As all records in a page of the ftrace table are sorted, we can
speed up the search algorithm by checking if the address to look for
falls in between the first and last record ip on the page.
This speeds up both the ftrace_location() and ftrace_text_reserved()
algorithms, as it can skip full pages when the search address is
not in them.
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ftrace_record_ip() and ftrace_alloc_dyn_node() were from the
time of the ftrace daemon. Although they were still used, they
still make things a bit more complex than necessary.
Move the code into the one function that uses it, and remove the
helper functions.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Instead of just sorting the ip's of the functions per ftrace page,
sort the entire list before adding them to the ftrace pages.
This will allow the bsearch algorithm to be sped up as it can
also sort by pages, not just records within a page.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
According to Documentation/trace/ftrace.txt:
tracing_cpumask:
This is a mask that lets the user only trace
on specified CPUS. The format is a hex string
representing the CPUS.
The tracing_cpumask currently doesn't affect the tracing state of
per-CPU ring buffers.
This patch enables/disables CPU recording as its corresponding bit in
tracing_cpumask is set/unset.
Link: http://lkml.kernel.org/r/1336096792-25373-3-git-send-email-vnagarnaik@google.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Laurent Chavey <chavey@google.com>
Cc: Justin Teravest <teravest@google.com>
Cc: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If tracing_dentry_percpu() failed, tracing_init_debugfs_percpu()
will try to create each cpu directories on debugfs' root directory
as d_percpu is NULL.
Link: http://lkml.kernel.org/r/1335143517-2285-1-git-send-email-namhyung.kim@lge.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Namhyung Kim <namhyung.kim@lge.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When the ring buffer does its consistency test on itself, it
removes the head page, runs the tests, and then adds it back
to what the "head_page" pointer was. But because the head_page
pointer may lack behind the real head page (held by the link
list pointer). The reset may be incorrect.
Instead, if the head_page exists (it does not on first allocation)
reset it back to the real head page before running the consistency
tests. Then it will be put back to its original location after
the tests are complete.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There use to be ring buffer integrity checks after updating the
size of the ring buffer. But now that the ring buffer can modify
the size while the system is running, the integrity checks were
removed, as they require the ring buffer to be disabed to perform
the check.
Move the integrity check to the reading of the ring buffer via the
iterator reads (the "trace" file). As reading via an iterator requires
disabling the ring buffer, it is a perfect place to have it.
If the ring buffer happens to be disabled when updating the size,
we still perform the integrity check.
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Historical prepare_to_copy() is mostly a no-op, duplicated for majority of
the architectures and the rest following the x86 model of flushing the extended
register state like fpu there.
Remove it and use the arch_dup_task_struct() instead.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1336692811-30576-1-git-send-email-suresh.b.siddha@intel.com
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch adds the capability to add new pages to a ring buffer
atomically while write operations are going on. This makes it possible
to expand the ring buffer size without reinitializing the ring buffer.
The new pages are attached between the head page and its previous page.
Link: http://lkml.kernel.org/r/1336096792-25373-2-git-send-email-vnagarnaik@google.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Laurent Chavey <chavey@google.com>
Cc: Justin Teravest <teravest@google.com>
Cc: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch adds the capability to remove pages from a ring buffer
without destroying any existing data in it.
This is done by removing the pages after the tail page. This makes sure
that first all the empty pages in the ring buffer are removed. If the
head page is one in the list of pages to be removed, then the page after
the removed ones is made the head page. This removes the oldest data
from the ring buffer and keeps the latest data around to be read.
To do this in a non-racey manner, tracing is stopped for a very short
time while the pages to be removed are identified and unlinked from the
ring buffer. The pages are freed after the tracing is restarted to
minimize the time needed to stop tracing.
The context in which the pages from the per-cpu ring buffer are removed
runs on the respective CPU. This minimizes the events not traced to only
NMI trace contexts.
Link: http://lkml.kernel.org/r/1336096792-25373-1-git-send-email-vnagarnaik@google.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Laurent Chavey <chavey@google.com>
Cc: Justin Teravest <teravest@google.com>
Cc: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
On gcc 4.5 the function tracing_mark_write() would give a warning
of page2 being uninitialized. This is due to a bug in gcc because
the logic prevents page2 from being used uninitialized, and
gcc 4.6+ does not complain (correctly).
Instead of adding a "unitialized" around page2, which could show
a bug later on, I combined page1 and page2 into an array map_pages[].
This binds the two and the two are modified according to nr_pages
(what gcc 4.5 seems to ignore). This no longer gives a warning with
gcc 4.5 nor with gcc 4.6.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
map_cred_ns is a light wrapper around from_kuid with the order of the arguments
reversed. Replace map_cred_ns with from_kuid and remove map_cred_ns.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Export handle_edge_irq() and irq_to_desc() to modules to allow them to
do things such as
__irq_set_handler_locked(...., handle_edge_irq);
This fixes
ERROR: "handle_edge_irq" [drivers/gpio/gpio-pch.ko] undefined!
ERROR: "irq_to_desc" [drivers/gpio/gpio-pch.ko] undefined!
when gpio-pch is being built as a module.
This was introduced by commit df9541a60a ("gpio: pch9: Use proper flow
type handlers") that added
__irq_set_handler_locked(d->irq, handle_edge_irq);
but handle_edge_irq() was not exported for modules (and inlined
__irq_set_handler_locked() requires irq_to_desc() exported as well)
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under memory load, on x86_64, with lockdep enabled, the workqueue's
process_one_work() has been seen to oops in __lock_acquire(), barfing
on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[].
Because it's permissible to free a work_struct from its callout function,
the map used is an onstack copy of the map given in the work_struct: and
that copy is made without any locking.
Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than
"rep movsq" for that structure copy: which might race with a workqueue
user's wait_on_work() doing lock_map_acquire() on the source of the
copy, putting a pointer into the class_cache[], but only in time for
the top half of that pointer to be copied to the destination map.
Boom when process_one_work() subsequently does lock_map_acquire()
on its onstack copy of the lockdep_map.
Fix this, and a similar instance in call_timer_fn(), with a
lockdep_copy_map() function which additionally NULLs the class_cache[].
Note: this oops was actually seen on 3.4-next, where flush_work() newly
does the racing lock_map_acquire(); but Tejun points out that 3.4 and
earlier are already vulnerable to the same through wait_on_work().
* Patch orginally from Peter. Hugh modified it a bit and wrote the
description.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
LKML-Reference: <alpine.LSU.2.00.1205070951170.1544@eggly.anvils>
Signed-off-by: Tejun Heo <tj@kernel.org>
* linus/master: (805 commits)
tty: Fix LED error return
openvswitch: checking wrong variable in queue_userspace_packet()
bonding: Fix LACPDU rx_dropped commit.
Linux 3.4-rc7
ARM: EXYNOS: fix ctrlbit for exynos5_clk_pdma1
ARM: EXYNOS: use s5p-timer for UniversalC210 board
ARM / mach-shmobile: Invalidate caches when booting secondary cores
ARM / mach-shmobile: sh73a0 SMP TWD boot regression fix
ARM / mach-shmobile: r8a7779 SMP TWD boot regression fix
ARM: mach-shmobile: convert ag5evm to use the generic MMC GPIO hotplug helper
ARM: mach-shmobile: convert mackerel to use the generic MMC GPIO hotplug helper
MAINTAINERS: Add myself as the cpufreq maintainer
dm mpath: check if scsi_dh module already loaded before trying to load
dm thin: correct module description
dm thin: fix unprotected use of prepared_discards list
dm thin: reinstate missing mempool_free in cell_release_singleton
gpio/exynos: Fix compiler warnings when non-exynos machines are selected
gpio: pch9: Use proper flow type handlers
powerpc/irq: Fix another case of lazy IRQ state getting out of sync
ks8851: Update link status during link change interrupt
...
Conflicts:
drivers/media/common/tuners/xc5000.c
drivers/media/common/tuners/xc5000.h
drivers/usb/gadget/uvc_queue.c
worker_enter_idle() has WARN_ON_ONCE() which triggers if nr_running
isn't zero when every worker is idle. This can trigger spuriously
while a cpu is going down due to the way trustee sets %WORKER_ROGUE
and zaps nr_running.
It first sets %WORKER_ROGUE on all workers without updating
nr_running, releases gcwq->lock, schedules, regrabs gcwq->lock and
then zaps nr_running. If the last running worker enters idle
inbetween, it would see stale nr_running which hasn't been zapped yet
and trigger the WARN_ON_ONCE().
Fix it by performing the sanity check iff the trustee is idle.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Arrange the continuation printk() buffering to be fully separated from the
ordinary full line users.
Limit the exposure to races and wrong printk() line merges to users of
continuation only. Ordinary full line users racing against continuation
users will no longer affect each other.
Multiple continuation users from different threads, racing against each
other will not wrongly be merged into a single line, but printed as
separate lines.
Test output of a kernel module which starts two separate threads which
race against each other, one of them printing a single full terminated
line:
printk("(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)\n");
The other one printing the line, every character separate in a
continuation loop:
printk("(C");
for (i = 0; i < 58; i++)
printk(KERN_CONT "C");
printk(KERN_CONT "C)\n");
Behavior of single and non-thread-aware printk() buffer:
# modprobe printk-race
printk test init
(CC(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
C(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
CC(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
C(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
CC(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
C(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
C(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
CC(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
C(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
C(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)
(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)
New behavior with separate and thread-aware continuation buffer:
# modprobe printk-race
printk test init
(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)
(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA)
(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)
(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Joe Perches <joe@perches.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some numbers like nr_running and nr_uninterruptible are fundamentally
unsigned since its impossible to have a negative amount of tasks, yet
we still print them as signed to easily recognise the underflow
condition.
rq->nr_uninterruptible has 'special' accounting and can in fact very
easily become negative on a per-cpu basis.
