__tasklet_schedule() and __tasklet_hi_schedule() are almost identical.
Move the common code from both function into __tasklet_schedule_common()
and let both functions invoke it with different arguments.
[ bigeasy: Splitted out from RT's "tasklet: Prevent tasklets from going
into infinite spin in RT" and added commit message. Use
this_cpu_ptr(headp) in __tasklet_schedule_common() as suggested
by Julia Cartwright ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Julia Cartwright <juliac@eso.teric.us>
Link: https://lkml.kernel.org/r/20180227164808.10093-2-bigeasy@linutronix.de
Now that cond_resched() also provides RCU quiescent states when
needed, it can be used in place of cond_resched_rcu_qs(). This
commit therefore makes this change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: NeilBrown <neilb@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-3-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is not safe for one thread to modify the ->flags
of another thread as there is no locking that can protect
the update.
So tsk_restore_flags(), which takes a task pointer and modifies
the flags, is an invitation to do the wrong thing.
All current users pass "current" as the task, so no developers have
accepted that invitation. It would be best to ensure it remains
that way.
So rename tsk_restore_flags() to current_restore_flags() and don't
pass in a task_struct pointer. Always operate on current->flags.
Signed-off-by: NeilBrown <neilb@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This library was moved to the generic area and was
renamed to irq-poll. Hence, update proc/softirqs output accordingly.
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk
1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC
Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm
iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk
B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw
MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW
SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4
8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ
e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh
afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf
cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R
pa/A7CNQwibIV6YD8+/p
=1dUK
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull gcc plugins update from Kees Cook:
"This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot
time as possible, hoping to capitalize on any possible variation in
CPU operation (due to runtime data differences, hardware differences,
SMP ordering, thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example
for how to manipulate kernel code using the gcc plugin internals"
* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
latent_entropy: Mark functions with __latent_entropy
gcc-plugins: Add latent_entropy plugin
The __latent_entropy gcc attribute can be used only on functions and
variables. If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents. The variable must
be an integer, an integer array type or a structure with integer fields.
These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull CPU hotplug updates from Thomas Gleixner:
"Yet another batch of cpu hotplug core updates and conversions:
- Provide core infrastructure for multi instance drivers so the
drivers do not have to keep custom lists.
- Convert custom lists to the new infrastructure. The block-mq custom
list conversion comes through the block tree and makes the diffstat
tip over to more lines removed than added.
- Handle unbalanced hotplug enable/disable calls more gracefully.
- Remove the obsolete CPU_STARTING/DYING notifier support.
- Convert another batch of notifier users.
The relayfs changes which conflicted with the conversion have been
shipped to me by Andrew.
The remaining lot is targeted for 4.10 so that we finally can remove
the rest of the notifiers"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
cpufreq: Fix up conversion to hotplug state machine
blk/mq: Reserve hotplug states for block multiqueue
x86/apic/uv: Convert to hotplug state machine
s390/mm/pfault: Convert to hotplug state machine
mips/loongson/smp: Convert to hotplug state machine
mips/octeon/smp: Convert to hotplug state machine
fault-injection/cpu: Convert to hotplug state machine
padata: Convert to hotplug state machine
cpufreq: Convert to hotplug state machine
ACPI/processor: Convert to hotplug state machine
virtio scsi: Convert to hotplug state machine
oprofile/timer: Convert to hotplug state machine
block/softirq: Convert to hotplug state machine
lib/irq_poll: Convert to hotplug state machine
x86/microcode: Convert to hotplug state machine
sh/SH-X3 SMP: Convert to hotplug state machine
ia64/mca: Convert to hotplug state machine
ARM/OMAP/wakeupgen: Convert to hotplug state machine
ARM/shmobile: Convert to hotplug state machine
arm64/FP/SIMD: Convert to hotplug state machine
...
A while back, Paolo and Hannes sent an RFC patch adding threaded-able
napi poll loop support : (https://patchwork.ozlabs.org/patch/620657/)
The problem seems to be that softirqs are very aggressive and are often
handled by the current process, even if we are under stress and that
ksoftirqd was scheduled, so that innocent threads would have more chance
to make progress.
This patch makes sure that if ksoftirq is running, we let it
perform the softirq work.
Jonathan Corbet summarized the issue in https://lwn.net/Articles/687617/
Tested:
- NIC receiving traffic handled by CPU 0
- UDP receiver running on CPU 0, using a single UDP socket.
- Incoming flood of UDP packets targeting the UDP socket.
Before the patch, the UDP receiver could almost never get CPU cycles and
could only receive ~2,000 packets per second.
After the patch, CPU cycles are split 50/50 between user application and
ksoftirqd/0, and we can effectively read ~900,000 packets per second,
a huge improvement in DOS situation. (Note that more packets are now
dropped by the NIC itself, since the BH handlers get less CPU cycles to
drain RX ring buffer)
Since the load runs in well identified threads context, an admin can
more easily tune process scheduling parameters if needed.
Reported-by: Paolo Abeni <pabeni@redhat.com>
Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Miller <davem@davemloft.net>
Cc: Hannes Frederic Sowa <hannes@redhat.com>
Cc: Jesper Dangaard Brouer <jbrouer@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1472665349.14381.356.camel@edumazet-glaptop3.roam.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KASAN needs to know whether the allocation happens in an IRQ handler.
This lets us strip everything below the IRQ entry point to reduce the
number of unique stack traces needed to be stored.
Move the definition of __irq_entry to <linux/interrupt.h> so that the
users don't need to pull in <linux/ftrace.h>. Also introduce the
__softirq_entry macro which is similar to __irq_entry, but puts the
corresponding functions to the .softirqentry.text section.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The preempt_disable() invokes preempt_count_add() which saves the caller
in ->preempt_disable_ip. It uses CALLER_ADDR1 which does not look for
its caller but for the parent of the caller. Which means we get the correct
caller for something like spin_lock() unless the architectures inlines
those invocations. It is always wrong for preempt_disable() or
local_bh_disable().
This patch makes the function get_lock_parent_ip() which tries
CALLER_ADDR0,1,2 if the former is a locking function.
This seems to record the preempt_disable() caller properly for
preempt_disable() itself as well as for get_cpu_var() or
local_bh_disable().
Steven asked for the get_parent_ip() -> get_lock_parent_ip() rename.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160226135456.GB18244@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull core locking updates from Ingo Molnar:
"The main changes are:
- mutex, completions and rtmutex micro-optimizations
- lock debugging fix
- various cleanups in the MCS and the futex code"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/rtmutex: Optimize setting task running after being blocked
locking/rwsem: Use task->state helpers
sched/completion: Add lock-free checking of the blocking case
sched/completion: Remove unnecessary ->wait.lock serialization when reading completion state
locking/mutex: Explicitly mark task as running after wakeup
futex: Fix argument handling in futex_lock_pi() calls
doc: Fix misnamed FUTEX_CMP_REQUEUE_PI op constants
locking/Documentation: Update code path
softirq/preempt: Add missing current->preempt_disable_ip update
locking/osq: No need for load/acquire when acquire-polling
locking/mcs: Better differentiate between MCS variants
locking/mutex: Introduce ww_mutex_set_context_slowpath()
locking/mutex: Move MCS related comments to proper location
locking/mutex: Checking the stamp is WW only
Simplify run_ksoftirqd() by using the new cond_resched_rcu_qs() function
that conditionally reschedules, but unconditionally supplies an RCU
quiescent state. This commit is separate from the previous commit by
Calvin Owens because Calvin's approach can be backported, while this
commit cannot be. The reason that this commit cannot be backported is
that cond_resched_rcu_qs() does not always provide the needed quiescent
state in earlier kernels.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
While debugging an issue with excessive softirq usage, I encountered the
following note in commit 3e339b5dae ("softirq: Use hotplug thread
infrastructure"):
[ paulmck: Call rcu_note_context_switch() with interrupts enabled. ]
...but despite this note, the patch still calls RCU with IRQs disabled.
This seemingly innocuous change caused a significant regression in softirq
CPU usage on the sending side of a large TCP transfer (~1 GB/s): when
introducing 0.01% packet loss, the softirq usage would jump to around 25%,
spiking as high as 50%. Before the change, the usage would never exceed 5%.
Moving the call to rcu_note_context_switch() after the cond_sched() call,
as it was originally before the hotplug patch, completely eliminated this
problem.
Signed-off-by: Calvin Owens <calvinowens@fb.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
While debugging some "sleeping function called from invalid context" bug I
realized that the debugging message "Preemption disabled at:" pointed to
an incorrect function.
In particular if the last function/action that disabled preemption was
spin_lock_bh() then current->preempt_disable_ip won't be updated.
The reason for this is that __local_bh_disable_ip() will increase
preempt_count manually instead of calling preempt_count_add(), which
would handle the update correctly.
It look like the manual handling was done to work around some lockdep issue.
