The struct cpu_common_dbs_info structure represents the per-policy
part of the governor data (for the ondemand and conservative
governors), but its name doesn't reflect its purpose.
Rename it to struct policy_dbs_info and rename variables related to
it accordingly.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it with the help
of container_of(), the additional gov pointer in struct dbs_data
isn't really necessary.
Drop that pointer and make the code using it reach the dbs_governor
object via policy->governor.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it via
container_of(), the second argument of cpufreq_governor_init()
is not necessary. Accordingly, cpufreq_governor_dbs() doesn't
need its second argument either and the ->governor callbacks
for both the ondemand and conservative governors may be set
to cpufreq_governor_dbs() directly. Make that happen.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The ondemand and conservative governors are represented by
struct common_dbs_data whose name doesn't reflect the purpose it
is used for, so rename it to struct dbs_governor and rename
variables of that type accordingly.
No functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
For the ondemand and conservative governors (generally, governors
that use the common code in cpufreq_governor.c), there are two static
data structures representing the governor, the struct governor
structure (the interface to the cpufreq core) and the struct
common_dbs_data one (the interface to the cpufreq_governor.c code).
There's no fundamental reason why those two structures have to be
separate. Moreover, if the struct governor one is included into
struct common_dbs_data, it will be possible to reach the latter from
the policy via its policy->governor pointer, so it won't be necessary
to pass a separate pointer to it around. For this reason, embed
struct governor in struct common_dbs_data.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Every governor relying on the common code in cpufreq_governor.c
has to provide its own mutex in struct common_dbs_data. However,
there actually is no need to have a separate mutex per governor
for this purpose, they may be using the same global mutex just
fine. Accordingly, introduce a single common mutex for that and
drop the mutex field from struct common_dbs_data.
That at least will ensure that the mutex is always present and
initialized regardless of what the particular governors do.
Another benefit is that the common code does not need a pointer to
a governor-related structure to get to the mutex which sometimes
helps.
Finally, it makes the code generally easier to follow.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Instead of using a per-CPU deferrable timer for queuing up governor
work items, register a utilization update callback that will be
invoked from the scheduler on utilization changes.
The sampling rate is still the same as what was used for the
deferrable timers and the added irq_work overhead should be offset by
the eliminated timers overhead, so in theory the functional impact of
this patch should not be significant.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
The preprocessor magic used for setting the default cpufreq governor
(and for using the performance governor as a fallback one for that
matter) is really nasty, so replace it with __weak functions and
overrides.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Pass 'policy' as argument to ->gov_dbs_timer() instead of cdbs and
dbs_data.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Conservative governor has its own 'enable' field to check if
conservative governor is used for a CPU or not
This can be checked by policy->governor with 'cpufreq_gov_conservative'
and so this field can be dropped.
Because its not guaranteed that dbs_info->cdbs.shared will a valid
pointer for all CPUs (will be NULL for CPUs that don't use
ondemand/conservative governors), we can't use it anymore. Lets get
policy with cpufreq_cpu_get_raw() instead.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some part of cs_dbs_timer() and od_dbs_timer() is exactly same and is
unnecessarily duplicated.
Create the real work-handler in cpufreq_governor.c and put the common
code in this routine (dbs_timer()).
Shouldn't make any functional change.
Reviewed-and-tested-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some information is common to all CPUs belonging to a policy, but are
kept on per-cpu basis. Lets keep that in another structure common to all
policy->cpus. That will make updates/reads to that less complex and less
error prone.
The memory for cpu_common_dbs_info is allocated/freed at INIT/EXIT, so
that it we don't reallocate it for STOP/START sequence. It will be also
be used (in next patch) while the governor is stopped and so must not be
freed that early.
Reviewed-and-tested-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Just call it 'policy', cur_policy is unnecessarily long and doesn't
have any special meaning.
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Delayed work was named as 'work' and to access work within it we do
work.work. Not much readable. Rename delayed_work as 'dwork'.
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are several races reported in cpufreq core around governors (only
ondemand and conservative) by different people.
There are at least two race scenarios present in governor code:
(a) Concurrent access/updates of governor internal structures.
It is possible that fields such as 'dbs_data->usage_count', etc. are
accessed simultaneously for different policies using same governor
structure (i.e. CPUFREQ_HAVE_GOVERNOR_PER_POLICY flag unset). And
because of this we can dereference bad pointers.