It was noted that since the P() macro assumes things are long long and
the promotion of unsigned 'int/long' to long long on 32bit doesn't
sign extend we print silly large numbers instead of the easier to read
signed numbers.
Therefore extend the P() macro to not require the sign extention.
Reported-by: Diwakar Tundlam <dtundlam@nvidia.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-gk5tm8t2n4ix2vkpns42uqqp@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Group imbalance is meant to deal with situations where affinity masks
and sched domains don't align well, such as 3 cpus from one group and
6 from another. In this case the domain based balancer will want to
put an equal amount of tasks on each side even though they don't have
equal cpus.
Currently group_imb is set whenever two cpus of a group have a weight
difference of at least one avg task and the heaviest cpu has at least
two tasks. A group with imbalance set will always be picked as busiest
and a balance pass will be forced.
The problem is that even if there are no affinity masks this stuff can
trigger and cause weird balancing decisions, eg. the observed
behaviour was that of 6 cpus, 5 had 2 and 1 had 3 tasks, due to the
difference of 1 avg load (they all had the same weight) and nr_running
being >1 the group_imbalance logic triggered and did the weird thing
of pulling more load instead of trying to move the 1 excess task to
the other domain of 6 cpus that had 5 cpu with 2 tasks and 1 cpu with
1 task.
Curb the group_imbalance stuff by making the nr_running condition
weaker by also tracking the min_nr_running and using the difference in
nr_running over the set instead of the absolute max nr_running.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-9s7dedozxo8kjsb9kqlrukkf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While investigating why the load-balancer did funny I found that the
rq->cpu_load[] tables were completely screwy.. a bit more digging
revealed that the updates that got through were missing ticks followed
by a catchup of 2 ticks.
The catchup assumes the cpu was idle during that time (since only nohz
can cause missed ticks and the machine is idle etc..) this means that
esp. the higher indices were significantly lower than they ought to
be.
The reason for this is that its not correct to compare against jiffies
on every jiffy on any other cpu than the cpu that updates jiffies.
This patch cludges around it by only doing the catch-up stuff from
nohz_idle_balance() and doing the regular stuff unconditionally from
the tick.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-tp4kj18xdd5aj4vvj0qg55s2@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's far too easy to get ridiculously large imbalance pct when you
scale it like that. Use a fixed 125% for now.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-zsriaft1dv7hhboyrpvqjy6s@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Patches c22402a2f ("sched/fair: Let minimally loaded cpu balance the
group") and 0ce90475 ("sched/fair: Add some serialization to the
sched_domain load-balance walk") are horribly broken so revert them.
The problem is that while it sounds good to have the minimally loaded
cpu do the pulling of more load, the way we walk the domains there is
absolutely no guarantee this cpu will actually get to the domain. In
fact its very likely it wont. Therefore the higher up the tree we get,
the less likely it is we'll balance at all.
The first of mask always walks up, while sucky in that it accumulates
load on the first cpu and needs extra passes to spread it out at least
guarantees a cpu gets up that far and load-balancing happens at all.
Since its now always the first and idle cpus should always be able to
balance so they get a task as fast as possible we can also do away
with the added serialization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-rpuhs5s56aiv1aw7khv9zkw6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's no need to convert a node number to a node number by
pretending its a cpu number..
Reported-by: Yinghai Lu <yinghai@kernel.org>
Reported-and-Tested-by: Greg Pearson <greg.pearson@hp.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-0sqhrht34phowgclj12dgk8h@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull the v3.5 RCU tree from Paul E. McKenney:
1) A set of improvements and fixes to the RCU_FAST_NO_HZ feature
(with more on the way for 3.6). Posted to LKML:
https://lkml.org/lkml/2012/4/23/324 (commits 1-3 and 5),
https://lkml.org/lkml/2012/4/16/611 (commit 4),
https://lkml.org/lkml/2012/4/30/390 (commit 6), and
https://lkml.org/lkml/2012/5/4/410 (commit 7, combined with
the other commits for the convenience of the tester).
2) Changes to make rcu_barrier() avoid disrupting execution of CPUs
that have no RCU callbacks. Posted to LKML:
https://lkml.org/lkml/2012/4/23/322.
3) A couple of commits that improve the efficiency of the interaction
between preemptible RCU and the scheduler, these two being all
that survived an abortive attempt to allow preemptible RCU's
__rcu_read_lock() to be inlined. The full set was posted to
LKML at https://lkml.org/lkml/2012/4/14/143, and the first and
third patches of that set remain.
4) Lai Jiangshan's algorithmic implementation of SRCU, which includes
call_srcu() and srcu_barrier(). A major feature of this new
implementation is that synchronize_srcu() no longer disturbs
the execution of other CPUs. This work is based on earlier
implementations by Peter Zijlstra and Paul E. McKenney. Posted to
LKML: https://lkml.org/lkml/2012/2/22/82.
5) A number of miscellaneous bug fixes and improvements which were
posted to LKML at: https://lkml.org/lkml/2012/4/23/353 with
subsequent updates posted to LKML.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a stub for prepend_timestamp() when CONFIG_PRINTK is not
enabled. Fixes this build error:
kernel/printk.c:1770:3: error: implicit declaration of function 'prepend_timestamp'
Cc: Kay Sievers <kay@vrfy.org>
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Make it possible to configure out the user space wakeup sources
garbage collector for debugging and default Android builds.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Arve Hjønnevåg <arve@android.com>
Make it possible to configure out the check against the limit of
user space wakeup sources for debugging and default Android builds.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Arve Hjønnevåg <arve@android.com>
barrier: Reduce the amount of disturbance by rcu_barrier() to the rest of
the system. This branch also includes improvements to
RCU_FAST_NO_HZ, which are included here due to conflicts.
fixes: Miscellaneous fixes.
inline: Remaining changes from an abortive attempt to inline
preemptible RCU's __rcu_read_lock(). These are (1) making
exit_rcu() avoid unnecessary work and (2) avoiding having
preemptible RCU record a blocked thread when the scheduler
declines to do a context switch.
srcu: Lai Jiangshan's algorithmic implementation of SRCU, including
call_srcu().
__log_buf must be aligned, because a 64-bit value is written directly
to it as part of struct log. Alignment of the log entries is typically
handled by log_store(), but this only triggers for subsequent entries,
not the very first (or wrapped) entries.
Cc: Kay Sievers <kay@vrfy.org>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fork() failure post namespace creation for a child cloned with
CLONE_NEWPID leaks pid_namespace/mnt_cache due to proc being mounted
during creation, but not unmounted during cleanup. Call
pid_ns_release_proc() during cleanup.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Louis Rilling <louis.rilling@kerlabs.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the adding of function tracing event to perf, it caused a
side effect that produces the following warning when enabling all
events in ftrace:
# echo 1 > /sys/kernel/debug/tracing/events/enable
[console]
event trace: Could not enable event function
This is because when enabling all events via the debugfs system
it ignores events that do not have a ->reg() function assigned.
This was to skip over the ftrace internal events (as they are
not TRACE_EVENTs). But as the ftrace function event now has
a ->reg() function attached to it for use with perf, it is no
longer ignored.
Worse yet, this ->reg() function is being called when it should
not be. It returns an error and causes the above warning to
be printed.
By adding a new event_call flag (TRACE_EVENT_FL_IGNORE_ENABLE)
and have all ftrace internel event structures have it set,
setting the events/enable will no longe try to incorrectly enable
the function event and does not warn.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
compat_sys_sigprocmask reads a smaller signal mask from userspace than
sigprogmask accepts for setting. So the high word of blocked.sig[0]
will be cleared, releasing any potentially blocked RT signal.
This was discovered via userspace code that relies on get/setcontext.
glibc's i386 versions of those functions use sigprogmask instead of
rt_sigprogmask to save/restore signal mask and caused RT signal
unblocking this way.
As suggested by Linus, this replaces the sys_sigprocmask based compat
version with one that open-codes the required logic, including the merge
of the existing blocked set with the new one provided on SIG_SETMASK.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The output of the timestamps got lost with the conversion of the
kmsg buffer to records; restore the old behavior.
Document, that CONFIG_PRINTK_TIME now only controls the output of
the timestamps in the syslog() system call and on the console, and
not the recording of the timestamps.
Cc: Joe Perches <joe@perches.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sasha Levin <levinsasha928@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Reported-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This prevents the merging of printk() continuation lines of different
threads, in the case they race against each other.
It should properly isolate "atomic" single-line printk() users from
continuation users, to make sure the single-line users will never be
merged with the racy continuation ones.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The rcu_barrier() primitive interrupts each and every CPU, registering
a callback on every CPU. Once all of these callbacks have been invoked,
rcu_barrier() knows that every callback that was registered before
the call to rcu_barrier() has also been invoked.
However, there is no point in registering a callback on a CPU that
currently has no callbacks, most especially if that CPU is in a
deep idle state. This commit therefore makes rcu_barrier() avoid
interrupting CPUs that have no callbacks. Doing this requires reworking
the handling of orphaned callbacks, otherwise callbacks could slip through
rcu_barrier()'s net by being orphaned from a CPU that rcu_barrier() had
not yet interrupted to a CPU that rcu_barrier() had already interrupted.
This reworking was needed anyway to take a first step towards weaning
RCU from the CPU_DYING notifier's use of stop_cpu().
