Davinci platforms may define a default queue for each channel
controller. If one is not defined, the default queue is set to EVENTQ_1.
However, there's no way to distinguish between an unset default queue to
one that is set to EVENTQ_0, as EVENTQ_0 = 0.
Explicitly specify the default queue for all channel controllers on all
Davinci platforms to EVENTQ_1, and don't overwrite it in the EDMA probe
function.
One exception is the DA850 board, for which EVENTQ_1 is not a valid
option for its second channel controller. Use EVENTQ_0 instead for that
channel controller.
Signed-off-by: Ido Yariv <ido@wizery.com>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
The <mach/gpio.h> file is included from upper directories
and deal with generic GPIO and gpiolib stuff. Break out the
platform and driver specific defines and functions into its own
header file.
Cc: Sekhar Nori <nsekhar@ti.com>
Cc: Kevin Hilman <khilman@ti.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Multi-component commit f0fba2ad broke a few things which this patch should
fix. Tested on the DM355 EVM. I've been as careful as I can, but it would be
good if those with access to other Davinci boards could test.
--
The multi-component commit put the initialisation of
snd_soc_dai.[capture|playback]_dma_data into snd_soc_dai_ops.hw_params of the
McBSP, McASP & VCIF drivers (davinci-i2s.c, davinci-mcasp.c & davinci-vcif.c).
The initialisation had to be moved from the probe function in these drivers
because davinci_*_dai changed from snd_soc_dai to snd_soc_dai_driver.
Unfortunately, the DMA params pointer is needed by davinci_pcm_open (in
davinci-pcm.c) before hw_params is called. I have moved the initialisation to
a new snd_soc_dai_ops.startup function in each of these drivers. This fix
indicates that all platforms that use davinci-pcm must have been broken and
need to test with this fix.
--
The multi-component commit also changed the McBSP driver name from
"davinci-asp" to "davinci-i2s" in davinci-i2s.c without updating the board
level references to the driver name. This change is understandable, as there
is a similarly named "davinci-mcasp" driver in davinci-mcasp.c.
There is probably no 'correct' name for this driver. The DM6446 datasheet
calls it the "ASP" and describes it as a "specialised McBSP". The DM355
datasheet calls it the "ASP" and describes it as a "specialised ASP". The
DM365 datasheet calls it the "McBSP". Rather than fix this problem by
reverting to "davinci-asp", I've elected to avoid future confusion with the
"davinci-mcasp" driver by changing it to "davinci-mcbsp", which is also
consistent with the names of the functions in the driver. There are other
fixes required, so it was never going to be as simple as a revert anyway.
--
The DM365 only has one McBSP port (of the McBSP platforms, only the DM355 has
2 ports), so I've changed the the id of the platform_device from 0 to -1.
--
In davinci-evm.c, the DM6446 EVM can no longer share a snd_soc_dai_link
structure with the DM355 EVM as they use different cpu DAI names (the DM355
has 2 ports and the EVM uses the second port, but the DM6446 only has 1 port).
This also means that the 2 boards need different snd_soc_card structures.
--
The codec_name entries in davinci-evm.c didn't match the i2c ids in the board
files. I have only checked and fixed the details of the names used for the
McBSP based platforms. Someone with a McASP based platform (eg DA8xx) should
check the others.
Signed-off-by: Chris Paulson-Ellis <chris@edesix.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
On Davinci SRAM is mapped as MT_DEVICE becasue of the section
mapping pre-requisite instead of intended MT_MEMORY_NONCACHED
Since the section mapping limitation gets fixed with first
patch in this series, the MT_MEMORY_NONCACHED can be used now.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Kevin Hilman <khilman@deeprootsystems.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch removes davinci architecture code that has now been rendered
useless by the previous patches in the MDIO separation series.
In addition, the earlier phy_mask definitions have been replaced with
corresponding phy_id definitions.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Tested-by: Michael Williamson <michael.williamson@criticallink.com>
Tested-by: Caglar Akyuz <caglarakyuz@gmail.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch adds mdio platform devices on SoCs that have the necessary
hardware. Clock lookup entries (aliases) have also been added, so that the
MDIO and EMAC drivers can independently enable/disable a shared underlying
clock. Further, the EMAC MMR region has been split down into separate MDIO
and EMAC regions.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: Michael Williamson <michael.williamson@criticallink.com>
Tested-by: Caglar Akyuz <caglarakyuz@gmail.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the EDMA driver to expect the channel
controller (CC) infomation passed on by the platform as a fixed
size (EDMA_MAX_CC) array of pointers to structures.