For example consider a system with two CPUs with separate 'struct
cpufreq_policy' instances. CPU0 governor: ondemand and CPU1: powersave.
CPU0 switching to powersave and CPU1 to ondemand:
CPU0 CPU1
store* store*
cpufreq_governor_exit() cpufreq_governor_init()
dbs_data = cdata->gdbs_data;
if (!--dbs_data->usage_count)
kfree(dbs_data);
dbs_data->usage_count++;
*Bad pointer dereference*
There are other races possible between EXIT and START/STOP/LIMIT as
well. Its really complicated.
(b) Switching governor state in bad sequence:
For example trying to switch a governor to START state, when the
governor is in EXIT state. There are some checks present in
__cpufreq_governor() but they aren't sufficient as they compare events
against 'policy->governor_enabled', where as we need to take governor's
state into account, which can be used by multiple policies.
These two issues need to be solved separately and the responsibility
should be properly divided between cpufreq and governor core.
The first problem is more about the governor core, as it needs to
protect its structures properly. And the second problem should be fixed
in cpufreq core instead of governor, as its all about sequence of
events.
This patch is trying to solve only the first problem.
There are two types of data we need to protect,
- 'struct common_dbs_data': No matter what, there is going to be a
single copy of this per governor.
- 'struct dbs_data': With CPUFREQ_HAVE_GOVERNOR_PER_POLICY flag set, we
will have per-policy copy of this data, otherwise a single copy.
Because of such complexities, the mutex present in 'struct dbs_data' is
insufficient to solve our problem. For example we need to protect
fetching of 'dbs_data' from different structures at the beginning of
cpufreq_governor_dbs(), to make sure it isn't currently being updated.
This can be fixed if we can guarantee serialization of event parsing
code for an individual governor. This is best solved with a mutex per
governor, and the placeholder for that is 'struct common_dbs_data'.
And so this patch moves the mutex from 'struct dbs_data' to 'struct
common_dbs_data' and takes it at the beginning and drops it at the end
of cpufreq_governor_dbs().
Tested with and without following configuration options:
CONFIG_LOCKDEP_SUPPORT=y
CONFIG_DEBUG_RT_MUTEXES=y
CONFIG_DEBUG_PI_LIST=y
CONFIG_DEBUG_SPINLOCK=y
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=y
CONFIG_LOCKDEP=y
CONFIG_DEBUG_ATOMIC_SLEEP=y
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Notifiers are required only for conservative governor and the common
governor code is unnecessarily polluted with that. Handle that from
cs_init/exit() instead of cpufreq_governor_dbs().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When requested_freq is over policy->max, set it to policy->max.
This can help to speed up decreasing frequency.
Signed-off-by: Xiaoguang Chen <chenxg@marvell.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When decreasing frequency, requested_freq may be less than
freq_target, So requested_freq minus freq_target may be negative,
But reqested_freq's unit is unsigned int, then the negative result
will be one larger interger which may be even higher than
requested_freq.
This patch is to fix such issue. when result becomes negative,
set requested_freq as the min value of policy.
Signed-off-by: Xiaoguang Chen <chenxg@marvell.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Function __cpufreq_driver_target() checks if target_freq is within
policy->min and policy->max range. generic_powersave_bias_target() also
checks if target_freq is valid via a cpufreq_frequency_table_target()
call. So, drop the unnecessary duplicate check in *_check_cpu().
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Chapter 14 of Documentation/CodingStyle says:
The preferred form for passing a size of a struct is the following:
p = kmalloc(sizeof(*p), ...);
The alternative form where struct name is spelled out hurts
readability and introduces an opportunity for a bug when the pointer
variable type is changed but the corresponding sizeof that is passed
to a memory allocator is not.
This wasn't followed consistently in drivers/cpufreq, let's make it
more consistent by always following this rule.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch addresses the following issues in the header files in the
cpufreq core:
- Include headers in ascending order, so that we don't add same
many times by mistake.
- <asm/> must be included after <linux/>, so that they override
whatever they need to.
- Remove unnecessary includes.
- Don't include files already included by cpufreq.h or
cpufreq_governor.h.
