When TLP fails to send new packet because of receive window
limit, it should fall back to retransmit the last packet instead.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If TLP was unable to send a probe, it extended the RTO to
now + icsk_rto. But extending the RTO makes little sense
if no TLP probe went out. With this commit, instead of
extending the RTO we re-arm it relative to the transmit time
of the write queue head.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While doing experiments with reordering resilience, we found
linux senders were not able to send at full speed under reordering,
because every incoming SACK was releasing one MSS.
This patch removes the limitation, as we did for CWR state
in commit a0ea700e40 ("tcp: tso: allow CA_CWR state in
tcp_tso_should_defer()")
Neal Cardwell had a concern about limited transmit so
Yuchung conducted experiments on GFE and found nothing
worth adding an extra check on fast path :
if (icsk->icsk_ca_state == TCP_CA_Disorder &&
tcp_sk(sk)->reordering == sysctl_tcp_reordering)
goto send_now;
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
V1 of this patch contains Eric Dumazet's suggestion to move the per
dst RTAX_QUICKACK check into tcp_in_quickack_mode(). Thanks Eric.
I ran some tests and after setting the "ip route change quickack 1"
knob there were still many delayed ACKs sent. This occured
because when icsk_ack.quick=0 the !icsk_ack.pingpong value is
subsequently ignored as tcp_in_quickack_mode() checks both these
values. The condition for a quick ack to trigger requires
that both icsk_ack.quick != 0 and icsk_ack.pingpong=0. Currently
only icsk_ack.pingpong is controlled by the knob. But the
icsk_ack.quick value changes dynamically depending on heuristics.
The crux of the matter is that delayed acks still cannot be entirely
disabled even with the RTAX_QUICKACK per dst knob enabled. This
patch ensures that a quick ack is always sent when the RTAX_QUICKACK
per dst knob is turned on.
The "ip route change quickack 1" knob was recently added to enable
quickacks. It was modeled around the TCP_QUICKACK setsockopt() option.
This issue is that even with "ip route change quickack 1" enabled
we still see delayed ACKs under some conditions. It would be nice
to be able to completely disable delayed ACKs.
Here is an example:
# netstat -s|grep dela
3 delayed acks sent
For all routes enable the knob
# ip route change quickack 1
Generate some traffic across a slow link and we still see the delayed
acks.
# netstat -s|grep dela
106 delayed acks sent
1 delayed acks further delayed because of locked socket
The issue is that both the "ip route change quickack 1" knob and
the TCP_QUICKACK option set the icsk_ack.pingpong variable to 0.
However at the business end in the __tcp_ack_snd_check() routine,
tcp_in_quickack_mode() checks that both icsk_ack.quick != 0
and icsk_ack.pingpong=0 in order to trigger a quickack. As
icsk_ack.quick is determined by heuristics it can be 0. When
that occurs the icsk_ack.pingpong value is ignored and a delayed
ACK is sent regardless.
This patch moves the RTAX_QUICKACK per dst check into the
tcp_in_quickack_mode() routine which ensures that a quickack is
always sent when the quickack knob is enabled for that dst.
Signed-off-by: Jon Maxwell <jmaxwell37@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We had various issues in the past when TCP stack was modifying
gso_size/gso_segs while clones were in flight.
Commit c52e2421f7 ("tcp: must unclone packets before mangling them")
fixed these bugs and added a WARN_ON_ONCE(skb_cloned(skb)); in
tcp_set_skb_tso_segs()
These bugs are now fixed, and because TCP stack now only sets
shinfo->gso_size|segs on the clone itself, the check can be removed.
As a result of this change, compiler inlines tcp_set_skb_tso_segs() in
tcp_init_tso_segs()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit cd7d8498c9 ("tcp: change tcp_skb_pcount() location") we stored
gso_segs in a temporary cache hot location.
This patch does the same for gso_size.