Doing so helps catch errors of the sort where the resource
structure has information for more channel controllers than
the number channel controller info structures defined.
Such insufficient platform data would lead to illegal memory
accesses.
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the pinmux implementation so as to ioremap() the pinmux
register area on first use.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch implements the following:
- interrupt initialization uses ioremap() instead of passing a virtual address
via davinci_soc_info.
- machine definitions directly point to cp_intc_init() or davinci_irq_init()
- davinci_intc_type and davinci_intc_base now get initialized in controller
specific init functions instead of davinci_common_init()
- minor fix in davinci_irq_init() to use intc_irq_num instead of
DAVINCI_N_AINTC_IRQ
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the psc and clock control code to use ioremap()ed
registers.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch replaces the jtag id base info in davinci_soc_info with a physical
address which is then ioremap()ed within common code.
This patch (in combination with a similar change for PSC) will allow us to
eliminate the SYSCFG nastiness in DA8xx code.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch modifies the gpio_base definition in davinci_soc_info to be a
physical address, which is then ioremap()ed by the gpio initialization
function.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The earlier watchdog reset mechanism had a couple of limitations. First, it
embedded a reference to "davinci_wdt_device" inside common code. This
forced all derived platforms (da8xx and tnetv107x) to define such a device.
This also would have caused problems in including multiple socs in a single
build due to symbol redefinition.
With this patch, davinci_watchdog_reset() now takes the platform device as an
argument. The davinci_soc_info struct has been extended to include a reset
function and a watchdog platform_device. arch_reset() then uses these
elements to reset the system in a SoC specific fashion.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Tested-by: Sandeep Paulraj <s-paulraj@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Pinmux registers are sequential, and do not need to be enumerated out as they
currently are. This reduces code volume and keeps things simple.
If some future SoC comes up with a discontiguous register map, PINMUX() can
then be expanded with local token pasting.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
This patch allows for gpio controllers that deviate from those found on
traditional davinci socs. davinci_soc_info has an added field to indicate the
soc-specific gpio controller type. The gpio initialization code then bails
out if necessary.
More elements (tnetv107x) to be added later into enum davinci_gpio_type.
Signed-off-by: Cyril Chemparathy <cyril@ti.com>
Tested-by: Sandeep Paulraj <s-paulraj@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
* 'davinci-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/khilman/linux-davinci: (40 commits)
DaVinci DM365: Adding support for SPI EEPROM
DaVinci DM365: Adding DM365 SPI support
DaVinci DM355: Modifications to DM355 SPI support
DaVinci: SPI: Adding header file for SPI support.
davinci: dm646x: CDCE clocks: davinci_clk converted to clk_lookup
davinci: clkdev cleanup: remove clk_lookup wrapper, use clkdev_add_table()
DaVinci: DM365: Voice codec support for the DM365 SoC
davinci: clock: let clk->set_rate function sleep
Add SDA and SCL pin numbers to i2c platform data
davinci: da8xx/omap-l1xx: Add EDMA platform data for da850/omap-l138
davinci: build list of unused EDMA events dynamically
davinci: Fix edma_alloc_channel api for EDMA_CHANNEL_ANY case
davinci: Keep count of channel controllers on a platform
davinci: Correct return value of edma_alloc_channel api
davinci: add CDCE949 support on DM6467 EVM
davinci: add support for CDCE949 clock synthesizer
davinci: da850/omap-l138 EVM: register for suspend support
davinci: da850/omap-l138: add support for SoC suspend
davinci: add power management support
DaVinci: DM365: Changing default queue for DM365.
...
Remove unneeded 'struct davinci_clk' wrapper around 'struct clk_lookup'
and use clkdev_add_table() to add the list of clocks in one go.
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Currently, the edma_noevent list is passed from platform data.
But on some architectures, there will be many EDMA channels
which will not be used at all. This patch scans all the
platform devices and then builds a list of events which are
not being used. The unused event list will be used to allocate
EDMA channels in case of EDMA_CHANNEL_ANY usage instead of the
edma_noevent being used earlier for this purpose.
