Specs don't say anything about UIP being cleared within 10ms. They
only say that UIP won't occur for another 244uS. If a long NMI occurs
while UIP is still updating it might not be possible to get valid
data in 10ms.
This has been observed in the wild that around s2idle some calls can
take up to 480ms before UIP is clear.
Adjust callers from outside an interrupt context to wait for up to a
1s instead of 10ms.
Cc: <stable@vger.kernel.org> # 6.1.y
Fixes: ec5895c0f2 ("rtc: mc146818-lib: extract mc146818_avoid_UIP")
Reported-by: Carsten Hatger <xmb8dsv4@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217626
Tested-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Acked-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Link: https://lore.kernel.org/r/20231128053653.101798-5-mario.limonciello@amd.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
The UIP timeout is hardcoded to 10ms for all RTC reads, but in some
contexts this might not be enough time. Add a timeout parameter to
mc146818_get_time() and mc146818_get_time_callback().
If UIP timeout is configured by caller to be >=100 ms and a call
takes this long, log a warning.
Make all callers use 10ms to ensure no functional changes.
Cc: <stable@vger.kernel.org> # 6.1.y
Fixes: ec5895c0f2 ("rtc: mc146818-lib: extract mc146818_avoid_UIP")
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Tested-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Acked-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Link: https://lore.kernel.org/r/20231128053653.101798-4-mario.limonciello@amd.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
mc146818_get_time() calls mc146818_avoid_UIP() to avoid fetching the
time while RTC update is in progress (UIP). When this fails, the return
code is -EIO, but actually there was no IO failure.
The reason for the return from mc146818_avoid_UIP() is that the UIP
wasn't cleared in the time period. Adjust the return code to -ETIMEDOUT
to match the behavior.
Tested-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Acked-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: <stable@vger.kernel.org>
Fixes: 2a61b0ac54 ("rtc: mc146818-lib: refactor mc146818_get_time")
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Link: https://lore.kernel.org/r/20231128053653.101798-2-mario.limonciello@amd.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Waiting 1ms every time is not necessary, for example on some AMD boxes
the RTC_UIP bit is documented as being high for around 270 microseconds
in some cases [1], which agreed with experiments on an SB710
southbridge. So 100us seems optimal.
This in preparation for mach_get_cmos_time() refactoring.
The functions mc146818_get_time() and mach_get_cmos_time() in
arch/x86/kernel/rtc.c perform the same function and the code is
duplicated. mach_get_cmos_time() is busy waiting for the RTC_UIP
bit to clear, so make mc146818_get_time() more similar to it by reducing
the polling period.
[1] AMD SB700/710/750 Register Reference Guide, page 307,
https://developer.amd.com/wordpress/media/2012/10/43009_sb7xx_rrg_pub_1.00.pdf
"SB700 A12: The UIP high pulse is 270 μS Typical when SS on SRC
clock is OFF and 100μ min when SRC SS is ON." [sic]
Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20220225215011.861477-2-mat.jonczyk@o2.pl
Setting the century forward has been failing on AMD platforms.
There was a previous attempt at fixing this for family 0x17 as part of
commit 7ad295d519 ("rtc: Fix the AltCentury value on AMD/Hygon
platform") but this was later reverted due to some problems reported
that appeared to stem from an FW bug on a family 0x17 desktop system.
The same comments mentioned in the previous commit continue to apply
to the newer platforms as well.
```
MC146818 driver use function mc146818_set_time() to set register
RTC_FREQ_SELECT(RTC_REG_A)'s bit4-bit6 field which means divider stage
reset value on Intel platform to 0x7.
While AMD/Hygon RTC_REG_A(0Ah)'s bit4 is defined as DV0 [Reference]:
DV0 = 0 selects Bank 0, DV0 = 1 selects Bank 1. Bit5-bit6 is defined
as reserved.
DV0 is set to 1, it will select Bank 1, which will disable AltCentury
register(0x32) access. As UEFI pass acpi_gbl_FADT.century 0x32
(AltCentury), the CMOS write will be failed on code:
CMOS_WRITE(century, acpi_gbl_FADT.century).