So add the missing update of current->preempt_disable_ip to
__local_bh_disable_ip() as well.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150107090441.GC4365@osiris
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "cpu" argument to rcu_note_context_switch() is always the current
CPU, so drop it. This in turn allows the "cpu" argument to
rcu_preempt_note_context_switch() to be removed, which allows the sole
use of "cpu" in both functions to be replaced with a this_cpu_ptr().
Again, the anticipated cross-CPU uses of these functions has been
replaced by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
The rcu_bh_qs(), rcu_preempt_qs(), and rcu_sched_qs() functions use
old-style per-CPU variable access and write to ->passed_quiesce even
if it is already set. This commit therefore updates to use the new-style
per-CPU variable access functions and avoids the spurious writes.
This commit also eliminates the "cpu" argument to these functions because
they are always invoked on the indicated CPU.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Convert uses of __get_cpu_var for creating a address from a percpu
offset to this_cpu_ptr.
The two cases where get_cpu_var is used to actually access a percpu
variable are changed to use this_cpu_read/raw_cpu_read.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull RCU updates from Paul E. McKenney:
" 1. Update RCU documentation. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/634.
2. Miscellaneous fixes. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/645.
3. Torture-test changes. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/667.
4. Variable-name renaming cleanup, sent separately due to conflicts.
This was posted to LKML at https://lkml.org/lkml/2014/5/13/854.
5. Patch to suppress RCU stall warnings while sysrq requests are
being processed. This patch is the RCU portions of the patch
that Rik posted to LKML at https://lkml.org/lkml/2014/4/29/457.
The reason for pushing this patch ahead instead of waiting until
3.17 is that the NMI-based stack traces are messing up sysrq
output, and in some cases also messing up the system as well."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As requested by Linus add explicit __visible to the asmlinkage users.
This marks functions visible to assembler.
Tree sweep for rest of tree.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1398984278-29319-4-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Calling rcu_bh_qs() after every softirq action is not really needed.
What RCU needs is at least one rcu_bh_qs() per softirq round to note a
quiescent state was passed for rcu_bh.
Note for Paul and myself : this could be inlined as a single instruction
and avoid smp_processor_id()
(sone this_cpu_write(rcu_bh_data.passed_quiesce, 1))
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
On x86 the allocation of irq descriptors may allocate interrupts which
are in the range of the GSI interrupts. That's wrong as those
interrupts are hardwired and we don't have the irq domain translation
like PPC. So one of these interrupts can be hooked up later to one of
the devices which are hard wired to it and the io_apic init code for
that particular interrupt line happily reuses that descriptor with a
completely different configuration so hell breaks lose.
Inside x86 we allocate dynamic interrupts from above nr_gsi_irqs,
except for a few usage sites which have not yet blown up in our face
for whatever reason. But for drivers which need an irq range, like the
GPIO drivers, we have no limit in place and we don't want to expose
such a detail to a driver.
To cure this introduce a function which an architecture can implement
to impose a lower bound on the dynamic interrupt allocations.
Implement it for x86 and set the lower bound to nr_gsi_irqs, which is
the end of the hardwired interrupt space, so all dynamic allocations
happen above.
That not only allows the GPIO driver to work sanely, it also protects
the bogus callsites of create_irq_nr() in hpet, uv, irq_remapping and
htirq code. They need to be cleaned up as well, but that's a separate
issue.
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Mathias Nyman <mathias.nyman@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Krogerus Heikki <heikki.krogerus@intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1404241617360.28206@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On Sparc and S390 the removal of irq.h from kernel_stat.h causes:
kernel/softirq.c:774:9: error: 'NR_IRQS_LEGACY' undeclared
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer/dynticks updates from Ingo Molnar:
"This tree contains misc dynticks updates: a fix and three cleanups"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/nohz: Fix overflow error in scheduler_tick_max_deferment()
nohz_full: fix code style issue of tick_nohz_full_stop_tick
nohz: Get timekeeping max deferment outside jiffies_lock
tick: Rename tick_check_idle() to tick_irq_enter()
Use a more current logging style.
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Possible speed improvement of __do_softirq() by using ffs() instead of
using a while loop with an & 1 test then single bit shift.
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes from Ingo Molnar:
- Add the initial implementation of SCHED_DEADLINE support: a real-time
scheduling policy where tasks that meet their deadlines and
periodically execute their instances in less than their runtime quota
see real-time scheduling and won't miss any of their deadlines.
Tasks that go over their quota get delayed (Available to privileged
users for now)
- Clean up and fix preempt_enable_no_resched() abuse all around the
tree
- Do sched_clock() performance optimizations on x86 and elsewhere
- Fix and improve auto-NUMA balancing
- Fix and clean up the idle loop
- Apply various cleanups and fixes
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
sched: Fix __sched_setscheduler() nice test
sched: Move SCHED_RESET_ON_FORK into attr::sched_flags
sched: Fix up attr::sched_priority warning
sched: Fix up scheduler syscall LTP fails
sched: Preserve the nice level over sched_setscheduler() and sched_setparam() calls
sched/core: Fix htmldocs warnings
sched/deadline: No need to check p if dl_se is valid
sched/deadline: Remove unused variables
sched/deadline: Fix sparse static warnings
m68k: Fix build warning in mac_via.h
sched, thermal: Clean up preempt_enable_no_resched() abuse
sched, net: Fixup busy_loop_us_clock()
sched, net: Clean up preempt_enable_no_resched() abuse
sched/preempt: Fix up missed PREEMPT_NEED_RESCHED folding
sched/preempt, locking: Rework local_bh_{dis,en}able()
sched/clock, x86: Avoid a runtime condition in native_sched_clock()
sched/clock: Fix up clear_sched_clock_stable()
sched/clock, x86: Use a static_key for sched_clock_stable
sched/clock: Remove local_irq_disable() from the clocks
sched/clock, x86: Rewrite cyc2ns() to avoid the need to disable IRQs
...
This makes the code more symetric against the existing tick functions
called on irq exit: tick_irq_exit() and tick_nohz_irq_exit().
These function are also symetric as they mirror each other's action:
we start to account idle time on irq exit and we stop this accounting
on irq entry. Also the tick is stopped on irq exit and timekeeping
catches up with the tickless time elapsed until we reach irq entry.
This rename was suggested by Peter Zijlstra a long while ago but it
got forgotten in the mass.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kevin Hilman <khilman@linaro.org>
Link: http://lkml.kernel.org/r/1387320692-28460-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Currently local_bh_disable() is out-of-line for no apparent reason.
So inline it to save a few cycles on call/return nonsense, the
function body is a single add on x86 (a few loads and store extra on
load/store archs).
Also expose two new local_bh functions:
__local_bh_{dis,en}able_ip(unsigned long ip, unsigned int cnt);
Which implement the actual local_bh_{dis,en}able() behaviour.
The next patch uses the exposed @cnt argument to optimize bh lock
functions.
With build fixes from Jacob Pan.
Cc: rjw@rjwysocki.net
Cc: rui.zhang@intel.com
Cc: jacob.jun.pan@linux.intel.com
Cc: Mike Galbraith <bitbucket@online.de>
Cc: hpa@zytor.com
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: lenb@kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131119151338.GF3694@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently all _bh_ lock functions do two preempt_count operations:
local_bh_disable();
preempt_disable();
and for the unlock:
preempt_enable_no_resched();
local_bh_enable();
Since its a waste of perfectly good cycles to modify the same variable
twice when you can do it in one go; use the new
__local_bh_{dis,en}able_ip() functions that allow us to provide a
preempt_count value to add/sub.
So define SOFTIRQ_LOCK_OFFSET as the offset a _bh_ lock needs to
add/sub to be done in one go.
As a bonus it gets rid of the preempt_enable_no_resched() usage.
This reduces a 1000 loops of:
spin_lock_bh(&bh_lock);
spin_unlock_bh(&bh_lock);
from 53596 cycles to 51995 cycles. I didn't do enough measurements to
say for absolute sure that the result is significant but the the few
runs I did for each suggest it is so.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: jacob.jun.pan@linux.intel.com
Cc: Mike Galbraith <bitbucket@online.de>
Cc: hpa@zytor.com
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: lenb@kernel.org
Cc: rjw@rjwysocki.net
Cc: rui.zhang@intel.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20131119151338.GF3694@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A few functions use remote per CPU access APIs when they
deal with local values.
Just do the right conversion to improve performance, code
readability and debug checks.
While at it, lets extend some of these function names with *_this_cpu()
suffix in order to display their purpose more clearly.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Instead of saving the hardirq state on a per CPU variable, which require
an explicit call before the softirq handling and some complication,
just save and restore the hardirq tracing state through functions
return values and parameters.
It simplifies a bit the black magic that works around the fact that
softirqs can be called from hardirqs while hardirqs can nest on softirqs
but those two cases have very different semantics and only the latter
case assume both states.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1384906054-30676-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There was a reported deadlock on -rt which lockdep didn't report.
It turns out that in irq_exit() we tell lockdep that the hardirq
context ends and then do all kinds of locking afterwards.