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current initialization of the RCU_FAST_NO_HZ per-CPU variables makes
needless and fragile assumptions about the initial value of things like
the jiffies counter. This commit therefore explicitly initializes all of
them that are better started with a non-zero value. It also adds some
comments describing the per-CPU state variables.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current RCU_FAST_NO_HZ assumes that timers do not migrate unless a
CPU goes offline, in which case it assumes that the CPU will have to come
out of dyntick-idle mode (cancelling the timer) in order to go offline.
This is important because when RCU_FAST_NO_HZ permits a CPU to enter
dyntick-idle mode despite having RCU callbacks pending, it posts a timer
on that CPU to force a wakeup on that CPU. This wakeup ensures that the
CPU will eventually handle the end of the grace period, including invoking
its RCU callbacks.
However, Pascal Chapperon's test setup shows that the timer handler
rcu_idle_gp_timer_func() really does get invoked in some cases. This is
problematic because this can cause the CPU that entered dyntick-idle
mode despite still having RCU callbacks pending to remain in
dyntick-idle mode indefinitely, which means that its RCU callbacks might
never be invoked. This situation can result in grace-period delays or
even system hangs, which matches Pascal's observations of slow boot-up
and shutdown (https://lkml.org/lkml/2012/4/5/142). See also the bugzilla:
https://bugzilla.redhat.com/show_bug.cgi?id=806548
This commit therefore causes the "should never be invoked" timer handler
rcu_idle_gp_timer_func() to use smp_call_function_single() to wake up
the CPU for which the timer was intended, allowing that CPU to invoke
its RCU callbacks in a timely manner.
Reported-by: Pascal Chapperon <pascal.chapperon@wanadoo.fr>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
We can easily use a single callback for both sched-in and sched-out. This
reduces the code footprint in the scheduler path as well as removes
the PMU black spot otherwise present between the out and in callback.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-o56ajxp1edwqg6x9d31wb805@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We always need to pass the last sample period to
perf_sample_data_init(), otherwise the event distribution will be
wrong. Thus, modifiyng the function interface with the required period
as argument. So basically a pattern like this:
perf_sample_data_init(&data, ~0ULL);
data.period = event->hw.last_period;
will now be like that:
perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
Avoids unininitialized data.period and simplifies code.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1333390758-10893-3-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code groups up to 16 nodes in a level and then puts an
ALLNODES domain spanning the entire tree on top of that. This doesn't
reflect the numa topology and esp for the smaller not-fully-connected
machines out there today this might make a difference.
Therefore, build a proper numa topology based on node_distance().
Since there's no fixed numa layers anymore, the static SD_NODE_INIT
and SD_ALLNODES_INIT aren't usable anymore, the new code tries to
construct something similar and scales some values either on the
number of cpus in the domain and/or the node_distance() ratio.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: linux-alpha@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-sh@vger.kernel.org
Cc: Matt Turner <mattst88@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: sparclinux@vger.kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Greg Pearson <greg.pearson@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: bob.picco@oracle.com
Cc: chris.mason@oracle.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-r74n3n8hhuc2ynbrnp3vt954@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the sched_domain walk is completely unserialized (!SD_SERIALIZE)
it is possible that multiple cpus in the group get elected to do the
next level. Avoid this by adding some serialization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-vqh9ai6s0ewmeakjz80w4qz6@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we let the leftmost (or first idle) cpu ascend the
sched_domain tree and perform load-balancing. The result is that the
busiest cpu in the group might be performing this function and pull
more load to itself. The next load balance pass will then try to
equalize this again.
Change this to pick the least loaded cpu to perform higher domain
balancing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-v8zlrmgmkne3bkcy9dej1fvm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since there's a PID space limit of 30bits (see
futex.h:FUTEX_TID_MASK) and allocating that many tasks (assuming a
lower bound of 2 pages per task) would still take 8T of memory it
seems reasonable to say that unsigned int is sufficient for
rq->nr_running.
When we do get anywhere near that amount of tasks I suspect other
things would go funny, load-balancer load computations would really
need to be hoisted to 128bit etc.
So save a few bytes and convert rq->nr_running and friends to
unsigned int.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-y3tvyszjdmbibade5bw8zl81@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we have one cpu that failed to boot and boot cpu gave up on
waiting for it and then another cpu is being booted, kernel
might crash with following OOPS:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff812c3630>] __bitmap_weight+0x30/0x80
Call Trace:
[<ffffffff8108b9b6>] build_sched_domains+0x7b6/0xa50
The crash happens in init_sched_groups_power() that expects
sched_groups to be circular linked list. However it is not
always true, since sched_groups preallocated in __sdt_alloc are
initialized in build_sched_groups and it may exit early
if (cpu != cpumask_first(sched_domain_span(sd)))
return 0;
without initializing sd->groups->next field.
Fix bug by initializing next field right after sched_group was
allocated.
Also-Reported-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Cc: a.p.zijlstra@chello.nl
Cc: pjt@google.com
Cc: seto.hidetoshi@jp.fujitsu.com
Link: http://lkml.kernel.org/r/1336559908-32533-1-git-send-email-imammedo@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The ftrace_disable_cpu() and ftrace_enable_cpu() functions were
needed back before the ring buffer was lockless. Now that the
ring buffer is lockless (and has been for some time), these functions
serve no purpose, and unnecessarily slow down operations of the tracer.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
It's appropriate to use __seq_open_private interface to open
some of trace seq files, because it covers all steps we are
duplicating in tracing code - zallocating the iterator and
setting it as seq_file's private.
Using this for following files:
trace
available_filter_functions
enabled_functions
Link: http://lkml.kernel.org/r/1335342219-2782-5-git-send-email-jolsa@redhat.com
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
[
Fixed warnings for:
kernel/trace/trace.c: In function '__tracing_open':
kernel/trace/trace.c:2418:11: warning: unused variable 'ret' [-Wunused-variable]
kernel/trace/trace.c:2417:19: warning: unused variable 'm' [-Wunused-variable]
]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
On Tue, May 8, 2012 at 10:02 AM, Stephen Rothwell <sfr@canb.auug.org.au> wrote:
> kernel/built-in.o: In function `devkmsg_read':
> printk.c:(.text+0x27e8): undefined reference to `__udivdi3'
> Most probably the "msg->ts_nsec / 1000" since
> ts_nsec is a u64 and this is a 32 bit build ...
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Replace __HAVE_ARCH_TASK_ALLOCATOR and __HAVE_ARCH_THREAD_ALLOCATOR
with proper config switches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20120505150142.371309416@linutronix.de
Several architectures have their own kmemcache based thread allocator
because THREAD_SIZE is smaller than PAGE_SIZE. Add it to the core code
conditionally on THREAD_SIZE < PAGE_SIZE so the private copies can go.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120505150141.491002124@linutronix.de
These flags can be useful for extra allocations outside of the core
code.
Add __GFP_NOTRACK to them, so the archs which have kmemcheck do
not have to provide extra allocators just for that reason.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120505150141.428211694@linutronix.de
We error out when compiling with gcc4.1.[01] as it miscompiles
__weak. The workaround with magic defines is not longer
necessary. Make it __weak again.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120505150141.306358267@linutronix.de
Will replace the misnomed cpu_idle_wait() function which is copied a
gazillion times all over arch/*
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120507175652.049316594@linutronix.de
Support for multiple concurrent readers of /dev/kmsg, with read(),
seek(), poll() support. Output of message sequence numbers, to allow
userspace log consumers to reliably reconnect and reconstruct their
state at any given time. After open("/dev/kmsg"), read() always
returns *all* buffered records. If only future messages should be
read, SEEK_END can be used. In case records get overwritten while
/dev/kmsg is held open, or records get faster overwritten than they
are read, the next read() will return -EPIPE and the current reading
position gets updated to the next available record. The passed
sequence numbers allow the log consumer to calculate the amount of
lost messages.
[root@mop ~]# cat /dev/kmsg
5,0,0;Linux version 3.4.0-rc1+ (kay@mop) (gcc version 4.7.0 20120315 ...
6,159,423091;ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-ff])
7,160,424069;pci_root PNP0A03:00: host bridge window [io 0x0000-0x0cf7] (ignored)
SUBSYSTEM=acpi
DEVICE=+acpi:PNP0A03:00
6,339,5140900;NET: Registered protocol family 10
30,340,5690716;udevd[80]: starting version 181
6,341,6081421;FDC 0 is a S82078B
6,345,6154686;microcode: CPU0 sig=0x623, pf=0x0, revision=0x0
7,346,6156968;sr 1:0:0:0: Attached scsi CD-ROM sr0
SUBSYSTEM=scsi
DEVICE=+scsi:1:0:0:0
6,347,6289375;microcode: CPU1 sig=0x623, pf=0x0, revision=0x0
Cc: Karel Zak <kzak@redhat.com>
Tested-by: William Douglas <william.douglas@intel.com>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- Record-based stream instead of the traditional byte stream
buffer. All records carry a 64 bit timestamp, the syslog facility
and priority in the record header.
- Records consume almost the same amount, sometimes less memory than
the traditional byte stream buffer (if printk_time is enabled). The record
header is 16 bytes long, plus some padding bytes at the end if needed.
The byte-stream buffer needed 3 chars for the syslog prefix, 15 char for
the timestamp and a newline.
- Buffer management is based on message sequence numbers. When records
need to be discarded, the reading heads move on to the next full
record. Unlike the byte-stream buffer, no old logged lines get
truncated or partly overwritten by new ones. Sequence numbers also
allow consumers of the log stream to get notified if any message in
the stream they are about to read gets discarded during the time
of reading.
- Better buffered IO support for KERN_CONT continuation lines, when printk()
is called multiple times for a single line. The use of KERN_CONT is now
mandatory to use continuation; a few places in the kernel need trivial fixes
here. The buffering could possibly be extended to per-cpu variables to allow
better thread-safety for multiple printk() invocations for a single line.
