Condense the terminal states of a call state machine to a single state,
plus a separate completion type value. The value is then set, along with
error and abort code values, only when the call is transitioned to the
completion state.
Helpers are provided to simplify this.
Signed-off-by: David Howells <dhowells@redhat.com>
Improve the management and caching of client rxrpc connection objects.
From this point, client connections will be managed separately from service
connections because AF_RXRPC controls the creation and re-use of client
connections but doesn't have that luxury with service connections.
Further, there will be limits on the numbers of client connections that may
be live on a machine. No direct restriction will be placed on the number
of client calls, excepting that each client connection can support a
maximum of four concurrent calls.
Note that, for a number of reasons, we don't want to simply discard a
client connection as soon as the last call is apparently finished:
(1) Security is negotiated per-connection and the context is then shared
between all calls on that connection. The context can be negotiated
again if the connection lapses, but that involves holding up calls
whilst at least two packets are exchanged and various crypto bits are
performed - so we'd ideally like to cache it for a little while at
least.
(2) If a packet goes astray, we will need to retransmit a final ACK or
ABORT packet. To make this work, we need to keep around the
connection details for a little while.
(3) The locally held structures represent some amount of setup time, to be
weighed against their occupation of memory when idle.
To this end, the client connection cache is managed by a state machine on
each connection. There are five states:
(1) INACTIVE - The connection is not held in any list and may not have
been exposed to the world. If it has been previously exposed, it was
discarded from the idle list after expiring.
(2) WAITING - The connection is waiting for the number of client conns to
drop below the maximum capacity. Calls may be in progress upon it
from when it was active and got culled.
The connection is on the rxrpc_waiting_client_conns list which is kept
in to-be-granted order. Culled conns with waiters go to the back of
the queue just like new conns.
(3) ACTIVE - The connection has at least one call in progress upon it, it
may freely grant available channels to new calls and calls may be
waiting on it for channels to become available.
The connection is on the rxrpc_active_client_conns list which is kept
in activation order for culling purposes.
(4) CULLED - The connection got summarily culled to try and free up
capacity. Calls currently in progress on the connection are allowed
to continue, but new calls will have to wait. There can be no waiters
in this state - the conn would have to go to the WAITING state
instead.
(5) IDLE - The connection has no calls in progress upon it and must have
been exposed to the world (ie. the EXPOSED flag must be set). When it
expires, the EXPOSED flag is cleared and the connection transitions to
the INACTIVE state.
The connection is on the rxrpc_idle_client_conns list which is kept in
order of how soon they'll expire.
A connection in the ACTIVE or CULLED state must have at least one active
call upon it; if in the WAITING state it may have active calls upon it;
other states may not have active calls.
As long as a connection remains active and doesn't get culled, it may
continue to process calls - even if there are connections on the wait
queue. This simplifies things a bit and reduces the amount of checking we
need do.
There are a couple flags of relevance to the cache:
(1) EXPOSED - The connection ID got exposed to the world. If this flag is
set, an extra ref is added to the connection preventing it from being
reaped when it has no calls outstanding. This flag is cleared and the
ref dropped when a conn is discarded from the idle list.
(2) DONT_REUSE - The connection should be discarded as soon as possible and
should not be reused.
This commit also provides a number of new settings:
(*) /proc/net/rxrpc/max_client_conns
The maximum number of live client connections. Above this number, new
connections get added to the wait list and must wait for an active
conn to be culled. Culled connections can be reused, but they will go
to the back of the wait list and have to wait.
(*) /proc/net/rxrpc/reap_client_conns
If the number of desired connections exceeds the maximum above, the
active connection list will be culled until there are only this many
left in it.
(*) /proc/net/rxrpc/idle_conn_expiry
The normal expiry time for a client connection, provided there are
fewer than reap_client_conns of them around.
(*) /proc/net/rxrpc/idle_conn_fast_expiry
The expedited expiry time, used when there are more than
reap_client_conns of them around.
Note that I combined the Tx wait queue with the channel grant wait queue to
save space as only one of these should be in use at once.
Note also that, for the moment, the service connection cache still uses the
old connection management code.
Signed-off-by: David Howells <dhowells@redhat.com>
The main connection list is used for two independent purposes: primarily it
is used to find connections to reap and secondarily it is used to list
connections in procfs.
Split the procfs list out from the reap list. This allows us to stop using
the reap list for client connections when they acquire a separate
management strategy from service collections.
The client connections will not be on a management single list, and sometimes
won't be on a management list at all. This doesn't leave them floating,
however, as they will also be on an rb-tree rooted on the socket so that the
socket can find them to dispatch calls.
Signed-off-by: David Howells <dhowells@redhat.com>
Make /proc/net/rxrpc_calls safer by stashing a copy of the peer pointer in
the rxrpc_call struct and checking in the show routine that the peer
pointer, the socket pointer and the local pointer obtained from the socket
pointer aren't NULL before we use them.