To fix it, move trace_hardirq_exit() to the very end of irq_exit(), this
ensures all locking in tick_irq_exit() and rcu_irq_exit() are properly
recorded as happening from hardirq context.
This however leads to the 'fun' little problem of running softirqs
while in hardirq context. To cure this make the softirq code a little
more complex (in the CONFIG_TRACE_IRQFLAGS case).
Due to stack swizzling arch dependent trickery we cannot pass an
argument to __do_softirq() to tell it if it was done from hardirq
context or not; so use a side-band argument.
When we do __do_softirq() from hardirq context, 'atomically' flip to
softirq context and back, so that no locking goes without being in
either hard- or soft-irq context.
I didn't find any new problems in mainline using this patch, but it
did show the -rt problem.
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-dgwc5cdksbn0jk09vbmcc9sa@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit was incomplete in that code to remove items from the per-cpu
lists was missing and never acquired a user in the 5 years it has been in
the tree. We're going to implement what it seems to try to archive in a
simpler way, and this code is in the way of doing so.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle are:
- (much) improved CONFIG_NUMA_BALANCING support from Mel Gorman, Rik
van Riel, Peter Zijlstra et al. Yay!
- optimize preemption counter handling: merge the NEED_RESCHED flag
into the preempt_count variable, by Peter Zijlstra.
- wait.h fixes and code reorganization from Peter Zijlstra
- cfs_bandwidth fixes from Ben Segall
- SMP load-balancer cleanups from Peter Zijstra
- idle balancer improvements from Jason Low
- other fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (129 commits)
ftrace, sched: Add TRACE_FLAG_PREEMPT_RESCHED
stop_machine: Fix race between stop_two_cpus() and stop_cpus()
sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus
sched: Fix asymmetric scheduling for POWER7
sched: Move completion code from core.c to completion.c
sched: Move wait code from core.c to wait.c
sched: Move wait.c into kernel/sched/
sched/wait: Fix __wait_event_interruptible_lock_irq_timeout()
sched: Avoid throttle_cfs_rq() racing with period_timer stopping
sched: Guarantee new group-entities always have weight
sched: Fix hrtimer_cancel()/rq->lock deadlock
sched: Fix cfs_bandwidth misuse of hrtimer_expires_remaining
sched: Fix race on toggling cfs_bandwidth_used
sched: Remove extra put_online_cpus() inside sched_setaffinity()
sched/rt: Fix task_tick_rt() comment
sched/wait: Fix build breakage
sched/wait: Introduce prepare_to_wait_event()
sched/wait: Add ___wait_cond_timeout() to wait_event*_timeout() too
sched: Remove get_online_cpus() usage
sched: Fix race in migrate_swap_stop()
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQEcBAABAgAGBQJSUc9zAAoJEHm+PkMAQRiG9DMH/AtpuAF6LlMRPjrCeuJQ1pyh
T0IUO+CsLKO6qtM5IyweP8V6zaasNjIuW1+B6IwVIl8aOrM+M7CwRiKvpey26ldM
I8G2ron7hqSOSQqSQs20jN2yGAqQGpYIbTmpdGLAjQ350NNNvEKthbP5SZR5PAmE
UuIx5OGEkaOyZXvCZJXU9AZkCxbihlMSt2zFVxybq2pwnGezRUYgCigE81aeyE0I
QLwzzMVdkCxtZEpkdJMpLILAz22jN4RoVDbXRa2XC7dA9I2PEEXI9CcLzqCsx2Ii
8eYS+no2K5N2rrpER7JFUB2B/2X8FaVDE+aJBCkfbtwaYTV9UYLq3a/sKVpo1Cs=
=xSFJ
-----END PGP SIGNATURE-----
Merge tag 'v3.12-rc4' into sched/core
Merge Linux v3.12-rc4 to fix a conflict and also to refresh the tree
before applying more scheduler patches.
Conflicts:
arch/avr32/include/asm/Kbuild
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If irq_exit() is called on the arch's specified irq stack,
it should be safe to run softirqs inline under that same
irq stack as it is near empty by the time we call irq_exit().
For example if we use the same stack for both hard and soft irqs here,
the worst case scenario is:
hardirq -> softirq -> hardirq. But then the softirq supersedes the
first hardirq as the stack user since irq_exit() is called in
a mostly empty stack. So the stack merge in this case looks acceptable.
Stack overrun still have a chance to happen if hardirqs have more
opportunities to nest, but then it's another problem to solve.
So lets adapt the irq exit's softirq stack on top of a new Kconfig symbol
that can be defined when irq_exit() runs on the irq stack. That way
we can spare some stack switch on irq processing and all the cache
issues that come along.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
For clarity, comment the various stack choices for softirqs
processing, whether we execute them from ksoftirqd or
local_irq_enable() calls.
Their use on irq_exit() is already commented.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
do_softirq() has a debug check that verifies that it is not nesting
on softirqs processing, nor miscounting the softirq part of the preempt
count.
But making sure that softirqs processing don't nest is actually a more
generic concern that applies to any caller of __do_softirq().
Do take it one step further and generalize that debug check to
any softirq processing.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Before processing softirqs on hardirq exit, we already
do the check for pending softirqs while hardirqs are
guaranteed to be disabled.
So we can take a shortcut and safely jump to the arch
specific implementation directly.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
All arch overriden implementations of do_softirq() share the following
common code: disable irqs (to avoid races with the pending check),
check if there are softirqs pending, then execute __do_softirq() on
a specific stack.
Consolidate the common parts such that archs only worry about the
stack switch.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
The commit facd8b80c6
("irq: Sanitize invoke_softirq") converted irq exit
calls of do_softirq() to __do_softirq() on all architectures,
assuming it was only used there for its irq disablement
properties.
But as a side effect, the softirqs processed in the end
of the hardirq are always called on the inline current
stack that is used by irq_exit() instead of the softirq
stack provided by the archs that override do_softirq().
The result is mostly safe if the architecture runs irq_exit()
on a separate irq stack because then softirqs are processed
on that same stack that is near empty at this stage (assuming
hardirq aren't nesting).
Otherwise irq_exit() runs in the task stack and so does the softirq
too. The interrupted call stack can be randomly deep already and
the softirq can dig through it even further. To add insult to the
injury, this softirq can be interrupted by a new hardirq, maximizing
the chances for a stack overrun as reported in powerpc for example:
do_IRQ: stack overflow: 1920
CPU: 0 PID: 1602 Comm: qemu-system-ppc Not tainted 3.10.4-300.1.fc19.ppc64p7 #1
Call Trace:
[c0000000050a8740] .show_stack+0x130/0x200 (unreliable)
[c0000000050a8810] .dump_stack+0x28/0x3c
[c0000000050a8880] .do_IRQ+0x2b8/0x2c0
[c0000000050a8930] hardware_interrupt_common+0x154/0x180
--- Exception: 501 at .cp_start_xmit+0x3a4/0x820 [8139cp]
LR = .cp_start_xmit+0x390/0x820 [8139cp]
[c0000000050a8d40] .dev_hard_start_xmit+0x394/0x640
[c0000000050a8e00] .sch_direct_xmit+0x110/0x260
[c0000000050a8ea0] .dev_queue_xmit+0x260/0x630
[c0000000050a8f40] .br_dev_queue_push_xmit+0xc4/0x130 [bridge]
[c0000000050a8fc0] .br_dev_xmit+0x198/0x270 [bridge]
[c0000000050a9070] .dev_hard_start_xmit+0x394/0x640
[c0000000050a9130] .dev_queue_xmit+0x428/0x630
[c0000000050a91d0] .ip_finish_output+0x2a4/0x550
[c0000000050a9290] .ip_local_out+0x50/0x70
[c0000000050a9310] .ip_queue_xmit+0x148/0x420
[c0000000050a93b0] .tcp_transmit_skb+0x4e4/0xaf0
[c0000000050a94a0] .__tcp_ack_snd_check+0x7c/0xf0
[c0000000050a9520] .tcp_rcv_established+0x1e8/0x930
[c0000000050a95f0] .tcp_v4_do_rcv+0x21c/0x570
[c0000000050a96c0] .tcp_v4_rcv+0x734/0x930
[c0000000050a97a0] .ip_local_deliver_finish+0x184/0x360
[c0000000050a9840] .ip_rcv_finish+0x148/0x400