- Full-featured syslog facility value support. Different facilities
can tag their messages. All userspace-injected messages enforce a
facility value > 0 now, to be able to reliably distinguish them from
the kernel-generated messages. Independent subsystems like a
baseband processor running its own firmware, or a kernel-related
userspace process can use their own unique facility values. Multiple
independent log streams can co-exist that way in the same
buffer. All share the same global sequence number counter to ensure
proper ordering (and interleaving) and to allow the consumers of the
log to reliably correlate the events from different facilities.
Tested-by: William Douglas <william.douglas@intel.com>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Implements trace_event support for uprobes. In its current form
it can be used to put probes at a specified offset in a file and
dump the required registers when the code flow reaches the
probed address.
The following example shows how to dump the instruction pointer
and %ax a register at the probed text address. Here we are
trying to probe zfree in /bin/zsh:
# cd /sys/kernel/debug/tracing/
# cat /proc/`pgrep zsh`/maps | grep /bin/zsh | grep r-xp
00400000-0048a000 r-xp 00000000 08:03 130904 /bin/zsh
# objdump -T /bin/zsh | grep -w zfree
0000000000446420 g DF .text 0000000000000012 Base
zfree # echo 'p /bin/zsh:0x46420 %ip %ax' > uprobe_events
# cat uprobe_events
p:uprobes/p_zsh_0x46420 /bin/zsh:0x0000000000046420
# echo 1 > events/uprobes/enable
# sleep 20
# echo 0 > events/uprobes/enable
# cat trace
# tracer: nop
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
zsh-24842 [006] 258544.995456: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
zsh-24842 [007] 258545.000270: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
zsh-24842 [002] 258545.043929: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
zsh-24842 [004] 258547.046129: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Anton Arapov <anton@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120411103043.GB29437@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move parts of trace_kprobe.c that can be shared with upcoming
trace_uprobe.c. Common code to kernel/trace/trace_probe.h and
kernel/trace/trace_probe.c. There are no functional changes.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Anton Arapov <anton@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120409091144.8343.76218.sendpatchset@srdronam.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
is_delete and is_return can take utmost 2 values and are better
of being a boolean than a int. There are no functional changes.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Anton Arapov <anton@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120409091133.8343.65289.sendpatchset@srdronam.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The condition check in autosleep_store() is incorrect and prevents
/sys/power/autosleep from working as advertised. Fix that.
[rjw: Added the changelog.]
Signed-off-by: Arve Hjønnevåg <arve@android.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
All archs define init_task in the same way (except ia64, but there is
no particular reason why ia64 cannot use the common version). Create a
generic instance so all archs can be converted over.
The config switch is temporary and will be removed when all archs are
converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20120503085034.092585287@linutronix.de
I left 1 printk which uses __FILE__, __LINE__ explicitly, which should
not be subject to generic preferences expressed via pr_fmt().
+ tweaks suggested by Joe Perches:
- add doing to irq-enabled warning, like others. It wont happen often..
- change sysfs failure crit, not just err, make it 1 line in logs.
- coalese 2 format fragments into 1 >80 char line
cc: Joe Perches <joe@perches.com>
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In commit 9fb48c744: "params: add 3rd arg to option handler callback
signature", the if-guard added to the pr_debug was overzealous; no
callers pass NULL, and existing code above and below the guard assumes
as much. Change the if-guard to match, and silence the Smack
complaint.
CC: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If an wakeup interrupt has been disabled before the suspend code
disables all interrupts then we have to ignore the pending flag.
Otherwise we would abort suspend over and over as nothing clears the
pending flag because the interrupt is disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: NeilBrown <neilb@suse.de>
Level triggered interrupts do not cause IRQS_PENDING to be set when
they fire while "disabled" as the 'pending' state is always present in
the level - they automatically refire where re-enabled.
However the IRQS_PENDING flag is also used to abort a suspend cycle -
if any 'is_wakeup_set' interrupt is PENDING, check_wakeup_irqs() will
cause suspend to abort. Without IRQS_PENDING, suspend won't abort.
Consequently, level-triggered interrupts that fire during the 'noirq'
phase of suspend do not currently abort suspend.
So set IRQS_PENDING even for level triggered interrupts, and make sure
to clear the flag in check_irq_resend.
[ Changelog by courtesy of Neil ]
Tested-by: NeilBrown <neilb@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQEcBAABAgAGBQJPnb50AAoJEHm+PkMAQRiGAE0H/A4zFZIUGmF3miKPDYmejmrZ
oVDYxVAu6JHjHWhu8E3VsinvyVscowjV8dr15eSaQzmDmRkSHAnUQ+dB7Di7jLC2
MNopxsWjwyZ8zvvr3rFR76kjbWKk/1GYytnf7GPZLbJQzd51om2V/TY/6qkwiDSX
U8Tt7ihSgHAezefqEmWp2X/1pxDCEt+VFyn9vWpkhgdfM1iuzF39MbxSZAgqDQ/9
JJrBHFXhArqJguhENwL7OdDzkYqkdzlGtS0xgeY7qio2CzSXxZXK4svT6FFGA8Za
xlAaIvzslDniv3vR2ZKd6wzUwFHuynX222hNim3QMaYdXm012M+Nn1ufKYGFxI0=
=4d4w
-----END PGP SIGNATURE-----
Merge tag 'v3.4-rc5' into next
Linux 3.4-rc5
Merge to pull in prerequisite change for Smack:
86812bb0de
Requested by Casey.
percpu areas are already allocated during boot for each possible cpu.
percpu idle threads can be considered as an extension of the percpu areas,
and allocate them for each possible cpu during boot.
This will eliminate the need for workqueue based idle thread allocation.
In future we can move the idle thread area into the percpu area too.
[ tglx: Moved the loop into smpboot.c and added an error check when
the init code failed to allocate an idle thread for a cpu which
should be onlined ]
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: venki@google.com
Link: http://lkml.kernel.org/r/1334966930.28674.245.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Update the permission checks to use the new uid_eq and gid_eq helpers
and remove the now unnecessary user_ns equality comparison.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Convert setregid, setgid, setreuid, setuid,
setresuid, getresuid, setresgid, getresgid, setfsuid, setfsgid,
getuid, geteuid, getgid, getegid,
waitpid, waitid, wait4.
Convert userspace uids and gids into kuids and kgids before
being placed on struct cred. Convert struct cred kuids and
kgids into userspace uids and gids when returning them.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
- Compare kuids with uid_eq
- kuid are uniuqe across all user namespaces so there is no longer the
need for a user_namespace comparison.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
These function are no longer needed replace them with their more useful equivalents.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
cred.h and a few trivial users of struct cred are changed. The rest of the users
of struct cred are left for other patches as there are too many changes to make
in one go and leave the change reviewable. If the user namespace is disabled and
CONFIG_UIDGID_STRICT_TYPE_CHECKS are disabled the code will contiue to compile
and behave correctly.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
As a first step to converting struct cred to be all kuid_t and kgid_t
values convert the group values stored in group_info to always be
kgid_t values. Unless user namespaces are used this change should
have no effect.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
When running preemptible RCU, if a task exits in an RCU read-side
critical section having blocked within that same RCU read-side critical
section, the task must be removed from the list of tasks blocking a
grace period (perhaps the current grace period, perhaps the next grace
period, depending on timing). The exit() path invokes exit_rcu() to
do this cleanup.
However, the current implementation of exit_rcu() needlessly does the
cleanup even if the task did not block within the current RCU read-side
critical section, which wastes time and needlessly increases the size
of the state space. Fix this by only doing the cleanup if the current
task is actually on the list of tasks blocking some grace period.
While we are at it, consolidate the two identical exit_rcu() functions
into a single function.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Conflicts:
kernel/rcupdate.c
Currently, PREEMPT_RCU readers are enqueued upon entry to the scheduler.
This is inefficient because enqueuing is required only if there is a
context switch, and entry to the scheduler does not guarantee a context
switch.
The commit therefore moves the enqueuing to immediately precede the
call to switch_to() from the scheduler.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
This was done to resolve a merge issue with the init/main.c file.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Android allows user space to manipulate wakelocks using two
sysfs file located in /sys/power/, wake_lock and wake_unlock.
Writing a wakelock name and optionally a timeout to the wake_lock
file causes the wakelock whose name was written to be acquired (it
is created before is necessary), optionally with the given timeout.
Writing the name of a wakelock to wake_unlock causes that wakelock
to be released.
Implement an analogous interface for user space using wakeup sources.
Add the /sys/power/wake_lock and /sys/power/wake_unlock files
allowing user space to create, activate and deactivate wakeup
sources, such that writing a name and optionally a timeout to
wake_lock causes the wakeup source of that name to be activated,
optionally with the given timeout. If that wakeup source doesn't
exist, it will be created and then activated. Writing a name to
wake_unlock causes the wakeup source of that name, if there is one,
to be deactivated. Wakeup sources created with the help of
wake_lock that haven't been used for more than 5 minutes are garbage
collected and destroyed. Moreover, there can be only WL_NUMBER_LIMIT
wakeup sources created with the help of wake_lock present at a time.
The data type used to track wakeup sources created by user space is
called "struct wakelock" to indicate the origins of this feature.
This version of the patch includes an rbtree manipulation fix from John Stultz.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: NeilBrown <neilb@suse.de>
Android uses one wakelock statistics that is only necessary for
opportunistic sleep. Namely, the prevent_suspend_time field
accumulates the total time the given wakelock has been locked
while "automatic suspend" was enabled. Add an analogous field,
prevent_sleep_time, to wakeup sources and make it behave in a similar
way.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Introduce a mechanism by which the kernel can trigger global
transitions to a sleep state chosen by user space if there are no
active wakeup sources.