Signed-off-by: David Howells <dhowells@redhat.com>
Drop the channel number (channel) field from the rxrpc_call struct to
reduce the size of the call struct. The field is redundant: if the call is
attached to a connection, the channel can be obtained from there by AND'ing
with RXRPC_CHANNELMASK.
Signed-off-by: David Howells <dhowells@redhat.com>
Do a little tidying of the rxrpc_call struct:
(1) in_clientflag is no longer compared against the value that's in the
packet, so keeping it in this form isn't necessary. Use a flag in
flags instead and provide a pair of wrapper functions.
(2) We don't read the epoch value, so that can go.
(3) Move what remains of the data that were used for hashing up in the
struct to be with the channel number.
(4) Get rid of the local pointer. We can get at this via the socket
struct and we only use this in the procfs viewer.
Signed-off-by: David Howells <dhowells@redhat.com>
Move to using RCU access to a peer's service connection tree when routing
an incoming packet. This is done using a seqlock to trigger retrying of
the tree walk if a change happened.
Further, we no longer get a ref on the connection looked up in the
data_ready handler unless we queue the connection's work item - and then
only if the refcount > 0.
Note that I'm avoiding the use of a hash table for service connections
because each service connection is addressed by a 62-bit number
(constructed from epoch and connection ID >> 2) that would allow the client
to engage in bucket stuffing, given knowledge of the hash algorithm.
Peers, however, are hashed as the network address is less controllable by
the client. The total number of peers will also be limited in a future
commit.
Signed-off-by: David Howells <dhowells@redhat.com>
Overhaul the usage count accounting for the rxrpc_connection struct to make
it easier to implement RCU access from the data_ready handler.
The problem is that currently we're using a lock to prevent the garbage
collector from trying to clean up a connection that we're contemplating
unidling. We could just stick incoming packets on the connection we find,
but we've then got a problem that we may race when dispatching a work item
to process it as we need to give that a ref to prevent the rxrpc_connection
struct from disappearing in the meantime.
Further, incoming packets may get discarded if attached to an
rxrpc_connection struct that is going away. Whilst this is not a total
disaster - the client will presumably resend - it would delay processing of
the call. This would affect the AFS client filesystem's service manager
operation.
To this end:
(1) We now maintain an extra count on the connection usage count whilst it
is on the connection list. This mean it is not in use when its
refcount is 1.
(2) When trying to reuse an old connection, we only increment the refcount
if it is greater than 0. If it is 0, we replace it in the tree with a
new candidate connection.
(3) Two connection flags are added to indicate whether or not a connection
is in the local's client connection tree (used by sendmsg) or the
peer's service connection tree (used by data_ready). This makes sure
that we don't try and remove a connection if it got replaced.
The flags are tested under lock with the removal operation to prevent
the reaper from killing the rxrpc_connection struct whilst someone
else is trying to effect a replacement.
This could probably be alleviated by using memory barriers between the
flag set/test and the rb_tree ops. The rb_tree op would still need to
be under the lock, however.
(4) When trying to reap an old connection, we try to flip the usage count
from 1 to 0. If it's not 1 at that point, then it must've come back
to life temporarily and we ignore it.
Signed-off-by: David Howells <dhowells@redhat.com>
Split the client-specific connection code out into its own file. It will
behave somewhat differently from the service-specific connection code, so
it makes sense to separate them.
Signed-off-by: David Howells <dhowells@redhat.com>
Check that the client conns cache is empty before module removal and bug if
not, listing any offending connections that are still present. Unfortunately,
if there are connections still around, then the transport socket is still
unexpectedly open and active, so we can't just unallocate the connections.
Signed-off-by: David Howells <dhowells@redhat.com>
Kill off the concept of maintaining a bundle of connections to a particular
target service to increase the number of call slots available for any
beyond four for that service (there are four call slots per connection).
This will make cleaning up the connection handling code easier and
facilitate removal of the rxrpc_transport struct. Bundling can be
reintroduced later if necessary.
Signed-off-by: David Howells <dhowells@redhat.com>
Use the IDR facility to allocate client connection IDs on a machine-wide
basis so that each client connection has a unique identifier. When the
connection ID space wraps, we advance the epoch by 1, thereby effectively
having a 62-bit ID space. The IDR facility is then used to look up client
connections during incoming packet routing instead of using an rbtree
rooted on the transport.
This change allows for the removal of the transport in the future and also
means that client connections can be looked up directly in the data-ready
handler by connection ID.
The ID management code is placed in a new file, conn-client.c, to which all
the client connection-specific code will eventually move.
Note that the IDR tree gets very expensive on memory if the connection IDs
are widely scattered throughout the number space, so we shall need to
retire connections that have, say, an ID more than four times the maximum
number of client conns away from the current allocation point to try and
keep the IDs concentrated. We will also need to retire connections from an
old epoch.
Also note that, for the moment, a pointer to the transport has to be passed
through into the ID allocation function so that we can take a BH lock to
prevent a locking issue against in-BH lookup of client connections. This
will go away later when RCU is used for server connections also.
Signed-off-by: David Howells <dhowells@redhat.com>