This patch is based on David Brownells's suggestion at
http://article.gmane.org/gmane.linux.davinci/15176.
Signed-off-by: Sudhakar Rajashekhara <sudhakar.raj@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The Neuros OSD 2.0 is the hardware component of the Neuros Open
Internet Television Platform. Hardware is very close to Ti DM644X-EVM board.
It has: DM6446M02 module with 256MB NAND, 256MB RAM, TLV320AIC32 AIC,
USB, Ethernet, SD/MMC, UART, THS8200, TVP7000 for video.
Additionaly realtime clock, IR remote control receiver,
IR Blaster based on MSP430 (firmware although is different
from used in DM644X-EVM), internal ATA-6 3.5” HDD drive
with PATA interface, two muxed red-green leds.
For more information please refer to
http://wiki.neurostechnology.com/index.php/OSD_2.0_HD
Signed-off-by: Andrey Porodko <panda@chelcom.ru>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
There have accumulated quite a lot of them after the code reorganizations...
In several cases I had to replace #include <linux/dma-mapping.h> which wasn't
needed directly but happened to #include <linux/err.h> which was needed.
Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
DM644x platform and board setup
This adds platform and board setup changes required to support
vpfe capture driver on DM644x
Tested video capture on DM6446 with tvp514x driver
Reviewed-by: Hans Verkuil <hverkuil@xs4all.nl>
Reviewed-by: Laurent Pinchart <laurent.pinchart@skynet.be>
Reviewed-by: David Brownell <david-b@pacbell.net>
Signed-off-by: Muralidharan Karicheri <m-karicheri2@ti.com>
Signed-off-by: Denys Dmytriyenko <denis@denix.org>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
There is no need to pass clock name strings in platform_data.
Instead, setup clkdev nodes to have correct ASoC device names.
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
1) Registers the platform devices for ASP on dm355, dm644x and dm646x
so that the machine driver can probe to get ASP related platform
data.
2) Move towards definition of the asp clocks using physical name(for
dm355 and dm644x)
3) Add platform data to board specific files.
Signed-off-by: Naresh Medisetty <naresh@ti.com>
Signed-off-by: Chaithrika U S <chaithrika@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
JTAG ID for DM644x silicon revision 2.1 has changed. An entry for the new
silicon revision needs to be added to the davinci_id structure. Without
this addition, EVMs with new silicon revision fail to boot the kernel.
Signed-off-by: Sudhakar Rajashekhara <sudhakar.raj@ti.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
- restructure to support multiple channel controllers by using
additional struct resources for each CC
- interface changes visible to EDMA clients
Introduce macros to build IDs from controller and channel number,
and to extract them. Modify the edma_alloc_slot function to take an
extra argument for the controller.
Also update ASoC drivers to use API. ASoC changes
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
- Move queue related mappings to dm<soc>.c
EDMA in DM355 and DM644x has two transfer controllers while DM646x
has four transfer controllers. Moving the queue to tc mapping and
queue priority mapping to dm<soc>.c will be helpful to probe these
mappings from platform device so that the machine_is_* testing will
be avoided.
- add channel mapping logic
Channel mapping logic is introduced in dm646x EDMA. This implies
that there is no fixed association for a channel number to a
parameter entry number. In other words, using the DMA channel
mapping registers (DCHMAPn), a PaRAM entry can be mapped to any
channel. While in the case of dm644x and dm355 there is a fixed
mapping between the EDMA channel and Param entry number.
Signed-off-by: Naresh Medisetty <naresh@ti.com>
Signed-off-by: Sudhakar Rajashekhara <sudhakar.raj@ti.com>
Reviewed-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Package on-chip SRAM. It's always accessible from the ARM, so
set up a standardized virtual address mapping into a 128 KiB
area that's reserved for platform use.
In some cases (dm6467) the physical addresses used for EDMA are
not the same as the ones used by the ARM ... so record that info
separately in the SOC data, for chips (unlike the OMAP-L137)
where SRAM may be used with EDMA.
Other blocks of SRAM, such as the ETB buffer or DSP L1/L2 RAM,
may be unused/available on some system. They are ignored here.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Different SoC have different numbers of pinmux registers and other
resources that overlap with each other. To clean up the code and
eliminate defines that overlap with each other, move the PINMUX
defines to the SoC specific files.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Since most of the emac platform_data is really SoC specific
and not board specific, move it to the SoC-specific files.