It consists of a new sysfs attribute, /sys/power/autosleep, that
can be written one of the strings returned by reads from
/sys/power/state, an ordered workqueue and a work item carrying out
the "suspend" operations. If a string representing the system's
sleep state is written to /sys/power/autosleep, the work item
triggering transitions to that state is queued up and it requeues
itself after every execution until user space writes "off" to
/sys/power/autosleep.
That work item enables the detection of wakeup events using the
functions already defined in drivers/base/power/wakeup.c (with one
small modification) and calls either pm_suspend(), or hibernate() to
put the system into a sleep state. If a wakeup event is reported
while the transition is in progress, it will abort the transition and
the "system suspend" work item will be queued up again.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: NeilBrown <neilb@suse.de>
1. Do not allocate memory for buffers from emergency pools, unless
absolutely required. Do not warn about and do not retry non-essential
failed allocations.
2. Do not check the amount of free pages left on every single page
write, but wait until one map is completely populated and then check.
3. Set maximum number of pages for read buffering consistently, instead
of inadvertently depending on the size of the sector type.
4. Fix copyright line, which I missed when I submitted the hibernation
threading patch.
5. Dispense with bit shifting arithmetic to improve readability.
6. Really recalculate the number of pages required to be free after all
allocations have been done.
7. Fix calculation of pages required for read buffering. Only count in
pages that do not belong to high memory.
Signed-off-by: Bojan Smojver <bojan@rexursive.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Timers are subject to migration, which can lead to the following
system-hang scenario when CONFIG_RCU_FAST_NO_HZ=y:
1. CPU 0 executes synchronize_rcu(), which posts an RCU callback.
2. CPU 0 then goes idle. It cannot immediately invoke the callback,
but there is nothing RCU needs from ti, so it enters dyntick-idle
mode after posting a timer.
3. The timer gets migrated to CPU 1.
4. CPU 0 never wakes up, so the synchronize_rcu() never returns, so
the system hangs.
This commit fixes this problem by using mod_timer_pinned(), as suggested
by Peter Zijlstra, to ensure that the timer is actually posted on the
running CPU.
Reported-by: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQEcBAABAgAGBQJPnb50AAoJEHm+PkMAQRiGAE0H/A4zFZIUGmF3miKPDYmejmrZ
oVDYxVAu6JHjHWhu8E3VsinvyVscowjV8dr15eSaQzmDmRkSHAnUQ+dB7Di7jLC2
MNopxsWjwyZ8zvvr3rFR76kjbWKk/1GYytnf7GPZLbJQzd51om2V/TY/6qkwiDSX
U8Tt7ihSgHAezefqEmWp2X/1pxDCEt+VFyn9vWpkhgdfM1iuzF39MbxSZAgqDQ/9
JJrBHFXhArqJguhENwL7OdDzkYqkdzlGtS0xgeY7qio2CzSXxZXK4svT6FFGA8Za
xlAaIvzslDniv3vR2ZKd6wzUwFHuynX222hNim3QMaYdXm012M+Nn1ufKYGFxI0=
=4d4w
-----END PGP SIGNATURE-----
Merge tag 'v3.4-rc5' into for-3.5/core
The core branch is behind driver commits that we want to build
on for 3.5, hence I'm pulling in a later -rc.
Linux 3.4-rc5
Conflicts:
Documentation/feature-removal-schedule.txt
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This introduces a fake module param $module.dyndbg. Its based upon
Thomas Renninger's $module.ddebug boot-time debugging patch from
https://lkml.org/lkml/2010/9/15/397
The 'fake' module parameter is provided for all modules, whether or
not they need it. It is not explicitly added to each module, but is
implemented in callbacks invoked from parse_args.
For builtin modules, dynamic_debug_init() now directly calls
parse_args(..., &ddebug_dyndbg_boot_params_cb), to process the params
undeclared in the modules, just after the ddebug tables are processed.
While its slightly weird to reprocess the boot params, parse_args() is
already called repeatedly by do_initcall_levels(). More importantly,
the dyndbg queries (given in ddebug_query or dyndbg params) cannot be
activated until after the ddebug tables are ready, and reusing
parse_args is cleaner than doing an ad-hoc parse. This reparse would
break options like inc_verbosity, but they probably should be params,
like verbosity=3.
ddebug_dyndbg_boot_params_cb() handles both bare dyndbg (aka:
ddebug_query) and module-prefixed dyndbg params, and ignores all other
parameters. For example, the following will enable pr_debug()s in 4
builtin modules, in the order given:
dyndbg="module params +p; module aio +p" module.dyndbg=+p pci.dyndbg
For loadable modules, parse_args() in load_module() calls
ddebug_dyndbg_module_params_cb(). This handles bare dyndbg params as
passed from modprobe, and errors on other unknown params.
Note that modprobe reads /proc/cmdline, so "modprobe foo" grabs all
foo.params, strips the "foo.", and passes these to the kernel.
ddebug_dyndbg_module_params_cb() is again called for the unknown
params; it handles dyndbg, and errors on others. The "doing" arg
added previously contains the module name.
For non CONFIG_DYNAMIC_DEBUG builds, the stub function accepts
and ignores $module.dyndbg params, other unknowns get -ENOENT.
If no param value is given (as in pci.dyndbg example above), "+p" is
assumed, which enables all pr_debug callsites in the module.
The dyndbg fake parameter is not shown in /sys/module/*/parameters,
thus it does not use any resources. Changes to it are made via the
control file.
Also change pr_info in ddebug_exec_queries to vpr_info,
no need to see it all the time.
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
CC: Thomas Renninger <trenn@suse.de>
CC: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add a 3rd arg, named "doing", to unknown-options callbacks invoked
from parse_args(). The arg is passed as:
"Booting kernel" from start_kernel(),
initcall_level_names[i] from do_initcall_level(),
mod->name from load_module(), via parse_args(), parse_one()
parse_args() already has the "name" parameter, which is renamed to
"doing" to better reflect current uses 1,2 above. parse_args() passes
it to an altered parse_one(), which now passes it down into the
unknown option handler callbacks.
The mod->name will be needed to handle dyndbg for loadable modules,
since params passed by modprobe are not qualified (they do not have a
"$modname." prefix), and by the time the unknown-param callback is
called, the module name is not otherwise available.
Minor tweaks:
Add param-name to parse_one's pr_debug(), current message doesnt
identify the param being handled, add it.
Add a pr_info to print current level and level_name of the initcall,
and number of registered initcalls at that level. This adds 7 lines
to dmesg output, like:
initlevel:6=device, 172 registered initcalls
Drop "parameters" from initcall_level_names[], its unhelpful in the
pr_info() added above. This array is passed into parse_args() by
do_initcall_level().
CC: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Acked-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add srcu_torture_deferred_free() for srcu_ops so as to test the new
call_srcu(). Rename the original srcu_ops to srcu_sync_ops.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The earlier algorithm used an "expedited" flag combined with a "trycount"
counter to differentiate between normal and expedited SRCU grace periods.
However, the difference can be encoded into a single counter with a cutoff
value and different initial values for expedited and normal SRCU grace
periods. This commit makes that change.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Conflicts:
kernel/srcu.c
Expand the calls to srcu_readers_active_idx() from srcu_readers_active()
inline. This change improves cache locality by interating over the CPUs
once rather than twice.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit implements a variant of Peter's algorithm, which may be found
at https://lkml.org/lkml/2012/2/1/119.
o Make the checking lock-free to enable parallel checking.
Parallel checking is required when (1) the original checking
task is preempted for a long time, (2) sychronize_srcu_expedited()
starts during an ongoing SRCU grace period, or (3) we wish to
avoid acquiring a lock.
o Since the checking is lock-free, we avoid a mutex in state machine
for call_srcu().
o Remove the SRCU_REF_MASK and remove the coupling with the flipping.
This might allow us to remove the preempt_disable() in future
versions, though such removal will need great care because it
rescinds the one-old-reader-per-CPU guarantee.
o Remove a smp_mb(), simplify the comments and make the smp_mb() pairs
more intuitive.
Inspired-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The safety of SRCU is provided byy wait_idx() rather than flipping.
The flipping actually prevents starvation.
This commit therefore updates the comments to more accurately and
precisely describe what is going on.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This is an optimization of the SRCU grace period. To guard against
preempted readers with old values of the counter, it suffices to scan the
old counters once more, then flip ->completed only one time. The reason
this works is that the old readers must have incremented the old set of
counters (if they have not yet incremented, then their critical section
starts after this grace period, so they may be safely ignored).
This commit therefore optimizes the second flip out in favor of a simple
rescan.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The purpose of the upper bit of SRCU's per-CPU counters is to guarantee
that no reasonable series of srcu_read_lock() and srcu_read_unlock()
operations can return the value of the counter to its original value.
This guarantee is require only after the index has been switched to
the other set of counters, so at most one srcu_read_lock() can affect
a given CPU's counter. The number of srcu_read_unlock() operations
on a given counter is limited to the number of tasks in the system,
which given the Linux kernel's current structure is limited to far less
than 2^30 on 32-bit systems and far less than 2^62 on 64-bit systems.
(Something about a limited number of bytes in the kernel's address space.)
Therefore, if srcu_read_lock() increments the upper bits, then
srcu_read_unlock() need not do so. In this case, an srcu_read_lock() and
an srcu_read_unlock() will flip the lower bit of the upper field of the
counter. An unreasonably large additional number of srcu_read_unlock()
operations would be required to return the counter to its initial value,
thus preserving the guarantee.