Correct RTC_REG_A bank select bit(DV0) to 0 on AMD/Hygon CPUs, it will
enable AltCentury(0x32) register writing and finally setup century as
expected.
```
However in closer examination the change previously submitted was also
modifying bits 5 & 6 which are declared reserved in the AMD documentation.
So instead modify just the DV0 bank selection bit.
Being cognizant that there was a failure reported before, split the code
change out to a static function that can also be used for exclusions if
any regressions such as Mikhail's pop up again.
Cc: Jinke Fan <fanjinke@hygon.cn>
Cc: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Link: https://lore.kernel.org/all/CABXGCsMLob0DC25JS8wwAYydnDoHBSoMh2_YLPfqm3TTvDE-Zw@mail.gmail.com/
Link: https://www.amd.com/system/files/TechDocs/51192_Bolton_FCH_RRG.pdf
Signed-off-by: Raul E Rangel <rrangel@chromium.org>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20220111225750.1699-1-mario.limonciello@amd.com
In mc146818_set_time(), CMOS_READ(RTC_CONTROL) was performed without the
rtc_lock taken, which is required for CMOS accesses. Fix this.
Nothing in kernel modifies RTC_DM_BINARY, so a separate critical section
is allowed here.
Fixes: dcf257e926 ("rtc: mc146818: Reduce spinlock section in mc146818_set_time()")
Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20220220090403.153928-1-mat.jonczyk@o2.pl
There's limiting the year to 2069. When setting the rtc year to 2070,
reading it returns 1970. Evaluate century starting from 19 to count the
correct year.
$ sudo date -s 20700106
Mon 06 Jan 2070 12:00:00 AM CST
$ sudo hwclock -w
$ sudo hwclock -r
1970-01-06 12:00:49.604968+08:00
Fixes: 2a4daadd4d ("rtc: cmos: ignore bogus century byte")
Signed-off-by: Riwen Lu <luriwen@kylinos.cn>
Acked-by: Eric Wong <e@80x24.org>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20220106084609.1223688-1-luriwen@kylinos.cn
The mc146818_get_time() function returns zero on success or negative
a error code on failure. It needs to be type int.
Fixes: d35786b3a2 ("rtc: mc146818-lib: change return values of mc146818_get_time()")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20220111071922.GE11243@kili
Refactor mc146818_does_rtc_work() so that it uses mc146818_avoid_UIP().
It is enough to call mc146818_avoid_UIP() with no callback.
Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20211210200131.153887-8-mat.jonczyk@o2.pl
Function mc146818_get_time() contains an elaborate mechanism of reading
the RTC time while no RTC update is in progress. It turns out that
reading the RTC alarm clock also requires avoiding the RTC update.
Therefore, the mechanism in mc146818_get_time() should be reused - so
extract it into a separate function.
The logic in mc146818_avoid_UIP() is same as in mc146818_get_time()
except that after every
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) {
there is now "mdelay(1)".
To avoid producing a very unreadable patch, mc146818_get_time() will be
refactored to use mc146818_avoid_UIP() in the next patch.
Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20211210200131.153887-6-mat.jonczyk@o2.pl
To prevent an infinite loop in mc146818_get_time(),
commit 211e5db19d ("rtc: mc146818: Detect and handle broken RTCs")
added a check for RTC availability. Together with a later fix, it
checked if bit 6 in register 0x0d is cleared.
This, however, caused a false negative on a motherboard with an AMD
SB710 southbridge; according to the specification [1], bit 6 of register
0x0d of this chipset is a scratchbit. This caused a regression in Linux
5.11 - the RTC was determined broken by the kernel and not used by
rtc-cmos.c [3]. This problem was also reported in Fedora [4].
As a better alternative, check whether the UIP ("Update-in-progress")
bit is set for longer then 10ms. If that is the case, then apparently
the RTC is either absent (and all register reads return 0xff) or broken.
Also limit the number of loop iterations in mc146818_get_time() to 10 to
prevent an infinite loop there.