This allows to save 2 cache line misses in tcp xmit path for
the last packet that is considered but not sent because of
various conditions (cwnd, tso defer, receiver window, TSQ...)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_set_skb_tso_segs() & tcp_init_tso_segs() no longer
use the sock pointer.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Our goal is to touch skb_shinfo(skb) only when absolutely needed,
to avoid two cache line misses in TCP output path for last skb
that is considered but not sent because of various conditions
(cwnd, tso defer, receiver window, TSQ...)
A packet is GSO only when skb_shinfo(skb)->gso_size is not zero.
We can set skb_shinfo(skb)->gso_type to sk->sk_gso_type even for
non GSO packets.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Xen virtual network driver has higher latency than a physical NIC.
Having only 128K as limit for TSQ introduced 30% regression in guest
throughput.
This patch raises the limit to 256K. This reduces the regression to 8%.
This buys us more time to work out a proper solution in the long run.
Signed-off-by: Wei Liu <wei.liu2@citrix.com>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
By making sure sk->sk_gso_max_segs minimal value is one,
and sysctl_tcp_min_tso_segs minimal value is one as well,
tcp_tso_autosize() will return a non zero value.
We can then revert 843925f33f
("tcp: Do not apply TSO segment limit to non-TSO packets")
and save few cpu cycles in fast path.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch tracks the total number of inbound and outbound segments on a
TCP socket. One may use this number to have an idea on connection
quality when compared against the retransmissions.
RFC4898 named these : tcpEStatsPerfSegsIn and tcpEStatsPerfSegsOut
These are a 32bit field each and can be fetched both from TCP_INFO
getsockopt() if one has a handle on a TCP socket, or from inet_diag
netlink facility (iproute2/ss patch will follow)
Note that tp->segs_out was placed near tp->snd_nxt for good data
locality and minimal performance impact, while tp->segs_in was placed
near tp->bytes_received for the same reason.
Join work with Eric Dumazet.
Note that received SYN are accounted on the listener, but sent SYNACK
are not accounted.
Signed-off-by: Marcelo Ricardo Leitner <mleitner@redhat.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit 8e4d980ac2 ("tcp: fix behavior for epoll edge trigger")
we fixed a possible hang of TCP sockets under memory pressure,
by allowing sk_stream_alloc_skb() to use sk_forced_mem_schedule()
if no packet is in socket write queue.
It turns out there are other cases where we want to force memory
schedule :
tcp_fragment() & tso_fragment() need to split a big TSO packet into
two smaller ones. If we block here because of TCP memory pressure,
we can effectively block TCP socket from sending new data.
If no further ACK is coming, this hang would be definitive, and socket
has no chance to effectively reduce its memory usage.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work as a follow-up of commit f7b3bec6f5 ("net: allow setting ecn
via routing table") and adds RFC3168 section 6.1.1.1. fallback for outgoing
ECN connections. In other words, this work adds a retry with a non-ECN
setup SYN packet, as suggested from the RFC on the first timeout:
[...] A host that receives no reply to an ECN-setup SYN within the
normal SYN retransmission timeout interval MAY resend the SYN and
any subsequent SYN retransmissions with CWR and ECE cleared. [...]
Schematic client-side view when assuming the server is in tcp_ecn=2 mode,
that is, Linux default since 2009 via commit 255cac91c3 ("tcp: extend
ECN sysctl to allow server-side only ECN"):
1) Normal ECN-capable path:
SYN ECE CWR ----->
<----- SYN ACK ECE
ACK ----->
2) Path with broken middlebox, when client has fallback:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ----->
<----- SYN ACK
ACK ----->
In case we would not have the fallback implemented, the middlebox drop
point would basically end up as:
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
SYN ECE CWR ----X crappy middlebox drops packet
(timeout, rtx)
In any case, it's rather a smaller percentage of sites where there would
occur such additional setup latency: it was found in end of 2014 that ~56%
of IPv4 and 65% of IPv6 servers of Alexa 1 million list would negotiate
ECN (aka tcp_ecn=2 default), 0.42% of these webservers will fail to connect
when trying to negotiate with ECN (tcp_ecn=1) due to timeouts, which the
fallback would mitigate with a slight latency trade-off. Recent related
paper on this topic:
Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth,
Gorry Fairhurst, and Richard Scheffenegger:
"Enabling Internet-Wide Deployment of Explicit Congestion Notification."