[c0000000050a98d0] .__netif_receive_skb_core+0x4f8/0xb00
[c0000000050a99d0] .netif_receive_skb+0x44/0x110
[c0000000050a9a70] .br_handle_frame_finish+0x2bc/0x3f0 [bridge]
[c0000000050a9b20] .br_nf_pre_routing_finish+0x2ac/0x420 [bridge]
[c0000000050a9bd0] .br_nf_pre_routing+0x4dc/0x7d0 [bridge]
[c0000000050a9c70] .nf_iterate+0x114/0x130
[c0000000050a9d30] .nf_hook_slow+0xb4/0x1e0
[c0000000050a9e00] .br_handle_frame+0x290/0x330 [bridge]
[c0000000050a9ea0] .__netif_receive_skb_core+0x34c/0xb00
[c0000000050a9fa0] .netif_receive_skb+0x44/0x110
[c0000000050aa040] .napi_gro_receive+0xe8/0x120
[c0000000050aa0c0] .cp_rx_poll+0x31c/0x590 [8139cp]
[c0000000050aa1d0] .net_rx_action+0x1dc/0x310
[c0000000050aa2b0] .__do_softirq+0x158/0x330
[c0000000050aa3b0] .irq_exit+0xc8/0x110
[c0000000050aa430] .do_IRQ+0xdc/0x2c0
[c0000000050aa4e0] hardware_interrupt_common+0x154/0x180
--- Exception: 501 at .bad_range+0x1c/0x110
LR = .get_page_from_freelist+0x908/0xbb0
[c0000000050aa7d0] .list_del+0x18/0x50 (unreliable)
[c0000000050aa850] .get_page_from_freelist+0x908/0xbb0
[c0000000050aa9e0] .__alloc_pages_nodemask+0x21c/0xae0
[c0000000050aaba0] .alloc_pages_vma+0xd0/0x210
[c0000000050aac60] .handle_pte_fault+0x814/0xb70
[c0000000050aad50] .__get_user_pages+0x1a4/0x640
[c0000000050aae60] .get_user_pages_fast+0xec/0x160
[c0000000050aaf10] .__gfn_to_pfn_memslot+0x3b0/0x430 [kvm]
[c0000000050aafd0] .kvmppc_gfn_to_pfn+0x64/0x130 [kvm]
[c0000000050ab070] .kvmppc_mmu_map_page+0x94/0x530 [kvm]
[c0000000050ab190] .kvmppc_handle_pagefault+0x174/0x610 [kvm]
[c0000000050ab270] .kvmppc_handle_exit_pr+0x464/0x9b0 [kvm]
[c0000000050ab320] kvm_start_lightweight+0x1ec/0x1fc [kvm]
[c0000000050ab4f0] .kvmppc_vcpu_run_pr+0x168/0x3b0 [kvm]
[c0000000050ab9c0] .kvmppc_vcpu_run+0xc8/0xf0 [kvm]
[c0000000050aba50] .kvm_arch_vcpu_ioctl_run+0x5c/0x1a0 [kvm]
[c0000000050abae0] .kvm_vcpu_ioctl+0x478/0x730 [kvm]
[c0000000050abc90] .do_vfs_ioctl+0x4ec/0x7c0
[c0000000050abd80] .SyS_ioctl+0xd4/0xf0
[c0000000050abe30] syscall_exit+0x0/0x98
Since this is a regression, this patch proposes a minimalistic
and low-risk solution by blindly forcing the hardirq exit processing of
softirqs on the softirq stack. This way we should reduce significantly
the opportunities for task stack overflow dug by softirqs.
Longer term solutions may involve extending the hardirq stack coverage to
irq_exit(), etc...
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: #3.9.. <stable@vger.kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Rewrite the preempt_count macros in order to extract the 3 basic
preempt_count value modifiers:
__preempt_count_add()
__preempt_count_sub()
and the new:
__preempt_count_dec_and_test()
And since we're at it anyway, replace the unconventional
$op_preempt_count names with the more conventional preempt_count_$op.
Since these basic operators are equivalent to the previous _notrace()
variants, do away with the _notrace() versions.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace the single preempt_count() 'function' that's an lvalue with
two proper functions:
preempt_count() - returns the preempt_count value as rvalue
preempt_count_set() - Allows setting the preempt-count value
Also provide preempt_count_ptr() as a convenience wrapper to implement
all modifying operations.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-orxrbycjozopqfhb4dxdkdvb@git.kernel.org
[ Fixed build failure. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After the last architecture switched to generic hard irqs the config
options HAVE_GENERIC_HARDIRQS & GENERIC_HARDIRQS and the related code
for !CONFIG_GENERIC_HARDIRQS can be removed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Pull core irq changes from Ingo Molnar:
"The main changes:
- generic-irqchip driver additions, cleanups and fixes
- 3 new irqchip drivers: ARMv7-M NVIC, TB10x and Marvell Orion SoCs
- irq_get_trigger_type() simplification and cross-arch cleanup
- various cleanups, simplifications
- documentation updates"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
softirq: Use _RET_IP_
genirq: Add the generic chip to the genirq docbook
genirq: generic-chip: Export some irq_gc_ functions
genirq: Fix can_request_irq() for IRQs without an action
irqchip: exynos-combiner: Staticize combiner_init
irqchip: Add support for ARMv7-M NVIC
irqchip: Add TB10x interrupt controller driver
irqdomain: Use irq_get_trigger_type() to get IRQ flags
MIPS: octeon: Use irq_get_trigger_type() to get IRQ flags
arm: orion: Use irq_get_trigger_type() to get IRQ flags
mfd: stmpe: use irq_get_trigger_type() to get IRQ flags
mfd: twl4030-irq: Use irq_get_trigger_type() to get IRQ flags
gpio: mvebu: Use irq_get_trigger_type() to get IRQ flags
genirq: Add irq_get_trigger_type() to get IRQ flags
genirq: Irqchip: document gcflags arg of irq_alloc_domain_generic_chips
genirq: Set irq thread to RT priority on creation
irqchip: Add support for Marvell Orion SoCs
genirq: Add kerneldoc for irq_disable.
genirq: irqchip: Add mask to block out invalid irqs
genirq: Generic chip: Add linear irq domain support
...
The stop machine logic can lock up if all but one of the migration
threads make it through the disable-irq step and the one remaining
thread gets stuck in __do_softirq. The reason __do_softirq can hang is
that it has a bail-out based on jiffies timeout, but in the lockup case,
jiffies itself is not incremented.
To work around this, re-add the max_restart counter in __do_irq and stop
processing irqs after 10 restarts.
Thanks to Tejun Heo and Rusty Russell and others for helping me track
this down.
This was introduced in 3.9 by commit c10d73671a ("softirq: reduce
latencies").
It may be worth looking into ath9k to see if it has issues with its irq
handler at a later date.
The hang stack traces look something like this:
------------[ cut here ]------------
WARNING: at kernel/watchdog.c:245 watchdog_overflow_callback+0x9c/0xa7()
Watchdog detected hard LOCKUP on cpu 2
Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc]
Pid: 23, comm: migration/2 Tainted: G C 3.9.4+ #11
Call Trace:
<NMI> warn_slowpath_common+0x85/0x9f
warn_slowpath_fmt+0x46/0x48
watchdog_overflow_callback+0x9c/0xa7
__perf_event_overflow+0x137/0x1cb
perf_event_overflow+0x14/0x16
intel_pmu_handle_irq+0x2dc/0x359
perf_event_nmi_handler+0x19/0x1b
nmi_handle+0x7f/0xc2
do_nmi+0xbc/0x304
end_repeat_nmi+0x1e/0x2e
<<EOE>>
cpu_stopper_thread+0xae/0x162
smpboot_thread_fn+0x258/0x260
kthread+0xc7/0xcf
ret_from_fork+0x7c/0xb0
---[ end trace 4947dfa9b0a4cec3 ]---
BUG: soft lockup - CPU#1 stuck for 22s! [migration/1:17]
Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc]
irq event stamp: 835637905
hardirqs last enabled at (835637904): __do_softirq+0x9f/0x257
hardirqs last disabled at (835637905): apic_timer_interrupt+0x6d/0x80
softirqs last enabled at (5654720): __do_softirq+0x1ff/0x257
softirqs last disabled at (5654725): irq_exit+0x5f/0xbb
CPU 1
Pid: 17, comm: migration/1 Tainted: G WC 3.9.4+ #11 To be filled by O.E.M. To be filled by O.E.M./To be filled by O.E.M.
RIP: tasklet_hi_action+0xf0/0xf0
Process migration/1
Call Trace:
<IRQ>
__do_softirq+0x117/0x257
irq_exit+0x5f/0xbb
smp_apic_timer_interrupt+0x8a/0x98
apic_timer_interrupt+0x72/0x80
<EOI>
printk+0x4d/0x4f
stop_machine_cpu_stop+0x22c/0x274
cpu_stopper_thread+0xae/0x162
smpboot_thread_fn+0x258/0x260
kthread+0xc7/0xcf
ret_from_fork+0x7c/0xb0
Signed-off-by: Ben Greear <greearb@candelatech.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Pekka Riikonen <priikone@iki.fi>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull 'full dynticks' support from Ingo Molnar:
"This tree from Frederic Weisbecker adds a new, (exciting! :-) core
kernel feature to the timer and scheduler subsystems: 'full dynticks',
or CONFIG_NO_HZ_FULL=y.
This feature extends the nohz variable-size timer tick feature from
idle to busy CPUs (running at most one task) as well, potentially
reducing the number of timer interrupts significantly.