The functions mc146818_get_time() and mc146818_does_rtc_work() will be
refactored later in this patch series, in order to fix a separate
problem with reading / setting the RTC alarm time. This is done so to
avoid a confusion about what is being fixed when.
In a previous approach to this problem, I implemented a check whether
the RTC_HOURS register contains a value <= 24. This, however, sometimes
did not work correctly on my Intel Kaby Lake laptop. According to
Intel's documentation [2], "the time and date RAM locations (0-9) are
disconnected from the external bus" during the update cycle so reading
this register without checking the UIP bit is incorrect.
[1] AMD SB700/710/750 Register Reference Guide, page 308,
https://developer.amd.com/wordpress/media/2012/10/43009_sb7xx_rrg_pub_1.00.pdf
[2] 7th Generation Intel ® Processor Family I/O for U/Y Platforms [...] Datasheet
Volume 1 of 2, page 209
Intel's Document Number: 334658-006,
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/7th-and-8th-gen-core-family-mobile-u-y-processor-lines-i-o-datasheet-vol-1.pdf
[3] Functions in arch/x86/kernel/rtc.c apparently were using it.
[4] https://bugzilla.redhat.com/show_bug.cgi?id=1936688
Fixes: 211e5db19d ("rtc: mc146818: Detect and handle broken RTCs")
Fixes: ebb22a0594 ("rtc: mc146818: Dont test for bit 0-5 in Register D")
Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20211210200131.153887-5-mat.jonczyk@o2.pl
There are 4 users of mc146818_get_time() and none of them was checking
the return value from this function. Change this.
Print the appropriate warnings in callers of mc146818_get_time() instead
of in the function mc146818_get_time() itself, in order not to add
strings to rtc-mc146818-lib.c, which is kind of a library.
The callers of alpha_rtc_read_time() and cmos_read_time() may use the
contents of (struct rtc_time *) even when the functions return a failure
code. Therefore, set the contents of (struct rtc_time *) to 0x00,
which looks more sensible then 0xff and aligns with the (possibly
stale?) comment in cmos_read_time:
/*
* If pm_trace abused the RTC for storage, set the timespec to 0,
* which tells the caller that this RTC value is unusable.
*/
For consistency, do this in mc146818_get_time().
Note: hpet_rtc_interrupt() may call mc146818_get_time() many times a
second. It is very unlikely, though, that the RTC suddenly stops
working and mc146818_get_time() would consistently fail.
Only compile-tested on alpha.
Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: linux-alpha@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20211210200131.153887-4-mat.jonczyk@o2.pl
No function is checking mc146818_get_time() return values yet, so
correct them to make them more customary.
Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20211210200131.153887-3-mat.jonczyk@o2.pl
The recent change to validate the RTC turned out to be overly tight.
While it cures the problem on the reporters machine it breaks machines
with Intel chipsets which use bit 0-5 of the D register. So check only
for bit 6 being 0 which is the case on these Intel machines as well.
Fixes: 211e5db19d ("rtc: mc146818: Detect and handle broken RTCs")
Reported-by: Serge Belyshev <belyshev@depni.sinp.msu.ru>
Reported-by: Dirk Gouders <dirk@gouders.net>
Reported-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Dirk Gouders <dirk@gouders.net>
Tested-by: Len Brown <len.brown@intel.com>
Tested-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/87zh0nbnha.fsf@nanos.tec.linutronix.de
The recent fix for handling the UIP bit unearthed another issue in the RTC
code. If the RTC is advertised but the readout is straight 0xFF because
it's not available, the old code just proceeded with crappy values, but the
new code hangs because it waits for the UIP bit to become low.
Add a sanity check in the RTC CMOS probe function which reads the RTC_VALID
register (Register D) which should have bit 0-6 cleared. If that's not the
case then fail to register the CMOS.
Add the same check to mc146818_get_time(), warn once when the condition
is true and invalidate the rtc_time data.