[rjw: Changelog]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This sysfs file was called ignore_nice_load earlier and commit
4d5dcc4 (cpufreq: governor: Implement per policy instances of
governors) changed its name to ignore_nice by mistake.
Lets get it renamed back to its original name.
Reported-by: Martin von Gagern <Martin.vGagern@gmx.net>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 3.10+ <stable@vger.kernel.org> # 3.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use an inline function to evaluate freq_target to avoid duplicate code.
Also, define a macro for the default frequency step.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When we evaluate the CPU load for frequency decrease we have to compare
the load against down_threshold. There is no need to subtract 10 points
from down_threshold.
Instead, we have to use the default down_threshold or user's selection
unmodified.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
sampling_down_factor tunable is unused since commit
8e677ce83b (4 years ago).
This patch restores the original functionality and documents the
tunable.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently we always calculate the CPU iowait time and add it to idle time.
If we are in ondemand and we use io_is_busy, we re-calculate iowait time
and we subtract it from idle time.
With this patch iowait time is calculated only when necessary avoiding
the double call to get_cpu_iowait_time_us. We use a parameter in
function get_cpu_idle_time to distinguish when the iowait time will be
added to idle time or not, without the need of keeping the prev_io_wait.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.,org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The relation should be CPUFREQ_RELATION_L to find optimal frequency
when decreasing.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If we're on the lowest frequency, no need to calculate new freq.
Break out even earlier in this case.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Following patch has introduced per cpu timers or works for ondemand and
conservative governors.
commit 2abfa876f1
Author: Rickard Andersson <rickard.andersson@stericsson.com>
Date: Thu Dec 27 14:55:38 2012 +0000
cpufreq: handle SW coordinated CPUs
This causes additional unnecessary interrupts on all cpus when the load is
recently evaluated by any other cpu. i.e. When load is recently evaluated by cpu
x, we don't really need any other cpu to evaluate this load again for the next
sampling_rate time.
Some sort of code is present to avoid that but we are still getting timer
interrupts for all cpus. A good way of avoiding this would be to modify delays
for all cpus (policy->cpus) whenever any cpu has evaluated load.
This patch does this change and some related code cleanup.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently, there can't be multiple instances of single governor_type.
If we have a multi-package system, where we have multiple instances
of struct policy (per package), we can't have multiple instances of
same governor. i.e. We can't have multiple instances of ondemand
governor for multiple packages.
Governors directory in sysfs is created at /sys/devices/system/cpu/cpufreq/
governor-name/. Which again reflects that there can be only one
instance of a governor_type in the system.
This is a bottleneck for multicluster system, where we want different
packages to use same governor type, but with different tunables.
This patch uses the infrastructure provided by earlier patch and
implements init/exit routines for ondemand and conservative
governors.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Fix a couple of typos in comments.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
With the inclusion of following patches:
9f4eb10 cpufreq: conservative: call dbs_check_cpu only when necessary
772b4b1 cpufreq: ondemand: call dbs_check_cpu only when necessary
code redundancy between the conservative and ondemand governors is
introduced again, so get rid of it.
[rjw: Changelog]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Fix governors code to set all cpu's cdbs->cpu to the the actual cpu id
and use cur_policy->cpu istead of cdbs->cpu to track current governor's
leader cpu.
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Fabio Baltieri <fabio.baltieri@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Implement a generic helper function policy_is_shared() to replace the
current dbs_sw_coordinated_cpus() at cpufreq level, so that it can be
used by code other than cpufreq governors.
Suggested-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Fabio Baltieri <fabio.baltieri@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Modify conservative timer to not resample CPU utilization if recently
sampled from another SW coordinated core.
Signed-off-by: Fabio Baltieri <fabio.baltieri@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch fixes a bug that occurred when we had load on a secondary CPU
and the primary CPU was sleeping. Only one sampling timer was spawned
and it was spawned as a deferred timer on the primary CPU, so when a
secondary CPU had a change in load this was not detected by the cpufreq
governor (both ondemand and conservative).
This patch make sure that deferred timers are run on all CPUs in the
case of software controlled CPUs that run on the same frequency.
Signed-off-by: Rickard Andersson <rickard.andersson@stericsson.com>
Signed-off-by: Fabio Baltieri <fabio.baltieri@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Initially ondemand governor was written and then using its code conservative
governor is written. It used a lot of code from ondemand governor, but copy of
code was created instead of using the same routines from both governors. Which
increased code redundancy, which is difficult to manage.