This feature got motivated by real-time folks and the -rt tree, but
the general utility and motivation of full-dynticks runs wider than
that:
- HPC workloads get faster: CPUs running a single task should be able
to utilize a maximum amount of CPU power. A periodic timer tick at
HZ=1000 can cause a constant overhead of up to 1.0%. This feature
removes that overhead - and speeds up the system by 0.5%-1.0% on
typical distro configs even on modern systems.
- Real-time workload latency reduction: CPUs running critical tasks
should experience as little jitter as possible. The last remaining
source of kernel-related jitter was the periodic timer tick.
- A single task executing on a CPU is a pretty common situation,
especially with an increasing number of cores/CPUs, so this feature
helps desktop and mobile workloads as well.
The cost of the feature is mainly related to increased timer
reprogramming overhead when a CPU switches its tick period, and thus
slightly longer to-idle and from-idle latency.
Configuration-wise a third mode of operation is added to the existing
two NOHZ kconfig modes:
- CONFIG_HZ_PERIODIC: [formerly !CONFIG_NO_HZ], now explicitly named
as a config option. This is the traditional Linux periodic tick
design: there's a HZ tick going on all the time, regardless of
whether a CPU is idle or not.
- CONFIG_NO_HZ_IDLE: [formerly CONFIG_NO_HZ=y], this turns off the
periodic tick when a CPU enters idle mode.
- CONFIG_NO_HZ_FULL: this new mode, in addition to turning off the
tick when a CPU is idle, also slows the tick down to 1 Hz (one
timer interrupt per second) when only a single task is running on a
CPU.
The .config behavior is compatible: existing !CONFIG_NO_HZ and
CONFIG_NO_HZ=y settings get translated to the new values, without the
user having to configure anything. CONFIG_NO_HZ_FULL is turned off by
default.
This feature is based on a lot of infrastructure work that has been
steadily going upstream in the last 2-3 cycles: related RCU support
and non-periodic cputime support in particular is upstream already.
This tree adds the final pieces and activates the feature. The pull
request is marked RFC because:
- it's marked 64-bit only at the moment - the 32-bit support patch is
small but did not get ready in time.
- it has a number of fresh commits that came in after the merge
window. The overwhelming majority of commits are from before the
merge window, but still some aspects of the tree are fresh and so I
marked it RFC.
- it's a pretty wide-reaching feature with lots of effects - and
while the components have been in testing for some time, the full
combination is still not very widely used. That it's default-off
should reduce its regression abilities and obviously there are no
known regressions with CONFIG_NO_HZ_FULL=y enabled either.
- the feature is not completely idempotent: there is no 100%
equivalent replacement for a periodic scheduler/timer tick. In
particular there's ongoing work to map out and reduce its effects
on scheduler load-balancing and statistics. This should not impact
correctness though, there are no known regressions related to this
feature at this point.
- it's a pretty ambitious feature that with time will likely be
enabled by most Linux distros, and we'd like you to make input on
its design/implementation, if you dislike some aspect we missed.
Without flaming us to crisp! :-)
Future plans:
- there's ongoing work to reduce 1Hz to 0Hz, to essentially shut off
the periodic tick altogether when there's a single busy task on a
CPU. We'd first like 1 Hz to be exposed more widely before we go
for the 0 Hz target though.
- once we reach 0 Hz we can remove the periodic tick assumption from
nr_running>=2 as well, by essentially interrupting busy tasks only
as frequently as the sched_latency constraints require us to do -
once every 4-40 msecs, depending on nr_running.
I am personally leaning towards biting the bullet and doing this in
v3.10, like the -rt tree this effort has been going on for too long -
but the final word is up to you as usual.
More technical details can be found in Documentation/timers/NO_HZ.txt"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
sched: Keep at least 1 tick per second for active dynticks tasks
rcu: Fix full dynticks' dependency on wide RCU nocb mode
nohz: Protect smp_processor_id() in tick_nohz_task_switch()
nohz_full: Add documentation.
cputime_nsecs: use math64.h for nsec resolution conversion helpers
nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config
nohz: Reduce overhead under high-freq idling patterns
nohz: Remove full dynticks' superfluous dependency on RCU tree
nohz: Fix unavailable tick_stop tracepoint in dynticks idle
nohz: Add basic tracing
nohz: Select wide RCU nocb for full dynticks
nohz: Disable the tick when irq resume in full dynticks CPU
nohz: Re-evaluate the tick for the new task after a context switch
nohz: Prepare to stop the tick on irq exit
nohz: Implement full dynticks kick
nohz: Re-evaluate the tick from the scheduler IPI
sched: New helper to prevent from stopping the tick in full dynticks
sched: Kick full dynticks CPU that have more than one task enqueued.
perf: New helper to prevent full dynticks CPUs from stopping tick
perf: Kick full dynticks CPU if events rotation is needed
...
The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.
Merge a common upstream merge point that has these
updates.
Conflicts:
include/linux/perf_event.h
kernel/rcutree.h
kernel/rcutree_plugin.h
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The 'priv' field is redundant; we can pass data via 'info'.
Signed-off-by: liguang <lig.fnst@cn.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eventually try to disable tick on irq exit, now that the
fundamental infrastructure is in place.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Pull irq fixes and cleanups from Thomas Gleixner:
"Commit e5ab012c32 ("nohz: Make tick_nohz_irq_exit() irq safe") is
the first commit in the series and the minimal necessary bugfix, which
needs to go back into stable.
The remanining commits enforce irq disabling in irq_exit(), sanitize
the hardirq/softirq preempt count transition and remove a bunch of no
longer necessary conditionals."
I personally love getting rid of the very subtle and confusing
IRQ_EXIT_OFFSET thing. Even apart from the whole "more lines removed
than added" thing.
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irq: Don't re-enable interrupts at the end of irq_exit
irq: Remove IRQ_EXIT_OFFSET workaround
Revert "nohz: Make tick_nohz_irq_exit() irq safe"
irq: Sanitize invoke_softirq
irq: Ensure irq_exit() code runs with interrupts disabled
nohz: Make tick_nohz_irq_exit() irq safe
Commit 74eed0163d
"irq: Ensure irq_exit() code runs with interrupts disabled"
restore interrupts flags in the end of irq_exit() for archs
that don't define __ARCH_IRQ_EXIT_IRQS_DISABLED.
However always returning from irq_exit() with interrupts
disabled should not be a problem for these archs. Prior to
this commit this was already happening anytime we processed
pending softirqs anyway.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The IRQ_EXIT_OFFSET trick was used to make sure the irq
doesn't get preempted after we substract the HARDIRQ_OFFSET
until we are entirely done with any code in irq_exit().
This workaround was necessary because some archs may call
irq_exit() with irqs enabled and there is still some code
in the end of this function that is not covered by the
HARDIRQ_OFFSET but want to stay non-preemptible.
Now that irq are always disabled in irq_exit(), the whole code
is guaranteed not to be preempted. We can thus remove this hack.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
With the irq protection in irq_exit, we can remove the #ifdeffery and
the bh_disable/enable dance in invoke_softirq()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1302202155320.22263@ionos
We had already a few problems with code called from irq_exit() when
interrupted from a nesting interrupt. This can happen on architectures
which do not define __ARCH_IRQ_EXIT_IRQS_DISABLED.
__ARCH_IRQ_EXIT_IRQS_DISABLED should go away and we want to make it
mandatory to call irq_exit() with interrupts disabled.
As a temporary protection disable interrupts for those architectures
which do not define __ARCH_IRQ_EXIT_IRQS_DISABLED and add a WARN_ONCE
when an architecture which defines __ARCH_IRQ_EXIT_IRQS_DISABLED calls
irq_exit() with interrupts enabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1302202155320.22263@ionos
Pull networking update from David Miller:
1) Checkpoint/restarted TCP sockets now can properly propagate the TCP
timestamp offset. From Andrey Vagin.
2) VMWARE VM VSOCK layer, from Andy King.
3) Much improved support for virtual functions and SR-IOV in bnx2x,
from Ariel ELior.
4) All protocols on ipv4 and ipv6 are now network namespace aware, and
all the compatability checks for initial-namespace-only protocols is
removed. Thanks to Tom Parkin for helping deal with the last major
holdout, L2TP.
5) IPV6 support in netpoll and network namespace support in pktgen,
from Cong Wang.
6) Multiple Registration Protocol (MRP) and Multiple VLAN Registration
Protocol (MVRP) support, from David Ward.
7) Compute packet lengths more accurately in the packet scheduler, from
Eric Dumazet.
8) Use per-task page fragment allocator in skb_append_datato_frags(),
also from Eric Dumazet.
9) Add support for connection tracking labels in netfilter, from
Florian Westphal.
10) Fix default multicast group joining on ipv6, and add anti-spoofing
checks to 6to4 and 6rd. From Hannes Frederic Sowa.
11) Make ipv4/ipv6 fragmentation memory limits more reasonable in modern
times, rearrange inet frag datastructures for better cacheline
locality, and move more operations outside of locking. From Jesper
Dangaard Brouer.
12) Instead of strict master <--> slave relationships, allow arbitrary
scenerios with "upper device lists". From Jiri Pirko.