This commit takes this approach, which further allows it to shrink
the size of the upper field to one bit, making the number of
srcu_read_unlock() operations required to return the counter to its
initial value even more unreasonable than before.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The fastpath in __synchronize_srcu() is designed to handle cases where
there are a large number of concurrent calls for the same srcu_struct
structure. However, the Linux kernel currently does not use SRCU in
this manner, so remove the fastpath checks for simplicity.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current implementation of synchronize_srcu_expedited() can cause
severe OS jitter due to its use of synchronize_sched(), which in turn
invokes try_stop_cpus(), which causes each CPU to be sent an IPI.
This can result in severe performance degradation for real-time workloads
and especially for short-interation-length HPC workloads. Furthermore,
because only one instance of try_stop_cpus() can be making forward progress
at a given time, only one instance of synchronize_srcu_expedited() can
make forward progress at a time, even if they are all operating on
distinct srcu_struct structures.
This commit, inspired by an earlier implementation by Peter Zijlstra
(https://lkml.org/lkml/2012/1/31/211) and by further offline discussions,
takes a strictly algorithmic bits-in-memory approach. This has the
disadvantage of requiring one explicit memory-barrier instruction in
each of srcu_read_lock() and srcu_read_unlock(), but on the other hand
completely dispenses with OS jitter and furthermore allows SRCU to be
used freely by CPUs that RCU believes to be idle or offline.
The update-side implementation handles the single read-side memory
barrier by rechecking the per-CPU counters after summing them and
by running through the update-side state machine twice.
This implementation has passed moderate rcutorture testing on both
x86 and Power. Also updated to use this_cpu_ptr() instead of per_cpu_ptr(),
as suggested by Peter Zijlstra.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Although rcutorture does invoke rcu_barrier() and friends, it cannot
really be called a torture test given that it invokes them only once
at the end of the test. This commit therefore introduces heavy-duty
rcutorture testing for rcu_barrier(), which may be carried out
concurrently with normal rcutorture testing.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Fix for an issue causing hibernation to hang on systems with highmem (that
practically means i386) due to broken memory management (bug introduced in 3.2,
so -stable material) and PM documentation update making the freezer
documentation follow the code again after some recent updates.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJPnbeLAAoJEKhOf7ml8uNs4nkQAKwhfWWfbM7ZepPfT56A5NW1
9vlfgO+1ibUgdjkO0hi1biCAbARTNVS5eCLyRJW0W/msGgL51nYleBeFmwwx5E6h
m5Vwr/53cGeAeF0AOkrQkD45YKJaAlTmWF4/T2YWKLWNMgaVuLmGf7eyYZ6rP1NO
rJxzUOMC6UrRjIA+S2anDU0CdMyqDHvV3OmY+InZBikFCk0YAtDYUYfNDNqQpEBG
bzkG3SyaJeqnbQDkhme7U/uAPJCThSz2Z4gvvOxiXdB+I+yp6FhluhLSGxqMh/kj
OUAJe9s6AAdKz+K62/OgowwucxvmeJRCyYWkN2ZEpsZLoqTEOqLNS4+eaUO6xS/2
tq89LnfSIVFwRx23XeVr/oMfxUJZ8VKZENo5Pm6NjTAYykTeyD4ug/GAHqgXR0TT
B+fvx8QmQ68R843aJsjR9h0AKsSeXfgCAROJt+x0ONYAvmJNV62nzs81broDEl4I
BmWHpOWI7wlzMPt7bNWn4ev4K+WhbVsioFDS61he0Y47Rqt3yUJ8G2OfBq6JYndw
As4ImoPOVGl0+TKcHJ9Y3bVPnsY7fJyF0GeG50NHxsVFsnTv+rYZ9K3GM9KExhO/
5mCfoHNgkOJnhGHfZppbnQBHbmjH8EA3QUx57Abo+Q4wiPNNAVG9P1JpZeyGj8KF
3YML5FjjGQHtYBWeH5WR
=HaVL
-----END PGP SIGNATURE-----
Merge tag 'pm-for-3.4-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael J. Wysocki:
"Fix for an issue causing hibernation to hang on systems with highmem
(that practically means i386) due to broken memory management (bug
introduced in 3.2, so -stable material) and PM documentation update
making the freezer documentation follow the code again after some
recent updates."
* tag 'pm-for-3.4-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM / Freezer / Docs: Update documentation about freezing of tasks
PM / Hibernate: fix the number of pages used for hibernate/thaw buffering
Pull perf fixes from Ingo Molnar.
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix perf_event_for_each() to use sibling
perf symbols: Read plt symbols from proper symtab_type binary
tracing: Fix stacktrace of latency tracers (irqsoff and friends)
perf tools: Add 'G' and 'H' modifiers to event parsing
tracing: Fix regression with tracing_on
perf tools: Drop CROSS_COMPILE from flex and bison calls
perf report: Fix crash showing warning related to kernel maps
tracing: Fix build breakage without CONFIG_PERF_EVENTS (again)
Pull build fixes for less mainstream architectures from Paul Gortmaker:
"These are fixes for frv(1), blackfin(2), powerpc(1) and xtensa(4).
Fortunately the touches are nearly all specific to files just used by
the arch in question. The two touches to shared/common files
[kernel/irq/debug.h and drivers/pci/Makefile] are trivial to assess as
no risk to anyone.
Half of them relate to xtensa directly. It was only when I fixed the
last xtensa issue that I realized that the arch has been broken for a
significant time, and isn't a specific v3.4 regression. So if you
wanted, we could leave xtensa lying bleeding in the street for a
couple more weeks and queue those for 3.5. But given they are no risk
to anyone outside of xtensa, I figured to just leave them in.
If you are OK with taking the xtensa fixes, then please pull to get:
- one last implicit include uncovered by system.h that is in a file
specific to just one powerpc defconfig. (I'd sync'd with BenH).
- fix an oversight in the PCI makefile where shared code wasn't being
compiled for ARCH=frv
- fix a missing include for GPIO in blackfin framebuffer.
- audit and tag endif in blackfin ezkit board file, in order to find
and fix the misplaced endif masking a block of code.
- fix irq/debug.h choice of temporary macro names to be more internal
so they don't conflict with names used by xtensa.
- fix a reference to an undeclared local var in xtensa's signal.c
- fix an implicit bug.h usage in xtensa's asm/io.h uncovered by my
removing bug.h from kernel.h
- fix xtensa to properly indicate it is using asm-generic/hardirq.h
in order to resolve the link error - undefined ack_bad_irq
The xtensa still fails final link as my latest binutils does something
evil when ld forward-relocates unlikely() blocks, but in theory people
who have older/valid toolchains could now use the thing."
* 'for-v3.4-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
xtensa: fix build fail on undefined ack_bad_irq
blackfin: fix ifdef fustercluck in mach-bf538/boards/ezkit.c
blackfin: fix compile error in bfin-lq035q1-fb.c
pci: frv architecture needs generic setup-bus infrastructure
irq: hide debug macros so they don't collide with others.
xtensa: fix build error in xtensa/include/asm/io.h
xtensa: fix build failure in xtensa/kernel/signal.c
powerpc: fix system.h fallout in sysdev/scom.c [chroma_defconfig]
Updating max_usage is something one would expect when we reach
a new maximum usage value even when we do this by forcing through
the limit with res_counter_charge_nofail().
(Whether we want to account failcnt when we force through the limit
is another debate).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Li Zefan <lizefan@huawei.com>
These two functions do almost the same thing and duplicate some code.
Merge their implementation into a single common function.
res_counter_charge_locked() takes one more parameter but it doesn't seem
to be used outside res_counter.c yet anyway.
There is no (intended) change in the behaviour.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Li Zefan <lizefan@huawei.com>
The mod_timer_pinned() header comment states that it prevents timers
from being migrated to a different CPU. This is not the case, instead,
it ensures that the timer is posted to the current CPU, but does nothing
to prevent CPU-hotplug operations from migrating the timer.
This commit therefore brings the comment header into alignment with
reality.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
RCU_FAST_NO_HZ uses a timer to limit the time that a CPU with callbacks
can remain in dyntick-idle mode. This timer is cancelled when the CPU
exits idle, and therefore should never fire. However, if the timer
were migrated to some other CPU for whatever reason (1) the timer could
actually fire and (2) firing on some other CPU would fail to wake up the
CPU with callbacks, possibly resulting in sluggishness or a system hang.
This commit therfore adds a WARN_ON_ONCE() to the timer handler in order
to detect this condition.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In perf_event_for_each() we call a function on an event, and then
iterate over the siblings of the event.
However we don't call the function on the siblings, we call it
repeatedly on the original event - it seems "obvious" that we should
be calling it with sibling as the argument.
It looks like this broke in commit 75f937f24b ("Fix ctx->mutex
vs counter->mutex inversion").
The only effect of the bug is that the PERF_IOC_FLAG_GROUP parameter
to the ioctls doesn't work.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1334109253-31329-1-git-send-email-michael@ellerman.id.au
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Under extreme memory used up situations, percpu allocation
might fail. We hit it when system goes to suspend-to-ram,
causing a kworker panic:
EIP: [<c124411a>] build_sched_domains+0x23a/0xad0
Kernel panic - not syncing: Fatal exception
Pid: 3026, comm: kworker/u:3
3.0.8-137473-gf42fbef #1
Call Trace:
[<c18cc4f2>] panic+0x66/0x16c
[...]
[<c1244c37>] partition_sched_domains+0x287/0x4b0
[<c12a77be>] cpuset_update_active_cpus+0x1fe/0x210
[<c123712d>] cpuset_cpu_inactive+0x1d/0x30
[...]