This patch is an attempt to move common part of both the governors to
cpufreq_governor.c file to come over above mentioned issues.
This shouldn't change anything from functionality point of view.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Multiple cpufreq governers have defined similar get_cpu_idle_time_***()
routines. These routines must be moved to some common place, so that all
governors can use them.
So moving them to cpufreq_governor.c, which seems to be a better place for
keeping these routines.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* Improved system suspend/resume and runtime PM handling for the SH TMU, CMT
and MTU2 clock event devices (also used by ARM/shmobile).
* Generic PM domains framework extensions related to cpuidle support and
domain objects lookup using names.
* ARM/shmobile power management updates including improved support for the
SH7372's A4S power domain containing the CPU core.
* cpufreq changes related to AMD CPUs support from Matthew Garrett, Andre
Przywara and Borislav Petkov.
* cpu0 cpufreq driver from Shawn Guo.
* cpufreq governor fixes related to the relaxing of limit from Michal Pecio.
* OMAP cpufreq updates from Axel Lin and Richard Zhao.
* cpuidle ladder governor fixes related to the disabling of states from
Carsten Emde and me.
* Runtime PM core updates related to the interactions with the system suspend
core from Alan Stern and Kevin Hilman.
* Wakeup sources modification allowing more helper functions to be called from
interrupt context from John Stultz and additional diagnostic code from Todd
Poynor.
* System suspend error code path fix from Feng Hong.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQa1rRAAoJEKhOf7ml8uNsYZ0P/2RZ71sgLWcUCfr0yHaiZeOd
2GxEYSZ+9BZJHADgoAK/bHRTv8crm40Y2RkbaWbxPDRNuE4SutbvNTGTlJSAguSD
yHkU/6AFC7u8Jwq+afsWIdGX7eHd78zPpj6EVtVtjHM903WDwbMU2vUz7tQ+fFa+
ZZ7eydq9j0ec0OoH3UeNhet7JSOpT5BSLgjmIkHMBgIvTxNVDbkB31QUxnUxocxn
k6S2wQaUSJJWGMLksRRNrhwLq+cGYwTsaOtG/KzRLH1raUyn33B5pcZr0aqhOkjg
ClaCks3V8o3vRghSwOPB5aVXzjBKvM3UnSyJNIl+FeCeyWuwSNbkEFdA/e7oPuxG
UsW6dcHiuVo6Ir4+zhd9+lN+/AcPTChO5b7lbU8qRF4ce04czWlUY/KzJjaM+YOE
CKGq6eX9AHwFjE+h4+VcCXgmzcioiS8Y/CPz13u8N1y0zzwW+ftjb12K+7lVBEG1
fhrePKHgLw3kJ9LqGpR+4vVur7C+rCf6WwCReTY2vXXVYJ+SuKWTRI4zAjTPXtHa
i9dpMRASpF+ScRYBcgwIpv789WuHATFKqdBSinZUKBaxQZ5flJ2qIrfqN5VeAejh
oQs/zZCdIuAtFKqVycQ0L42YxFNKgPFKQErUCSu3M5OuZLlLVLu7yQvIo2Xmo9qf
Hcrpvo5K+w29YkiwGP9e
=rbCk
-----END PGP SIGNATURE-----
Merge tag 'pm-for-3.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael J Wysocki:
- Improved system suspend/resume and runtime PM handling for the SH
TMU, CMT and MTU2 clock event devices (also used by ARM/shmobile).
- Generic PM domains framework extensions related to cpuidle support
and domain objects lookup using names.
- ARM/shmobile power management updates including improved support for
the SH7372's A4S power domain containing the CPU core.
- cpufreq changes related to AMD CPUs support from Matthew Garrett,
Andre Przywara and Borislav Petkov.
- cpu0 cpufreq driver from Shawn Guo.
- cpufreq governor fixes related to the relaxing of limit from Michal
Pecio.
- OMAP cpufreq updates from Axel Lin and Richard Zhao.
- cpuidle ladder governor fixes related to the disabling of states from
Carsten Emde and me.
- Runtime PM core updates related to the interactions with the system
suspend core from Alan Stern and Kevin Hilman.