13) Improve rate limiting accuracy in TBF and act_police, also from Jiri
Pirko.
14) Add a BPF filter netfilter match target, from Willem de Bruijn.
15) Orphan and delete a bunch of pre-historic networking drivers from
Paul Gortmaker.
16) Add TSO support for GRE tunnels, from Pravin B SHelar. Although
this still needs some minor bug fixing before it's %100 correct in
all cases.
17) Handle unresolved IPSEC states like ARP, with a resolution packet
queue. From Steffen Klassert.
18) Remove TCP Appropriate Byte Count support (ABC), from Stephen
Hemminger. This was long overdue.
19) Support SO_REUSEPORT, from Tom Herbert.
20) Allow locking a socket BPF filter, so that it cannot change after a
process drops capabilities.
21) Add VLAN filtering to bridge, from Vlad Yasevich.
22) Bring ipv6 on-par with ipv4 and do not cache neighbour entries in
the ipv6 routes, from YOSHIFUJI Hideaki.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1538 commits)
ipv6: fix race condition regarding dst->expires and dst->from.
net: fix a wrong assignment in skb_split()
ip_gre: remove an extra dst_release()
ppp: set qdisc_tx_busylock to avoid LOCKDEP splat
atl1c: restore buffer state
net: fix a build failure when !CONFIG_PROC_FS
net: ipv4: fix waring -Wunused-variable
net: proc: fix build failed when procfs is not configured
Revert "xen: netback: remove redundant xenvif_put"
net: move procfs code to net/core/net-procfs.c
qmi_wwan, cdc-ether: add ADU960S
bonding: set sysfs device_type to 'bond'
bonding: fix bond_release_all inconsistencies
b44: use netdev_alloc_skb_ip_align()
xen: netback: remove redundant xenvif_put
net: fec: Do a sanity check on the gpio number
ip_gre: propogate target device GSO capability to the tunnel device
ip_gre: allow CSUM capable devices to handle packets
bonding: Fix initialize after use for 3ad machine state spinlock
bonding: Fix race condition between bond_enslave() and bond_3ad_update_lacp_rate()
...
While remotely reading the cputime of a task running in a
full dynticks CPU, the values stored in utime/stime fields
of struct task_struct may be stale. Its values may be those
of the last kernel <-> user transition time snapshot and
we need to add the tickless time spent since this snapshot.
To fix this, flush the cputime of the dynticks CPUs on
kernel <-> user transition and record the time / context
where we did this. Then on top of this snapshot and the current
time, perform the fixup on the reader side from task_times()
accessors.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
[fixed kvm module related build errors]
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
In various network workloads, __do_softirq() latencies can be up
to 20 ms if HZ=1000, and 200 ms if HZ=100.
This is because we iterate 10 times in the softirq dispatcher,
and some actions can consume a lot of cycles.
This patch changes the fallback to ksoftirqd condition to :
- A time limit of 2 ms.
- need_resched() being set on current task
When one of this condition is met, we wakeup ksoftirqd for further
softirq processing if we still have pending softirqs.
Using need_resched() as the only condition can trigger RCU stalls,
as we can keep BH disabled for too long.
I ran several benchmarks and got no significant difference in
throughput, but a very significant reduction of latencies (one order
of magnitude) :
In following bench, 200 antagonist "netperf -t TCP_RR" are started in
background, using all available cpus.
Then we start one "netperf -t TCP_RR", bound to the cpu handling the NIC
IRQ (hard+soft)
Before patch :
# netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k
RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY
MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET
to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind
RT_LATENCY=550110.424
MIN_LATENCY=146858
MAX_LATENCY=997109
P50_LATENCY=305000
P90_LATENCY=550000
P99_LATENCY=710000
MEAN_LATENCY=376989.12
STDDEV_LATENCY=184046.92
After patch :
# netperf -H 7.7.7.84 -t TCP_RR -T2,2 -- -k
RT_LATENCY,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,P99_LATENCY,MEAN_LATENCY,STDDEV_LATENCY
MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET
to 7.7.7.84 () port 0 AF_INET : first burst 0 : cpu bind
RT_LATENCY=40545.492
MIN_LATENCY=9834
MAX_LATENCY=78366
P50_LATENCY=33583
P90_LATENCY=59000
P99_LATENCY=69000
MEAN_LATENCY=38364.67
STDDEV_LATENCY=12865.26
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Tom Herbert <therbert@google.com>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With CONFIG_VIRT_CPU_ACCOUNTING, when vtime_account()
is called in irq entry/exit, we perform a check on the
context: if we are interrupting the idle task we
account the pending cputime to idle, otherwise account
to system time or its sub-areas: tsk->stime, hardirq time,
softirq time, ...
However this check for idle only concerns the hardirq entry
and softirq entry:
* Hardirq may directly interrupt the idle task, in which case
we need to flush the pending CPU time to idle.
* The idle task may be directly interrupted by a softirq if
it calls local_bh_enable(). There is probably no such call
in any idle task but we need to cover every case. Ksoftirqd
is not concerned because the idle time is flushed on context
switch and softirq in the end of hardirq have the idle time
already flushed from the hardirq entry.
In the other cases we always account to system/irq time:
* On hardirq exit we account the time to hardirq time.
* On softirq exit we account the time to softirq time.
To optimize this and avoid the indirect call to vtime_account()
and the checks it performs, specialize the vtime irq APIs and
only perform the check on irq entry. Irq exit can directly call
vtime_account_system().
CONFIG_IRQ_TIME_ACCOUNTING behaviour doesn't change and directly
maps to its own vtime_account() implementation. One may want
to take benefits from the new APIs to optimize irq time accounting
as well in the future.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Pull scheduler changes from Ingo Molnar:
"Continued quest to clean up and enhance the cputime code by Frederic
Weisbecker, in preparation for future tickless kernel features.
Other than that, smallish changes."
Fix up trivial conflicts due to additions next to each other in arch/{x86/}Kconfig
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
cputime: Make finegrained irqtime accounting generally available
cputime: Gather time/stats accounting config options into a single menu
ia64: Reuse system and user vtime accounting functions on task switch
ia64: Consolidate user vtime accounting
vtime: Consolidate system/idle context detection
cputime: Use a proper subsystem naming for vtime related APIs
sched: cpu_power: enable ARCH_POWER
sched/nohz: Clean up select_nohz_load_balancer()
sched: Fix load avg vs. cpu-hotplug
sched: Remove __ARCH_WANT_INTERRUPTS_ON_CTXSW
sched: Fix nohz_idle_balance()
sched: Remove useless code in yield_to()
sched: Add time unit suffix to sched sysctl knobs
sched/debug: Limit sd->*_idx range on sysctl
sched: Remove AFFINE_WAKEUPS feature flag
s390: Remove leftover account_tick_vtime() header
cputime: Consolidate vtime handling on context switch
sched: Move cputime code to its own file
cputime: Generalize CONFIG_VIRT_CPU_ACCOUNTING
tile: Remove SD_PREFER_LOCAL leftover
...
Use a naming based on vtime as a prefix for virtual based
cputime accounting APIs:
- account_system_vtime() -> vtime_account()
- account_switch_vtime() -> vtime_task_switch()
It makes it easier to allow for further declension such
as vtime_account_system(), vtime_account_idle(), ... if we
want to find out the context we account to from generic code.
This also make it better to know on which subsystem these APIs
refer to.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
[ paulmck: Call rcu_note_context_switch() with interrupts enabled. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: http://lkml.kernel.org/r/20120716103948.456416747@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is needed to allow network softirq packet processing to make use of
PF_MEMALLOC.
Currently softirq context cannot use PF_MEMALLOC due to it not being
associated with a task, and therefore not having task flags to fiddle with
- thus the gfp to alloc flag mapping ignores the task flags when in
interrupts (hard or soft) context.
Allowing softirqs to make use of PF_MEMALLOC therefore requires some
trickery. This patch borrows the task flags from whatever process happens
to be preempted by the softirq. It then modifies the gfp to alloc flags
mapping to not exclude task flags in softirq context, and modify the
softirq code to save, clear and restore the PF_MEMALLOC flag.
The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't
leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag
cannot leak back into the preempted process. This should be safe due to
the following reasons
Softirqs can run on multiple CPUs sure but the same task should not be
executing the same softirq code. Neither should the softirq
handler be preempted by any other softirq handler so the flags
should not leak to an unrelated softirq.
Softirqs re-enable hardware interrupts in __do_softirq() so can be
preempted by hardware interrupts so PF_MEMALLOC is inherited
by the hard IRQ. However, this is similar to a process in
reclaim being preempted by a hardirq. While PF_MEMALLOC is
set, gfp_to_alloc_flags() distinguishes between hard and
soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS
flag.
If the softirq is deferred to ksoftirq then its flags may be used
instead of a normal tasks but as the softirq cannot be preempted,
the PF_MEMALLOC flag does not leak to other code by accident.