Proc. PAM 2015, New York.
http://ecn.ethz.ch/ecn-pam15.pdf
Thus, when net.ipv4.tcp_ecn=1 is being set, the patch will perform RFC3168,
section 6.1.1.1. fallback on timeout. For users explicitly not wanting this
which can be in DC use case, we add a net.ipv4.tcp_ecn_fallback knob that
allows for disabling the fallback.
tp->ecn_flags are not being cleared in tcp_ecn_clear_syn() on output, but
rather we let tcp_ecn_rcv_synack() take that over on input path in case a
SYN ACK ECE was delayed. Thus a spurious SYN retransmission will not prevent
ECN being negotiated eventually in that case.
Reference: https://www.ietf.org/proceedings/92/slides/slides-92-iccrg-1.pdf
Reference: https://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch>
Signed-off-by: Brian Trammell <trammell@tik.ee.ethz.ch>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Dave That <dave.taht@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce an optimized version of sk_under_memory_pressure()
for TCP. Our intent is to use it in fast paths.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We plan to use sk_forced_wmem_schedule() in input path as well,
so make it non static and rename it.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diagnosing problems related to Window Probes has been hard because
we lack a counter.
TCPWinProbe counts the number of ACK packets a sender has to send
at regular intervals to make sure a reverse ACK packet opening back
a window had not been lost.
TCPKeepAlive counts the number of ACK packets sent to keep TCP
flows alive (SO_KEEPALIVE)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With the advent of small rto timers in datacenter TCP,
(ip route ... rto_min x), the following can happen :
1) Qdisc is full, transmit fails.
TCP sets a timer based on icsk_rto to retry the transmit, without
exponential backoff.
With low icsk_rto, and lot of sockets, all cpus are servicing timer
interrupts like crazy.
Intent of the code was to retry with a timer between 200 (TCP_RTO_MIN)
and 500ms (TCP_RESOURCE_PROBE_INTERVAL)
2) Receivers can send zero windows if they don't drain their receive queue.
TCP sends zero window probes, based on icsk_rto current value, with
exponential backoff.
With /proc/sys/net/ipv4/tcp_retries2 being 15 (or even smaller in
some cases), sender can abort in less than one or two minutes !
If receiver stops the sender, it obviously doesn't care of very tight
rto. Probability of dropping the ACK reopening the window is not
worth the risk.
Lets change the base timer to be at least 200ms (TCP_RTO_MIN) for these
events (but not normal RTO based retransmits)
A followup patch adds a new SNMP counter, as it would have helped a lot
diagnosing this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Presence of an unbound loop in tcp_send_fin() had always been hard
to explain when analyzing crash dumps involving gigantic dying processes
with millions of sockets.
Lets try a different strategy :
In case of memory pressure, try to add the FIN flag to last packet
in write queue, even if packet was already sent. TCP stack will
be able to deliver this FIN after a timeout event. Note that this
FIN being delivered by a retransmit, it also carries a Push flag
given our current implementation.
By checking sk_under_memory_pressure(), we anticipate that cooking
many FIN packets might deplete tcp memory.
In the case we could not allocate a packet, even with __GFP_WAIT
allocation, then not sending a FIN seems quite reasonable if it allows
to get rid of this socket, free memory, and not block the process from
eventually doing other useful work.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Using sk_stream_alloc_skb() in tcp_send_fin() is dangerous in
case a huge process is killed by OOM, and tcp_mem[2] is hit.
To be able to free memory we need to make progress, so this
patch allows FIN packets to not care about tcp_mem[2], if
skb allocation succeeded.
In a follow-up patch, we might abort tcp_send_fin() infinite loop
in case TIF_MEMDIE is set on this thread, as memory allocator
did its best getting extra memory already.