Put a pointer to the platform_data in the soc_info structure
so the board-specific code can set some of the platform_data
if it needs to.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Currently, there is one set of platform_device and platform_data
structures for all DaVinci SoCs. The differences in the data
between the various SoCs is handled by davinci_serial_init()
by checking the SoC type. However, as new SoCs appear, this
routine will become more & more cluttered.
To clean up the routine and make it easier to add support for new
SoCs, move the platform_device and platform_data structures into the
SoC-specific code and use the SoC infrastructure to provide access
to the data.
In the process, fix a bug where the wrong irq is used for uart2
of the dm646x.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The current gpio code needs to know the number of
gpio irqs there are and what the bank irq number is.
To determine those values, it checks the SoC type.
It also assumes that the base address and the number
of irqs the interrupt controller uses is fixed.
To clean up the SoC checks and make it support
different base addresses and interrupt controllers,
have the SoC-specific code set those values in
the soc_info structure and have the gpio code
reference them there.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The watchdog code currently hardcodes the base address
of the timer its using. To support new SoCs, make it
support timers at any address. Use the soc_info structure
to do this.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The davinci timer code currently hardcodes the timer register
base addresses, the timer irq numbers, and the timers to use
for clock events and clocksource. This won't work for some
a new SoC so put those values into the soc_info structure
and set them up in the SoC-specific files.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Use the SoC infrastructure to hold the interrupt controller
information (i.e., base address, default priorities,
interrupt controller type, and the number of IRQs).
The interrupt controller base, although initially put
in the soc_info structure's intc_base field, is eventually
put in the global 'davinci_intc_base' so the low-level
interrupt code can access it without a dereference.
These changes enable the SoC default irq priorities to be
put in the SoC-specific files, and the interrupt controller
to be at any base address.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The pinmux register base and setup can be different for different
SoCs so move the pinmux reg base, pinmux table (and its size) to
the SoC infrastructure.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The current code to support the DaVinci Power and Sleep Controller (PSC)
assumes that there is only one controller. This assumption is no longer
valid so expand the support to allow greater than one PSC.
To accomplish this, put the base addresses for the PSCs in the SoC
infrastructure so it can be referenced by the PSC code. This also
requires adding an extra parameter to davinci_psc_config() to specify
the PSC that is to be enabled/disabled.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
All of the davinci SoCs need to call davinci_clk_init() so
put the call in the common init routine.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
The Davinci cpu_is_davinci_*() macros use the SoC part number
and variant retrieved from the JTAG ID register to determine the
type of cpu that the kernel is running on. Currently, the code to
read the JTAG ID register assumes that the register is always at
the same base address. This isn't true on some newer SoCs.
To solve this, have the SoC-specific code set the JTAG ID register
base address in soc_info structure and add a 'cpu_id' member to it.
'cpu_id' will be used by the cpu_is_davinci_*() macros to match
the cpu id. Also move the info used to identify the cpu type into
the SoC-specific code to keep all SoC-specific code together.
The common code will read the JTAG ID register, search through
an array of davinci_id structures to identify the cpu type.
Once identified, it will set the 'cpu_id' member of the soc_info
structure to the proper value and the cpu_is_davinci_*() macros
will now work.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Create a structure to encapsulate SoC-specific information.
This will assist in generalizing code so it can be used by
different SoCs that have similar hardware but with minor
differences such as having a different base address.
The idea is that the code for each SoC fills out a structure
with the correct information. The board-specific code then
calls the SoC init routine which in turn will call a common
init routine that makes a copy of the structure, maps in I/O
regions, etc.
After initialization, code can get a pointer to the structure
by calling davinci_get_soc_info(). Eventually, the common
init routine will make a copy of all of the data pointed to
by the structure so the original data can be made __init_data.
That way the data for SoC's that aren't being used won't consume
memory for the entire life of the kernel.
The structure will be extended in subsequent patches but
initially, it holds the map_desc structure for any I/O
regions the SoC/board wants statically mapped.
Signed-off-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Rework DM644x code into SoC specific and board specific parts.
This is also to generalize the structure a bit so it's easier to add
support for new SoCs in the DaVinci family.
Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>