Reported-by: Mickaël Salaün <mic@digikod.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mickaël Salaün <mic@linux.microsoft.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/87tur3fx7w.fsf@nanos.tec.linutronix.de
The MC146818 driver is prone to read garbage from the RTC. There are
several issues all related to the update cycle of the MC146818. The chip
increments seconds obviously once per second and indicates that by a bit in
a register. The bit goes high 244us before the actual update starts. During
the update the readout of the time values is undefined.
The code just checks whether the update in progress bit (UIP) is set before
reading the clock. If it's set it waits arbitrary 20ms before retrying,
which is ample because the maximum update time is ~2ms.
But this check does not guarantee that the UIP bit goes high and the actual
update happens during the readout. So the following can happen
0.997 UIP = False
-> Interrupt/NMI/preemption
0.998 UIP -> True
0.999 Readout <- Undefined
To prevent this rework the code so it checks UIP before and after the
readout and if set after the readout try again.
But that's not enough to cover the following:
0.997 UIP = False
Readout seconds
-> NMI (or vCPU scheduled out)
0.998 UIP -> True
update completes
UIP -> False
1.000 Readout minutes,....
UIP check succeeds
That can make the readout wrong up to 59 seconds.
To prevent this, read the seconds value before the first UIP check,
validate it after checking UIP and after reading out the rest.
It's amazing that the original i386 code had this actually correct and
the generic implementation of the MC146818 driver got it wrong in 2002 and
it stayed that way until today.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220541.594826678@linutronix.de
When using following operations:
date -s "21190910 19:20:00"
hwclock -w
to change date from 2019 to 2119 for test, it will fail on Hygon
Dhyana and AMD Zen CPUs, while the same operations run ok on Intel i7
platform.
MC146818 driver use function mc146818_set_time() to set register
RTC_FREQ_SELECT(RTC_REG_A)'s bit4-bit6 field which means divider stage
reset value on Intel platform to 0x7.
While AMD/Hygon RTC_REG_A(0Ah)'s bit4 is defined as DV0 [Reference]:
DV0 = 0 selects Bank 0, DV0 = 1 selects Bank 1. Bit5-bit6 is defined
as reserved.
DV0 is set to 1, it will select Bank 1, which will disable AltCentury
register(0x32) access. As UEFI pass acpi_gbl_FADT.century 0x32
(AltCentury), the CMOS write will be failed on code:
CMOS_WRITE(century, acpi_gbl_FADT.century).
Correct RTC_REG_A bank select bit(DV0) to 0 on AMD/Hygon CPUs, it will
enable AltCentury(0x32) register writing and finally setup century as
expected.
Test results on Intel i7, AMD EPYC(17h) and Hygon machine show that it
works as expected.
Compiling for sparc64 and alpha architectures are passed.
Reference:
https://www.amd.com/system/files/TechDocs/51192_Bolton_FCH_RRG.pdf
section: 3.13 Real Time Clock (RTC)
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Jinke Fan <fanjinke@hygon.cn>
Link: https://lore.kernel.org/r/20191105083943.115320-1-fanjinke@hygon.cn
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Older versions of Libreboot and Coreboot had an invalid value
(`3' in my case) in the century byte affecting the GM45 in
the Thinkpad X200. Not everybody's updated their firmwares,
and Linux <= 4.2 was able to read the RTC without problems,
so workaround this by ignoring invalid values.
Fixes: 3c217e51d8 ("rtc: cmos: century support")
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Sylvain Chouleur <sylvain.chouleur@intel.com>
Cc: Patrick McDermott <patrick.mcdermott@libiquity.com>
Cc: linux-rtc@vger.kernel.org
Signed-off-by: Eric Wong <e@80x24.org>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
The mc146818_get_time/mc146818_set_time functions are rather large
inline functions in a global header file and are used in several
drivers and in x86 specific code.
Here we move them into a separate .c file that is compiled whenever
any of the users require it. This also lets us remove the linux/acpi.h
header inclusion from mc146818rtc.h, which in turn avoids some
warnings about duplicate definition of the TRUE/FALSE macros.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>