This patch reverts d22e153718 ("tcp: fix tcp fin memory accounting")
Fixes: d22e153718 ("tcp: fix tcp fin memory accounting")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The dwmac-socfpga.c conflict was a case of a bug fix overlapping
changes in net-next to handle an error pointer differently.
Signed-off-by: David S. Miller <davem@davemloft.net>
I noticed tcpdump was giving funky timestamps for locally
generated SYNACK messages on loopback interface.
11:42:46.938990 IP 127.0.0.1.48245 > 127.0.0.2.23850: S
945476042:945476042(0) win 43690 <mss 65495,nop,nop,sackOK,nop,wscale 7>
20:28:58.502209 IP 127.0.0.2.23850 > 127.0.0.1.48245: S
3160535375:3160535375(0) ack 945476043 win 43690 <mss
65495,nop,nop,sackOK,nop,wscale 7>
This is because we need to clear skb->tstamp before
entering lower stack, otherwise net_timestamp_check()
does not set skb->tstamp.
Fixes: 7faee5c0d5 ("tcp: remove TCP_SKB_CB(skb)->when")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fast Open has been using an experimental option with a magic number
(RFC6994). This patch makes the client by default use the RFC7413
option (34) to get and send Fast Open cookies. This patch makes
the client solicit cookies from a given server first with the
RFC7413 option. If that fails to elicit a cookie, then it tries
the RFC6994 experimental option. If that also fails, it uses the
RFC7413 option on all subsequent connect attempts. If the server
returns a Fast Open cookie then the client caches the form of the
option that successfully elicited a cookie, and uses that form on
later connects when it presents that cookie.
The idea is to gradually obsolete the use of experimental options as
the servers and clients upgrade, while keeping the interoperability
meanwhile.
Signed-off-by: Daniel Lee <Longinus00@gmail.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fast Open has been using the experimental option with a magic number
(RFC6994) to request and grant Fast Open cookies. This patch enables
the server to support the official IANA option 34 in RFC7413 in
addition.
The change has passed all existing Fast Open tests with both
old and new options at Google.
Signed-off-by: Daniel Lee <Longinus00@gmail.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ipv4 code uses a mixture of coding styles. In some instances check
for non-NULL pointer is done as x != NULL and sometimes as x. x is
preferred according to checkpatch and this patch makes the code
consistent by adopting the latter form.
No changes detected by objdiff.
Signed-off-by: Ian Morris <ipm@chirality.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ipv4 code uses a mixture of coding styles. In some instances check
for NULL pointer is done as x == NULL and sometimes as !x. !x is
preferred according to checkpatch and this patch makes the code
consistent by adopting the latter form.
No changes detected by objdiff.
Signed-off-by: Ian Morris <ipm@chirality.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
With request socks convergence, we no longer need
different lookup methods. A request socket can
use generic lookup function.
Add const qualifier to 2nd tcp_v[46]_md5_lookup() parameter.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since request and established sockets now have same base,
there is no need to pass two pointers to tcp_v4_md5_hash_skb()
or tcp_v6_md5_hash_skb()
Also add a const qualifier to their struct tcp_md5sig_key argument.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While timer handler effectively runs a rcu read locked section,
there is no explicit rcu_read_lock()/rcu_read_unlock() annotations
and lockdep can be confused here :
net/ipv4/tcp_ipv4.c-906- /* caller either holds rcu_read_lock() or socket lock */
net/ipv4/tcp_ipv4.c:907: md5sig = rcu_dereference_check(tp->md5sig_info,
net/ipv4/tcp_ipv4.c-908- sock_owned_by_user(sk) ||
net/ipv4/tcp_ipv4.c-909- lockdep_is_held(&sk->sk_lock.slock));
Let's explicitely acquire rcu_read_lock() in tcp_make_synack()
Before commit fa76ce7328 ("inet: get rid of central tcp/dccp listener
timer"), we were holding listener lock so lockdep was happy.