[davem@davemloft.net: Document why PF_MEMALLOC is safe]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull timer changes for v3.4 from Ingo Molnar
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
ntp: Fix integer overflow when setting time
math: Introduce div64_long
cs5535-clockevt: Allow the MFGPT IRQ to be shared
cs5535-clockevt: Don't ignore MFGPT on SMP-capable kernels
x86/time: Eliminate unused irq0_irqs counter
clocksource: scx200_hrt: Fix the build
x86/tsc: Reduce the TSC sync check time for core-siblings
timer: Fix bad idle check on irq entry
nohz: Remove ts->Einidle checks before restarting the tick
nohz: Remove update_ts_time_stat from tick_nohz_start_idle
clockevents: Leave the broadcast device in shutdown mode when not needed
clocksource: Load the ACPI PM clocksource asynchronously
clocksource: scx200_hrt: Convert scx200 to use clocksource_register_hz
clocksource: Get rid of clocksource_calc_mult_shift()
clocksource: dbx500: convert to clocksource_register_hz()
clocksource: scx200_hrt: use pr_<level> instead of printk
time: Move common updates to a function
time: Reorder so the hot data is together
time: Remove most of xtime_lock usage in timekeeping.c
ntp: Add ntp_lock to replace xtime_locking
...
Pull scheduler changes for v3.4 from Ingo Molnar
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
printk: Make it compile with !CONFIG_PRINTK
sched/x86: Fix overflow in cyc2ns_offset
sched: Fix nohz load accounting -- again!
sched: Update yield() docs
printk/sched: Introduce special printk_sched() for those awkward moments
sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
sched: Cleanup cpu_active madness
sched: Fix load-balance wreckage
sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
sched: Ditch per cgroup task lists for load-balancing
sched: Rename load-balancing fields
sched: Move load-balancing arguments into helper struct
sched/rt: Do not submit new work when PI-blocked
sched/rt: Prevent idle task boosting
sched/wait: Add __wake_up_all_locked() API
sched/rt: Document scheduler related skip-resched-check sites
sched/rt: Use schedule_preempt_disabled()
sched/rt: Add schedule_preempt_disabled()
sched/rt: Do not throttle when PI boosting
sched/rt: Keep period timer ticking when rt throttling is active
...
Pull perf events changes for v3.4 from Ingo Molnar:
- New "hardware based branch profiling" feature both on the kernel and
the tooling side, on CPUs that support it. (modern x86 Intel CPUs
with the 'LBR' hardware feature currently.)
This new feature is basically a sophisticated 'magnifying glass' for
branch execution - something that is pretty difficult to extract from
regular, function histogram centric profiles.
The simplest mode is activated via 'perf record -b', and the result
looks like this in perf report:
$ perf record -b any_call,u -e cycles:u branchy
$ perf report -b --sort=symbol
52.34% [.] main [.] f1
24.04% [.] f1 [.] f3
23.60% [.] f1 [.] f2
0.01% [k] _IO_new_file_xsputn [k] _IO_file_overflow
0.01% [k] _IO_vfprintf_internal [k] _IO_new_file_xsputn
0.01% [k] _IO_vfprintf_internal [k] strchrnul
0.01% [k] __printf [k] _IO_vfprintf_internal
0.01% [k] main [k] __printf
This output shows from/to branch columns and shows the highest
percentage (from,to) jump combinations - i.e. the most likely taken
branches in the system. "branches" can also include function calls
and any other synchronous and asynchronous transitions of the
instruction pointer that are not 'next instruction' - such as system
calls, traps, interrupts, etc.
This feature comes with (hopefully intuitive) flat ascii and TUI
support in perf report.
- Various 'perf annotate' visual improvements for us assembly junkies.
It will now recognize function calls in the TUI and by hitting enter
you can follow the call (recursively) and back, amongst other
improvements.
- Multiple threads/processes recording support in perf record, perf
stat, perf top - which is activated via a comma-list of PIDs:
perf top -p 21483,21485
perf stat -p 21483,21485 -ddd
perf record -p 21483,21485
- Support for per UID views, via the --uid paramter to perf top, perf
report, etc. For example 'perf top --uid mingo' will only show the
tasks that I am running, excluding other users, root, etc.
- Jump label restructurings and improvements - this includes the
factoring out of the (hopefully much clearer) include/linux/static_key.h
generic facility:
struct static_key key = STATIC_KEY_INIT_FALSE;
...
if (static_key_false(&key))
do unlikely code
else
do likely code
...
static_key_slow_inc();
...
static_key_slow_inc();
...
The static_key_false() branch will be generated into the code with as
little impact to the likely code path as possible. the
static_key_slow_*() APIs flip the branch via live kernel code patching.
This facility can now be used more widely within the kernel to
micro-optimize hot branches whose likelihood matches the static-key
usage and fast/slow cost patterns.
- SW function tracer improvements: perf support and filtering support.
- Various hardenings of the perf.data ABI, to make older perf.data's
smoother on newer tool versions, to make new features integrate more
smoothly, to support cross-endian recording/analyzing workflows
better, etc.
- Restructuring of the kprobes code, the splitting out of 'optprobes',
and a corner case bugfix.
- Allow the tracing of kernel console output (printk).
- Improvements/fixes to user-space RDPMC support, allowing user-space
self-profiling code to extract PMU counts without performing any
system calls, while playing nice with the kernel side.
- 'perf bench' improvements
- ... and lots of internal restructurings, cleanups and fixes that made
these features possible. And, as usual this list is incomplete as
there were also lots of other improvements
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (120 commits)
perf report: Fix annotate double quit issue in branch view mode
perf report: Remove duplicate annotate choice in branch view mode
perf/x86: Prettify pmu config literals
perf report: Enable TUI in branch view mode
perf report: Auto-detect branch stack sampling mode
perf record: Add HEADER_BRANCH_STACK tag
perf record: Provide default branch stack sampling mode option
perf tools: Make perf able to read files from older ABIs
perf tools: Fix ABI compatibility bug in print_event_desc()
perf tools: Enable reading of perf.data files from different ABI rev
perf: Add ABI reference sizes
perf report: Add support for taken branch sampling
perf record: Add support for sampling taken branch
perf tools: Add code to support PERF_SAMPLE_BRANCH_STACK
x86/kprobes: Split out optprobe related code to kprobes-opt.c
x86/kprobes: Fix a bug which can modify kernel code permanently
x86/kprobes: Fix instruction recovery on optimized path
perf: Add callback to flush branch_stack on context switch
perf: Disable PERF_SAMPLE_BRANCH_* when not supported
perf/x86: Add LBR software filter support for Intel CPUs
...
The two invoke_softirq() variants are identical except for a single
line. So move the #ifdef __ARCH_IRQ_EXIT_IRQS_DISABLED inside one of
the functions and get rid of the other one.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Create a distinction between scheduler related preempt_enable_no_resched()
calls and the nearly one hundred other places in the kernel that do not
want to reschedule, for one reason or another.
This distinction matters for -rt, where the scheduler and the non-scheduler
preempt models (and checks) are different. For upstream it's purely
documentational.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-gs88fvx2mdv5psnzxnv575ke@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
idle_cpu() is called on irq entry to guess if we need to call
tick_check_idle(). This way we can catch up with jiffies if the tick
was stopped, stop accounting idle time during the interrupt and
maintain the sched clock if it is unstable.
But if we are going to exit the idle loop to schedule a new task (ie:
if we have a task in the runqueue or a remotely enqueued ttwu to
perform), the idle_cpu() check will return 0 such that we miss the
call to tick_check_idle() for all interrupts happening before we
schedule the new task.
As a result these interrupts and the softirqs coming along may deal
with stale jiffies values, bad sched clock values, and won't substract
their time from the idle time accounting.
Fix this with using is_idle_task() instead that strictly checks that
we are running the idle task, without caring about the fact we are
going to schedule a task soon.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@elte.hu>
Link: http://lkml.kernel.org/r/1327427984-23282-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The __raise_softirq_irqoff() contains a tracepoint. As tracepoints in headers
can cause issues, and not to mention, bloats the kernel when they are
in a static inline, it is best to move the function that contains the
tracepoint out of the header and into softirq.c.
Link: http://lkml.kernel.org/r/20120118120711.GB14863@elte.hu
Suggested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The tick_nohz_stop_sched_tick() function, which tries to delay
the next timer tick as long as possible, can be called from two
places:
- From the idle loop to start the dytick idle mode
- From interrupt exit if we have interrupted the dyntick
idle mode, so that we reprogram the next tick event in
case the irq changed some internal state that requires this
action.
There are only few minor differences between both that
are handled by that function, driven by the ts->inidle
cpu variable and the inidle parameter. The whole guarantees
that we only update the dyntick mode on irq exit if we actually
interrupted the dyntick idle mode, and that we enter in RCU extended
quiescent state from idle loop entry only.
Split this function into:
- tick_nohz_idle_enter(), which sets ts->inidle to 1, enters
dynticks idle mode unconditionally if it can, and enters into RCU
extended quiescent state.