- Wakeup sources modification allowing more helper functions to be
called from interrupt context from John Stultz and additional
diagnostic code from Todd Poynor.
- System suspend error code path fix from Feng Hong.
Fixed up conflicts in cpufreq/powernow-k8 that stemmed from the
workqueue fixes conflicting fairly badly with the removal of support for
hardware P-state chips. The changes were independent but somewhat
intertwined.
* tag 'pm-for-3.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (76 commits)
Revert "PM QoS: Use spinlock in the per-device PM QoS constraints code"
PM / Runtime: let rpm_resume() succeed if RPM_ACTIVE, even when disabled, v2
cpuidle: rename function name "__cpuidle_register_driver", v2
cpufreq: OMAP: Check IS_ERR() instead of NULL for omap_device_get_by_hwmod_name
cpuidle: remove some empty lines
PM: Prevent runtime suspend during system resume
PM QoS: Use spinlock in the per-device PM QoS constraints code
PM / Sleep: use resume event when call dpm_resume_early
cpuidle / ACPI : move cpuidle_device field out of the acpi_processor_power structure
ACPI / processor: remove pointless variable initialization
ACPI / processor: remove unused function parameter
cpufreq: OMAP: remove loops_per_jiffy recalculate for smp
sections: fix section conflicts in drivers/cpufreq
cpufreq: conservative: update frequency when limits are relaxed
cpufreq / ondemand: update frequency when limits are relaxed
properly __init-annotate pm_sysrq_init()
cpufreq: Add a generic cpufreq-cpu0 driver
PM / OPP: Initialize OPP table from device tree
ARM: add cpufreq transiton notifier to adjust loops_per_jiffy for smp
cpufreq: Remove support for hardware P-state chips from powernow-k8
...
Reevaluate CPU load and update frequency immediately whenever limits
are changed. Currently conservative doesn't do that when limits are
relaxed, wasting power on systems with relatively low sampling rate.
Signed-off-by: Michal Pecio <mpecio@nvidia.com>
Reviewed-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
This change initialises the cpu id field of cs_cpu_dbs_info structure in
conservative governor and keep this consistent with other governors.
Similar initialisation is present in ondemand governor.
Signed-off-by: Amit Daniel Kachhap <amit.daniel@samsung.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Initalizers for deferrable delayed_work are confused.
* __DEFERRED_WORK_INITIALIZER()
* DECLARE_DEFERRED_WORK()
* INIT_DELAYED_WORK_DEFERRABLE()
Rename them to
* __DEFERRABLE_WORK_INITIALIZER()
* DECLARE_DEFERRABLE_WORK()
* INIT_DEFERRABLE_WORK()
This patch doesn't cause any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Make cputime_t and cputime64_t nocast to enable sparse checking to
detect incorrect use of cputime. Drop the cputime macros for simple
scalar operations. The conversion macros are still needed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch changes fields in cpustat from a structure, to an
u64 array. Math gets easier, and the code is more flexible.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Tuner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322498719-2255-2-git-send-email-glommer@parallels.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
update_ts_time_stat currently updates idle time even if we are in
iowait loop at the moment. The only real users of the idle counter
(via get_cpu_idle_time_us) are CPU governors and they expect to get
cumulative time for both idle and iowait times.
The value (idle_sleeptime) is also printed to userspace by print_cpu
but it prints both idle and iowait times so the idle part is misleading.
Let's clean this up and fix update_ts_time_stat to account both counters
properly and update consumers of idle to consider iowait time as well.
If we do this we might use get_cpu_{idle,iowait}_time_us from other
contexts as well and we will get expected values.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Jones <davej@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Link: http://lkml.kernel.org/r/e9c909c221a8da402c4da07e4cd968c3218f8eb1.1314172057.git.mhocko@suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There cannot be any concurrent access to these through
different cpu sysfs files anymore, because these tunables
are now all global (not per cpu).
I still have some doubts whether some of these locks
were needed at all. Anyway, let's get rid of them.
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dave Jones <davej@redhat.com>
CC: cpufreq@vger.kernel.org
Marked deprecated for quite a whilte now...
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dave Jones <davej@redhat.com>
CC: cpufreq@vger.kernel.org
Marked deprecated for quite a while now...
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dave Jones <davej@redhat.com>
CC: cpufreq@vger.kernel.org