Fixes: fa76ce7328 ("inet: get rid of central tcp/dccp listener timer")
Signed-off-by: Eric DUmazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit ca10b9e9a8.
No longer needed after commit eb8895debe
("tcp: tcp_make_synack() should use sock_wmalloc")
When under SYNFLOOD, we build lot of SYNACK and hit false sharing
because of multiple modifications done on sk_listener->sk_wmem_alloc
Since tcp_make_synack() uses sock_wmalloc(), there is no need
to call skb_set_owner_w() again, as this adds two atomic operations.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/ethernet/emulex/benet/be_main.c
net/core/sysctl_net_core.c
net/ipv4/inet_diag.c
The be_main.c conflict resolution was really tricky. The conflict
hunks generated by GIT were very unhelpful, to say the least. It
split functions in half and moved them around, when the real actual
conflict only existed solely inside of one function, that being
be_map_pci_bars().
So instead, to resolve this, I checked out be_main.c from the top
of net-next, then I applied the be_main.c changes from 'net' since
the last time I merged. And this worked beautifully.
The inet_diag.c and sysctl_net_core.c conflicts were simple
overlapping changes, and were easily to resolve.
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_send_fin() does not account for the memory it allocates properly, so
sk_forward_alloc can be negative in cases where we've sent a FIN:
ss example output (ss -amn | grep -B1 f4294):
tcp FIN-WAIT-1 0 1 192.168.0.1:45520 192.0.2.1:8080
skmem:(r0,rb87380,t0,tb87380,f4294966016,w1280,o0,bl0)
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As per RFC4821 7.3. Selecting Probe Size, a probe timer should
be armed once probing has converged. Once this timer expired,
probing again to take advantage of any path PMTU change. The
recommended probing interval is 10 minutes per RFC1981. Probing
interval could be sysctled by sysctl_tcp_probe_interval.
Eric Dumazet suggested to implement pseudo timer based on 32bits
jiffies tcp_time_stamp instead of using classic timer for such
rare event.
Signed-off-by: Fan Du <fan.du@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current probe_size is chosen by doubling mss_cache,
the probing process will end shortly with a sub-optimal
mss size, and the link mtu will not be taken full
advantage of, in return, this will make user to tweak
tcp_base_mss with care.
Use binary search to choose probe_size in a fine
granularity manner, an optimal mss will be found
to boost performance as its maxmium.
In addition, introduce a sysctl_tcp_probe_threshold
to control when probing will stop in respect to
the width of search range.
Test env:
Docker instance with vxlan encapuslation(82599EB)
iperf -c 10.0.0.24 -t 60
before this patch:
1.26 Gbits/sec
After this patch: increase 26%
1.59 Gbits/sec
Signed-off-by: Fan Du <fan.du@intel.com>
Acked-by: John Heffner <johnwheffner@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Another TCP issue is triggered by ECN.
Under pressure, receiver gets ECN marks, and send back ACK packets
with ECE TCP flag. Senders enter CA_CWR state.
In this state, tcp_tso_should_defer() is short cut :
if (icsk->icsk_ca_state != TCP_CA_Open)
goto send_now;
This means that about all ACK packets we receive are triggering
a partial send, and because cwnd is kept small, we can only send
a small amount of data for each incoming ACK,
which in return generate more ACK packets.
Allowing CA_Open and CA_CWR states to enable TSO defer in
tcp_tso_should_defer() brings performance back :
TSO autodefer has more chance to defer under pressure.
This patch increases TSO and LRO/GRO efficiency back to normal levels,
and does not impact overall ECN behavior.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With sysctl_tcp_min_tso_segs being 4, it is very possible
that tcp_tso_should_defer() decides not sending last 2 MSS
of initial window of 10 packets. This also applies if
autosizing decides to send X MSS per GSO packet, and cwnd
is not a multiple of X.
This patch implements an heuristic based on age of first
skb in write queue : If it was sent very recently (less than half srtt),
we can predict that no ACK packet will come in less than half rtt,
so deferring might cause an under utilization of our window.