- tick_nohz_irq_exit() which only updates the dynticks idle mode
when ts->inidle is set (ie: if tick_nohz_idle_enter() has been called).
To maintain symmetry, tick_nohz_restart_sched_tick() has been renamed
into tick_nohz_idle_exit().
This simplifies the code and micro-optimize the irq exit path (no need
for local_irq_save there). This also prepares for the split between
dynticks and rcu extended quiescent state logics. We'll need this split to
further fix illegal uses of RCU in extended quiescent states in the idle
loop.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: David Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else. Revector them
onto the isolated export header for faster compile times.
Nothing to see here but a whole lot of instances of:
-#include <linux/module.h>
+#include <linux/export.h>
This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
The rcu_read_unlock_special() function relies on in_irq() to exclude
scheduler activity from interrupt level. This fails because exit_irq()
can invoke the scheduler after clearing the preempt_count() bits that
in_irq() uses to determine that it is at interrupt level. This situation
can result in failures as follows:
$task IRQ SoftIRQ
rcu_read_lock()
/* do stuff */
<preempt> |= UNLOCK_BLOCKED
rcu_read_unlock()
--t->rcu_read_lock_nesting
irq_enter();
/* do stuff, don't use RCU */
irq_exit();
sub_preempt_count(IRQ_EXIT_OFFSET);
invoke_softirq()
ttwu();
spin_lock_irq(&pi->lock)
rcu_read_lock();
/* do stuff */
rcu_read_unlock();
rcu_read_unlock_special()
rcu_report_exp_rnp()
ttwu()
spin_lock_irq(&pi->lock) /* deadlock */
rcu_read_unlock_special(t);
Ed can simply trigger this 'easy' because invoke_softirq() immediately
does a ttwu() of ksoftirqd/# instead of doing the in-place softirq stuff
first, but even without that the above happens.
Cure this by also excluding softirqs from the
rcu_read_unlock_special() handler and ensuring the force_irqthreads
ksoftirqd/# wakeup is done from full softirq context.
[ Alternatively, delaying the ->rcu_read_lock_nesting decrement
until after the special handling would make the thing more robust
in the face of interrupts as well. And there is a separate patch
for that. ]
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-and-tested-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit a26ac2455ffcf3(rcu: move TREE_RCU from softirq to kthread)
introduced performance regression. In an AIM7 test, this commit degraded
performance by about 40%.
The commit runs rcu callbacks in a kthread instead of softirq. We observed
high rate of context switch which is caused by this. Out test system has
64 CPUs and HZ is 1000, so we saw more than 64k context switch per second
which is caused by RCU's per-CPU kthread. A trace showed that most of
the time the RCU per-CPU kthread doesn't actually handle any callbacks,
but instead just does a very small amount of work handling grace periods.
This means that RCU's per-CPU kthreads are making the scheduler do quite
a bit of work in order to allow a very small amount of RCU-related
processing to be done.
Alex Shi's analysis determined that this slowdown is due to lock
contention within the scheduler. Unfortunately, as Peter Zijlstra points
out, the scheduler's real-time semantics require global action, which
means that this contention is inherent in real-time scheduling. (Yes,
perhaps someone will come up with a workaround -- otherwise, -rt is not
going to do well on large SMP systems -- but this patch will work around
this issue in the meantime. And "the meantime" might well be forever.)
This patch therefore re-introduces softirq processing to RCU, but only
for core RCU work. RCU callbacks are still executed in kthread context,
so that only a small amount of RCU work runs in softirq context in the
common case. This should minimize ksoftirqd execution, allowing us to
skip boosting of ksoftirqd for CONFIG_RCU_BOOST=y kernels.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Tested-by: "Alex,Shi" <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If RCU priority boosting is to be meaningful, callback invocation must
be boosted in addition to preempted RCU readers. Otherwise, in presence
of CPU real-time threads, the grace period ends, but the callbacks don't
get invoked. If the callbacks don't get invoked, the associated memory
doesn't get freed, so the system is still subject to OOM.
But it is not reasonable to priority-boost RCU_SOFTIRQ, so this commit
moves the callback invocations to a kthread, which can be boosted easily.
Also add comments and properly synchronized all accesses to
rcu_cpu_kthread_task, as suggested by Lai Jiangshan.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
ksoftirqd, kworker, migration, and pktgend kthreads can be created with
kthread_create_on_node(), to get proper NUMA affinities for their stack and
task_struct.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (116 commits)
x86: Enable forced interrupt threading support
x86: Mark low level interrupts IRQF_NO_THREAD
x86: Use generic show_interrupts
x86: ioapic: Avoid redundant lookup of irq_cfg
x86: ioapic: Use new move_irq functions
x86: Use the proper accessors in fixup_irqs()
x86: ioapic: Use irq_data->state
x86: ioapic: Simplify irq chip and handler setup
x86: Cleanup the genirq name space
genirq: Add chip flag to force mask on suspend
genirq: Add desc->irq_data accessor
genirq: Add comments to Kconfig switches
genirq: Fixup fasteoi handler for oneshot mode
genirq: Provide forced interrupt threading
sched: Switch wait_task_inactive to schedule_hrtimeout()
genirq: Add IRQF_NO_THREAD
genirq: Allow shared oneshot interrupts
genirq: Prepare the handling of shared oneshot interrupts
genirq: Make warning in handle_percpu_event useful
x86: ioapic: Move trigger defines to io_apic.h
...
Fix up trivial(?) conflicts in arch/x86/pci/xen.c due to genirq name
space changes clashing with the Xen cleanups. The set_irq_msi() had
moved to xen_bind_pirq_msi_to_irq().
Add a commandline parameter "threadirqs" which forces all interrupts except
those marked IRQF_NO_THREAD to run threaded. That's mostly a debug option to
allow retrieving better debug data from crashing interrupt handlers. If
"threadirqs" is not enabled on the kernel command line, then there is no
impact in the interrupt hotpath.
Architecture code needs to select CONFIG_IRQ_FORCED_THREADING after
marking the interrupts which cant be threaded IRQF_NO_THREAD. All
interrupts which have IRQF_TIMER set are implict marked
IRQF_NO_THREAD. Also all PER_CPU interrupts are excluded.
Forced threading hard interrupts also forces all soft interrupt
handling into thread context.
When enabled it might slow down things a bit, but for debugging problems in
interrupt code it's a reasonable penalty as it does not immediately
crash and burn the machine when an interrupt handler is buggy.
Some test results on a Core2Duo machine:
Cache cold run of:
# time git grep irq_desc
non-threaded threaded
real 1m18.741s 1m19.061s
user 0m1.874s 0m1.757s
sys 0m5.843s 0m5.427s
# iperf -c server
non-threaded
[ 3] 0.0-10.0 sec 1.09 GBytes 933 Mbits/sec
[ 3] 0.0-10.0 sec 1.09 GBytes 934 Mbits/sec
[ 3] 0.0-10.0 sec 1.09 GBytes 933 Mbits/sec
threaded
[ 3] 0.0-10.0 sec 1.09 GBytes 939 Mbits/sec
[ 3] 0.0-10.0 sec 1.09 GBytes 934 Mbits/sec
[ 3] 0.0-10.0 sec 1.09 GBytes 937 Mbits/sec
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20110223234956.772668648@linutronix.de>
ksoftirqd() calls do_softirq() which switches stacks on several
architectures. That makes no sense at all. ksoftirqd's stack is
sufficient.
Call __do_softirq() directly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
LKML-Reference: <alpine.LFD.2.00.1102021704530.31804@localhost6.localdomain6>
Cleanup patch, freeing up PF_KSOFTIRQD and use per_cpu ksoftirqd pointer
instead, as suggested by Eric Dumazet.
Tested-by: Shaun Ruffell <sruffell@digium.com>
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1292980144-28796-2-git-send-email-venki@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For arch which needs USE_GENERIC_SMP_HELPERS, it has to select
USE_GENERIC_SMP_HELPERS, rather than leaving a choice to user, since they
don't provide their own implementions.
Also, move on_each_cpu() to kernel/smp.c, it is strange to put it in
kernel/softirq.c.
For arch which doesn't use USE_GENERIC_SMP_HELPERS, e.g. blackfin, only
on_each_cpu() is compiled.
Signed-off-by: Amerigo Wang <amwang@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
Function-scope statics are discouraged because they are
easily overlooked and can cause subtle bugs/races due to
their global (non-SMP safe) nature.
Linus noticed that we did this for sched_param - at minimum
make the const.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: Message-ID: <AANLkTinotRxScOHEb0HgFgSpGPkq_6jKTv5CfvnQM=ee@mail.gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
__get_cpu_var() can be replaced with this_cpu_read and will then use a
single read instruction with implied address calculation to access the
correct per cpu instance.
However, the address of a per cpu variable passed to __this_cpu_read()
cannot be determined (since it's an implied address conversion through
segment prefixes). Therefore apply this only to uses of __get_cpu_var
where the address of the variable is not used.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>