With this fix applied build_sched_domains() will return -ENOMEM and
the suspend attempt fails.
Signed-off-by: he, bo <bo.he@intel.com>
Reviewed-by: Zhang, Yanmin <yanmin.zhang@intel.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1335355161.5892.17.camel@hebo
[ So, we fail to deallocate a CPU because we cannot allocate RAM :-/
I don't like that kind of sad behavior but nevertheless it should
not crash under high memory load. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commits 367456c756 ("sched: Ditch per cgroup task lists for
load-balancing") and 5d6523ebd ("sched: Fix load-balance wreckage")
left some more wreckage.
By setting loop_max unconditionally to ->nr_running load-balancing
could take a lot of time on very long runqueues (hackbench!). So keep
the sysctl as max limit of the amount of tasks we'll iterate.
Furthermore, the min load filter for migration completely fails with
cgroups since inequality in per-cpu state can easily lead to such
small loads :/
Furthermore the change to add new tasks to the tail of the queue
instead of the head seems to have some effect.. not quite sure I
understand why.
Combined these fixes solve the huge hackbench regression reported by
Tim when hackbench is ran in a cgroup.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1335365763.28150.267.camel@twins
[ got rid of the CONFIG_PREEMPT tuning and made small readability edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All SMP architectures have magic to fork the idle task and to store it
for reusage when cpu hotplug is enabled. Provide a generic
infrastructure for it.
Create/reinit the idle thread for the cpu which is brought up in the
generic code and hand the thread pointer to the architecture code via
__cpu_up().
Note, that fork_idle() is called via a workqueue, because this
guarantees that the idle thread does not get a reference to a user
space VM. This can happen when the boot process did not bring up all
possible cpus and a later cpu_up() is initiated via the sysfs
interface. In that case fork_idle() would be called in the context of
the user space task and take a reference on the user space VM.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: x86@kernel.org
Acked-by: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/r/20120420124557.102478630@linutronix.de
Start a new file, which will hold SMP and CPU hotplug related generic
infrastructure.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20120420124557.035417523@linutronix.de
Preparatory patch to make the idle thread allocation for secondary
cpus generic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20120420124556.964170564@linutronix.de
- Convert the old uid mapping functions into compatibility wrappers
- Add a uid/gid mapping layer from user space uid and gids to kernel
internal uids and gids that is extent based for simplicty and speed.
* Working with number space after mapping uids/gids into their kernel
internal version adds only mapping complexity over what we have today,
leaving the kernel code easy to understand and test.
- Add proc files /proc/self/uid_map /proc/self/gid_map
These files display the mapping and allow a mapping to be added
if a mapping does not exist.
- Allow entering the user namespace without a uid or gid mapping.
Since we are starting with an existing user our uids and gids
still have global mappings so are still valid and useful they just don't
have local mappings. The requirement for things to work are global uid
and gid so it is odd but perfectly fine not to have a local uid
and gid mapping.
Not requiring global uid and gid mappings greatly simplifies
the logic of setting up the uid and gid mappings by allowing
the mappings to be set after the namespace is created which makes the
slight weirdness worth it.
- Make the mappings in the initial user namespace to the global
uid/gid space explicit. Today it is an identity mapping
but in the future we may want to twist this for debugging, similar
to what we do with jiffies.
- Document the memory ordering requirements of setting the uid and
gid mappings. We only allow the mappings to be set once
and there are no pointers involved so the requirments are
trivial but a little atypical.
Performance:
In this scheme for the permission checks the performance is expected to
stay the same as the actuall machine instructions should remain the same.
The worst case I could think of is ls -l on a large directory where
all of the stat results need to be translated with from kuids and
kgids to uids and gids. So I benchmarked that case on my laptop
with a dual core hyperthread Intel i5-2520M cpu with 3M of cpu cache.
My benchmark consisted of going to single user mode where nothing else
was running. On an ext4 filesystem opening 1,000,000 files and looping
through all of the files 1000 times and calling fstat on the
individuals files. This was to ensure I was benchmarking stat times
where the inodes were in the kernels cache, but the inode values were
not in the processors cache. My results:
v3.4-rc1: ~= 156ns (unmodified v3.4-rc1 with user namespace support disabled)
v3.4-rc1-userns-: ~= 155ns (v3.4-rc1 with my user namespace patches and user namespace support disabled)
v3.4-rc1-userns+: ~= 164ns (v3.4-rc1 with my user namespace patches and user namespace support enabled)
All of the configurations ran in roughly 120ns when I performed tests
that ran in the cpu cache.
So in summary the performance impact is:
1ns improvement in the worst case with user namespace support compiled out.
8ns aka 5% slowdown in the worst case with user namespace support compiled in.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
- Transform userns->creator from a user_struct reference to a simple
kuid_t, kgid_t pair.
In cap_capable this allows the check to see if we are the creator of
a namespace to become the classic suser style euid permission check.
This allows us to remove the need for a struct cred in the mapping
functions and still be able to dispaly the user namespace creators
uid and gid as 0.
- Remove the now unnecessary delayed_work in free_user_ns.
All that is left for free_user_ns to do is to call kmem_cache_free
and put_user_ns. Those functions can be called in any context
so call them directly from free_user_ns removing the need for delayed work.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Send an NMI to all CPUs when a hung task is detected and the hung
task code is configured to panic. This gives us a fairly uptodate
snapshot of all CPUs in the system.
This lets us get stack trace of all CPUs which makes life easier
trying to debug a deadlock, and the NMI doesn't change anything
since the next step is a kernel panic.
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1331848040-1676-1-git-send-email-levinsasha928@gmail.com
[ extended the changelog a bit ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The rcutorture initialization code ignored the error returns from
rcu_torture_onoff_init() and rcu_torture_stall_init(). The rcutorture
cleanup code failed to NULL out a number of pointers. These bugs will
normally have no effect, but this commit fixes them nevertheless.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Both Steven Rostedt's new idle-capable trace macros and the RCU_NONIDLE()
macro can cause RCU to momentarily pause out of idle without the rest
of the system being involved. This can cause rcu_prepare_for_idle()
to run through its state machine too quickly, which can in turn result
in needless scheduling-clock interrupts.
This commit therefore adds code to enable rcu_prepare_for_idle() to
distinguish between an initial entry to idle on the one hand (which needs
to advance the rcu_prepare_for_idle() state machine) and an idle reentry
due to idle-capable trace macros and RCU_NONIDLE() on the other hand
(which should avoid advancing the rcu_prepare_for_idle() state machine).
Additional state is maintained to allow the timer to be correctly reposted
when returning after a momentary pause out of idle, and even more state
is maintained to detect when new non-lazy callbacks have been enqueued
(which may require re-evaluation of the approach to idleness).
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The RCU_FAST_NO_HZ facility uses an hrtimer to wake up a CPU when
it is allowed to go into dyntick-idle mode, which is almost always
cancelled soon after. This is not what hrtimers are good at, so
this commit switches to the timer wheel.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Traces of rcu_prep_idle events can be confusing because
rcu_cleanup_after_idle() does no tracing. This commit therefore adds
this tracing.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_blocking_is_gp() function tests to see if there is only one
online CPU, and if so, synchronize_sched() and friends become no-ops.
However, for larger systems, num_online_cpus() scans a large vector,
and might be preempted while doing so. While preempted, any number
of CPUs might come online and go offline, potentially resulting in
num_online_cpus() returning 1 when there never had only been one
CPU online. This could result in a too-short RCU grace period, which
could in turn result in total failure, except that the only way that
the grace period is too short is if there is an RCU read-side critical
section spanning it. For RCU-sched and RCU-bh (which are the only
cases using rcu_blocking_is_gp()), RCU read-side critical sections
have either preemption or bh disabled, which prevents CPUs from going
offline. This in turn prevents actual failures from occurring.
This commit therefore adds a large block comment to rcu_blocking_is_gp()
documenting why it is safe. This commit also moves rcu_blocking_is_gp()
into kernel/rcutree.c, which should help prevent unwary developers from
mistaking it for a generally useful function.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit #0209f649 (rcu: limit rcu_node leaf-level fanout) set an upper
limit of 16 on the leaf-level fanout for the rcu_node tree. This was
needed to reduce lock contention that was induced by the synchronization
of scheduling-clock interrupts, which was in turn needed to improve
energy efficiency for moderate-sized lightly loaded servers.
However, reducing the leaf-level fanout means that there are more
leaf-level rcu_node structures in the tree, which in turn means that
RCU's grace-period initialization incurs more cache misses. This is
not a problem on moderate-sized servers with only a few tens of CPUs,
but becomes a major source of real-time latency spikes on systems with
many hundreds of CPUs. In addition, the workloads running on these large
systems tend to be CPU-bound, which eliminates the energy-efficiency
advantages of synchronizing scheduling-clock interrupts. Therefore,
these systems need maximal values for the rcu_node leaf-level fanout.
This commit addresses this problem by introducing a new kernel parameter
named RCU_FANOUT_LEAF that directly controls the leaf-level fanout.
This parameter defaults to 16 to handle the common case of a moderate
sized lightly loaded servers, but may be set higher on larger systems.
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Hibernation regression fix, since 3.2.
Calculate the number of required free pages based on non-high memory
pages only, because that is where the buffers will come from.
Commit 081a9d043c introduced a new buffer
page allocation logic during hibernation, in order to improve the
performance. The amount of pages allocated was calculated based on total
amount of pages available, although only non-high memory pages are
usable for this purpose. This caused hibernation code to attempt to over
allocate pages on platforms that have high memory, which led to hangs.