This is visible on initial send (IW10) on web servers,
but more generally on some RPC, as the last part of the message
might need an extra RTT to get delivered.
Tested:
Ran following packetdrill test
// A simple server-side test that sends exactly an initial window (IW10)
// worth of packets.
`sysctl -e -q net.ipv4.tcp_min_tso_segs=4`
0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1) = 0
+.1 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7>
+0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6>
+.1 < . 1:1(0) ack 1 win 257
+0 accept(3, ..., ...) = 4
+0 write(4, ..., 14600) = 14600
+0 > . 1:5841(5840) ack 1 win 457
+0 > . 5841:11681(5840) ack 1 win 457
// Following packet should be sent right now.
+0 > P. 11681:14601(2920) ack 1 win 457
+.1 < . 1:1(0) ack 14601 win 257
+0 close(4) = 0
+0 > F. 14601:14601(0) ack 1
+.1 < F. 1:1(0) ack 14602 win 257
+0 > . 14602:14602(0) ack 2
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TSO relies on ability to defer sending a small amount of packets.
Heuristic is to wait for future ACKS in hope to send more packets at once.
Current algorithm uses a per socket tso_deferred field as a pseudo timer.
This pseudo timer relies on future ACK, but there is no guarantee
we receive them in time.
Fix would be to use a real timer, but cost of such timer is probably too
expensive for typical cases.
This patch changes the logic to test the time of last transmit,
because we should not add bursts of more than 1ms for any given flow.
We've used this patch for about two years at Google, before FQ/pacing
as it would reduce a fair amount of bursts.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Packetization Layer Path MTU Discovery works separately beside
Path MTU Discovery at IP level, different net namespace has
various requirements on which one to chose, e.g., a virutalized
container instance would require TCP PMTU to probe an usable
effective mtu for underlying tunnel, while the host would
employ classical ICMP based PMTU to function.
Hence making TCP PMTU mechanism per net namespace to decouple
two functionality. Furthermore the probe base MSS should also
be configured separately for each namespace.
Signed-off-by: Fan Du <fan.du@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When we added pacing to TCP, we decided to let sch_fq take care
of actual pacing.
All TCP had to do was to compute sk->pacing_rate using simple formula:
sk->pacing_rate = 2 * cwnd * mss / rtt
It works well for senders (bulk flows), but not very well for receivers
or even RPC :
cwnd on the receiver can be less than 10, rtt can be around 100ms, so we
can end up pacing ACK packets, slowing down the sender.
Really, only the sender should pace, according to its own logic.
Instead of adding a new bit in skb, or call yet another flow
dissection, we tweak skb->truesize to a small value (2), and
we instruct sch_fq to use new helper and not pace pure ack.
Note this also helps TCP small queue, as ack packets present
in qdisc/NIC do not prevent sending a data packet (RPC workload)
This helps to reduce tx completion overhead, ack packets can use regular
sock_wfree() instead of tcp_wfree() which is a bit more expensive.
This has no impact in the case packets are sent to loopback interface,
as we do not coalesce ack packets (were we would detect skb->truesize
lie)
In case netem (with a delay) is used, skb_orphan_partial() also sets
skb->truesize to 1.
This patch is a combination of two patches we used for about one year at
Google.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
patch is actually smaller than it seems to be - most of it is unindenting
the inner loop body in tcp_sendmsg() itself...
the bit in tcp_input.c is going to get reverted very soon - that's what
memcpy_from_msg() will become, but not in this commit; let's keep it
reasonably contained...
There's one potentially subtle change here: in case of short copy from
userland, mainline tcp_send_syn_data() discards the skb it has allocated
and falls back to normal path, where we'll send as much as possible after
rereading the same data again. This patch trims SYN+data skb instead -
that way we don't need to copy from the same place twice.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This work adds the possibility to define a per route/destination
congestion control algorithm. Generally, this opens up the possibility
for a machine with different links to enforce specific congestion
control algorithms with optimal strategies for each of them based
on their network characteristics, even transparently for a single
application listening on all links.
