF_PROG_LOAD.
But there is currently no way to identify attach_type by section name
and it leads to messy code in user space that reinvents guessing logic
every time it has to identify attach type to use with BPF_PROG_ATTACH.
The patch introduces libbpf_attach_type_by_name that guesses attach type
by section name if a program can be attached.
The difference between expected_attach_type provided by
libbpf_prog_type_by_name and attach_type provided by
libbpf_attach_type_by_name is the former is used at BPF_PROG_LOAD time
and can be zero if a program of prog_type X has only one corresponding
attach type Y whether the latter provides specific attach type to use
with BPF_PROG_ATTACH.
No new section names were added to section_names array. Only existing
ones were reorganized and attach_type was added where appropriate.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch added a few netlink attribute parsing functions
and the netlink API functions to query networking links, tc classes,
tc qdiscs and tc filters. For example, the following API is
to get networking links:
int nl_get_link(int sock, unsigned int nl_pid,
dump_nlmsg_t dump_link_nlmsg,
void *cookie);
Note that when the API is called, the user also provided a
callback function with the following signature:
int (*dump_nlmsg_t)(void *cookie, void *msg, struct nlattr **tb);
The "cookie" is the parameter the user passed to the API and will
be available for the callback function.
The "msg" is the information about the result, e.g., ifinfomsg or
tcmsg. The "tb" is the parsed netlink attributes.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-08-07
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add cgroup local storage for BPF programs, which provides a fast
accessible memory for storing various per-cgroup data like number
of transmitted packets, etc, from Roman.
2) Support bpf_get_socket_cookie() BPF helper in several more program
types that have a full socket available, from Andrey.
3) Significantly improve the performance of perf events which are
reported from BPF offload. Also convert a couple of BPF AF_XDP
samples overto use libbpf, both from Jakub.
4) seg6local LWT provides the End.DT6 action, which allows to
decapsulate an outer IPv6 header containing a Segment Routing Header.
Adds this action now to the seg6local BPF interface, from Mathieu.
5) Do not mark dst register as unbounded in MOV64 instruction when
both src and dst register are the same, from Arthur.
6) Define u_smp_rmb() and u_smp_wmb() to their respective barrier
instructions on arm64 for the AF_XDP sample code, from Brian.
7) Convert the tcp_client.py and tcp_server.py BPF selftest scripts
over from Python 2 to Python 3, from Jeremy.
8) Enable BTF build flags to the BPF sample code Makefile, from Taeung.
9) Remove an unnecessary rcu_read_lock() in run_lwt_bpf(), from Taehee.
10) Several improvements to the README.rst from the BPF documentation
to make it more consistent with RST format, from Tobin.
11) Replace all occurrences of strerror() by calls to strerror_r()
in libbpf and fix a FORTIFY_SOURCE build error along with it,
from Thomas.
12) Fix a bug in bpftool's get_btf() function to correctly propagate
an error via PTR_ERR(), from Yue.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The BTF conflicts were simple overlapping changes.
The virtio_net conflict was an overlap of a fix of statistics counter,
happening alongisde a move over to a bonafide statistics structure
rather than counting value on the stack.
Signed-off-by: David S. Miller <davem@davemloft.net>