Signed-off-by: Bojan Smojver <bojan@rexursive.com>
Signed-off-by: Rafael J. Wysocki <rjw@suse.de>
Add a debugfs entry under per_cpu/ folder for each cpu called
buffer_size_kb to control the ring buffer size for each CPU
independently.
If the global file buffer_size_kb is used to set size, the individual
ring buffers will be adjusted to the given size. The buffer_size_kb will
report the common size to maintain backward compatibility.
If the buffer_size_kb file under the per_cpu/ directory is used to
change buffer size for a specific CPU, only the size of the respective
ring buffer is updated. When tracing/buffer_size_kb is read, it reports
'X' to indicate that sizes of per_cpu ring buffers are not equivalent.
Link: http://lkml.kernel.org/r/1328212844-11889-1-git-send-email-vnagarnaik@google.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: David Sharp <dhsharp@google.com>
Cc: Justin Teravest <teravest@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
memcpy() returns a pointer to "bug". Hopefully, it's not NULL here or
we would already have Oopsed.
Link: http://lkml.kernel.org/r/20120420063145.GA22649@elgon.mountain
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently, trace_printk() uses a single buffer to write into
to calculate the size and format needed to save the trace. To
do this safely in an SMP environment, a spin_lock() is taken
to only allow one writer at a time to the buffer. But this could
also affect what is being traced, and add synchronization that
would not be there otherwise.
Ideally, using percpu buffers would be useful, but since trace_printk()
is only used in development, having per cpu buffers for something
never used is a waste of space. Thus, the use of the trace_bprintk()
format section is changed to be used for static fmts as well as dynamic ones.
Then at boot up, we can check if the section that holds the trace_printk
formats is non-empty, and if it does contain something, then we
know a trace_printk() has been added to the kernel. At this time
the trace_printk per cpu buffers are allocated. A check is also
done at module load time in case a module is added that contains a
trace_printk().
Once the buffers are allocated, they are never freed. If you use
a trace_printk() then you should know what you are doing.
A buffer is made for each type of context:
normal
softirq
irq
nmi
The context is checked and the appropriate buffer is used.
This allows for totally lockless usage of trace_printk(),
and they no longer even disable interrupts.
Requested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If a workqueue is flushed with flush_work() lockdep checking can
be circumvented. For example:
static DEFINE_MUTEX(mutex);
static void my_work(struct work_struct *w)
{
mutex_lock(&mutex);
mutex_unlock(&mutex);
}
static DECLARE_WORK(work, my_work);
static int __init start_test_module(void)
{
schedule_work(&work);
return 0;
}
module_init(start_test_module);
static void __exit stop_test_module(void)
{
mutex_lock(&mutex);
flush_work(&work);
mutex_unlock(&mutex);
}
module_exit(stop_test_module);
would not always print a warning when flush_work() was called.
In this trivial example nothing could go wrong since we are
guaranteed module_init() and module_exit() don't run concurrently,
but if the work item is schedule asynchronously we could have a
scenario where the work item is running just at the time flush_work()
is called resulting in a classic ABBA locking problem.
Add a lockdep hint by acquiring and releasing the work item
lockdep_map in flush_work() so that we always catch this
potential deadlock scenario.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Allowing kthreadd to be moved to a non-root group makes no sense, it being
a global resource, and needlessly leads unsuspecting users toward trouble.
1. An RT workqueue worker thread spawned in a task group with no rt_runtime
allocated is not schedulable. Simple user error, but harmful to the box.
2. A worker thread which acquires PF_THREAD_BOUND can never leave a cpuset,
rendering the cpuset immortal.
Save the user some unexpected trouble, just say no.
Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The file kernel/irq/debug.h temporarily defines P, PS, PD
and then undefines them. However these names aren't really
"internal" enough, and collide with other more legit users
such as the ones in the xtensa arch, causing:
In file included from kernel/irq/internals.h:58:0,
from kernel/irq/irqdesc.c:18:
kernel/irq/debug.h:8:0: warning: "PS" redefined [enabled by default]
arch/xtensa/include/asm/regs.h:59:0: note: this is the location of the previous definition
Add a handful of underscores to do a better job of hiding these
temporary macros.
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
The Android alarm interface provides a settime call that sets both
the alarmtimer RTC device and CLOCK_REALTIME to the same value.
Since there may be multiple rtc devices, provide a hook to access the
one the alarmtimer infrastructure is using.
CC: Colin Cross <ccross@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Android Kernel Team <kernel-team@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
While debugging a latency with someone on IRC (mirage335) on #linux-rt (OFTC),
we discovered that the stacktrace output of the latency tracers
(preemptirqsoff) was empty.
This bug was caused by the creation of the dynamic length stack trace
again (like commit 12b5da3 "tracing: Fix ent_size in trace output" was).
This bug is caused by the latency tracers requiring the next event
to determine the time between the current event and the next. But by
grabbing the next event, the iter->ent_size is set to the next event
instead of the current one. As the stacktrace event is the last event,
this makes the ent_size zero and causes nothing to be printed for
the stack trace. The dynamic stacktrace uses the ent_size to determine
how much of the stack can be printed. The ent_size of zero means
no stack.
The simple fix is to save the iter->ent_size before finding the next event.
Note, mirage335 asked to remain anonymous from LKML and git, so I will
not add the Reported-by and Tested-by tags, even though he did report
the issue and tested the fix.
Cc: stable@vger.kernel.org # 3.1+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Merge reason: development work has dependency on kvm patches merged
upstream.
Conflicts:
Documentation/feature-removal-schedule.txt
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
During resume, tick_resume_broadcast() programs the broadcast timer in
oneshot mode unconditionally. On the platforms where broadcast timer
is not really required, this will generate spurious broadcast timer
ticks upon resume. For example, on the always running apic timer
platforms with HPET, I see spurious hpet tick once every ~5minutes
(which is the 32-bit hpet counter wraparound time).
Similar to boot time, during resume make the oneshot mode setting of
the broadcast clock event device conditional on the state of active
broadcast users.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: svenjoac@gmx.de
Cc: torvalds@linux-foundation.org
Cc: rjw@sisk.pl
Link: http://lkml.kernel.org/r/1334802459.28674.209.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Santosh found another trap when we avoid to initialize the broadcast
device in the switch_to_oneshot code. The broadcast device might be
still in SHUTDOWN state when we actually need to use it. That
obviously breaks, as set_next_event() is called on a shutdown
device. This did not break on x86, but Suresh analyzed it:
From the review, most likely on Sven's system we are force enabling
the hpet using the pci quirk's method very late. And in this case,
hpet_clockevent (which will be global_clock_event) handler can be
null, specifically as this platform might not be using deeper c-states
and using the reliable APIC timer.
Prior to commit 'fa4da365bc7772c', that handler will be set to
'tick_handle_oneshot_broadcast' when we switch the broadcast timer to
oneshot mode, even though we don't use it. Post commit
'fa4da365bc7772c', we stopped switching the broadcast mode to oneshot
as this is not really needed and his platform's global_clock_event's
handler will remain null. While on my SNB laptop, same is set to
'clockevents_handle_noop' because hpet gets enabled very early. (noop
handler on my platform set when the early enabled hpet timer gets
replaced by the lapic timer).
But the commit 'fa4da365bc7772c' tracked the broadcast timer mode in
the SW as oneshot, even though it didn't touch the HW timer. During
resume however, tick_resume_broadcast() saw the SW broadcast mode as
oneshot and actually programmed the broadcast device also into oneshot
mode. So this triggered the null pointer de-reference after the hpet
wraps around and depending on what the hpet counter is set to. On the
normal platforms where hpet gets enabled early we should be seeing a
spurious interrupt (in my SNB laptop I see one spurious interrupt
after around 5 minutes ;) which is 32-bit hpet counter wraparound
time), but that's a separate issue.
Enforce the mode setting when trying to set an event.
Reported-and-tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: torvalds@linux-foundation.org
Cc: svenjoac@gmx.de
Cc: rjw@sisk.pl
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1204181723350.2542@ionos
* tag 'v3.4-rc3': (3755 commits)
Linux 3.4-rc3
x86-32: fix up strncpy_from_user() sign error
ARM: 7386/1: jump_label: fixup for rename to static_key
ARM: 7384/1: ThumbEE: Disable userspace TEEHBR access for !CONFIG_ARM_THUMBEE
ARM: 7382/1: mm: truncate memory banks to fit in 4GB space for classic MMU
ARM: 7359/2: smp_twd: Only wait for reprogramming on active cpus
PCI: Fix regression in pci_restore_state(), v3
SCSI: Fix error handling when no ULD is attached
ARM: OMAP: clock: cleanup CPUfreq leftovers, fix build errors
ARM: dts: remove blank interrupt-parent properties
ARM: EXYNOS: Fix Kconfig dependencies for device tree enabled machine files
do not export kernel's NULL #define to userspace
ARM: EXYNOS: Remove broken config values for touchscren for NURI board
ARM: EXYNOS: set fix xusbxti clock for NURI and Universal210 boards
ARM: EXYNOS: fix regulator name for NURI board
ARM: SAMSUNG: make SAMSUNG_PM_DEBUG select DEBUG_LL
cpufreq: OMAP: fix build errors: depends on ARCH_OMAP2PLUS
sparc64: Eliminate obsolete __handle_softirq() function
sparc64: Fix bootup crash on sun4v.
ARM: msm: Fix section mismatches in proc_comm.c
...
We require that shared interrupts agree on a few flag settings. Right
now we silently return with an error code without giving any hint why
we reject it.
Make the printout unconditionally and actually useful by printing the
flags of the new and the already registered action.
Convert all printks to pr_* and use a proper prefix while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>