For our specific use case, this additionally facilitates deployment
of DCTCP, for example, applications can easily serve internal
traffic/dsts in DCTCP and external one with CUBIC. Other scenarios
would also allow for utilizing e.g. long living, low priority
background flows for certain destinations/routes while still being
able for normal traffic to utilize the default congestion control
algorithm. We also thought about a per netns setting (where different
defaults are possible), but given its actually a link specific
property, we argue that a per route/destination setting is the most
natural and flexible.
The administrator can utilize this through ip-route(8) by appending
"congctl [lock] <name>", where <name> denotes the name of a
congestion control algorithm and the optional lock parameter allows
to enforce the given algorithm so that applications in user space
would not be allowed to overwrite that algorithm for that destination.
The dst metric lookups are being done when a dst entry is already
available in order to avoid a costly lookup and still before the
algorithms are being initialized, thus overhead is very low when the
feature is not being used. While the client side would need to drop
the current reference on the module, on server side this can actually
even be avoided as we just got a flat-copied socket clone.
Joint work with Florian Westphal.
Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Thomas Jarosch reported IPsec TCP stalls when a PMTU event occurs.
In fact the problem was completely unrelated to IPsec. The bug is
also reproducible if you just disable TSO/GSO.
The problem is that when the MSS goes down, existing queued packet
on the TX queue that have not been transmitted yet all look like
TSO packets and get treated as such.
This then triggers a bug where tcp_mss_split_point tells us to
generate a zero-sized packet on the TX queue. Once that happens
we're screwed because the zero-sized packet can never be removed
by ACKs.
Fixes: 1485348d24 ("tcp: Apply device TSO segment limit earlier")
Reported-by: Thomas Jarosch <thomas.jarosch@intra2net.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Cheers,
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 95bd09eb27 ("tcp: TSO packets automatic sizing") tried to
control TSO size, but did this at the wrong place (sendmsg() time)
At sendmsg() time, we might have a pessimistic view of flow rate,
and we end up building very small skbs (with 2 MSS per skb).
This is bad because :
- It sends small TSO packets even in Slow Start where rate quickly
increases.
- It tends to make socket write queue very big, increasing tcp_ack()
processing time, but also increasing memory needs, not necessarily
accounted for, as fast clones overhead is currently ignored.
- Lower GRO efficiency and more ACK packets.
Servers with a lot of small lived connections suffer from this.
Lets instead fill skbs as much as possible (64KB of payload), but split
them at xmit time, when we have a precise idea of the flow rate.
skb split is actually quite efficient.
Patch looks bigger than necessary, because TCP Small Queue decision now
has to take place after the eventual split.
As Neal suggested, introduce a new tcp_tso_autosize() helper, so that
tcp_tso_should_defer() can be synchronized on same goal.
Rename tp->xmit_size_goal_segs to tp->gso_segs, as this variable
contains number of mss that we can put in GSO packet, and is not
related to the autosizing goal anymore.
Tested:
40 ms rtt link
nstat >/dev/null
netperf -H remote -l -2000000 -- -s 1000000
nstat | egrep "IpInReceives|IpOutRequests|TcpOutSegs|IpExtOutOctets"
Before patch :
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/s
87380 2000000 2000000 0.36 44.22
IpInReceives 600 0.0
IpOutRequests 599 0.0
TcpOutSegs 1397 0.0
IpExtOutOctets 2033249 0.0
After patch :
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 2000000 2000000 0.36 44.27
IpInReceives 221 0.0
IpOutRequests 232 0.0
TcpOutSegs 1397 0.0
IpExtOutOctets 2013953 0.0
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Note that the code _using_ ->msg_iter at that point will be very
unhappy with anything other than unshifted iovec-backed iov_iter.
We still need to convert users to proper primitives.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
While working on sk_forward_alloc problems reported by Denys
Fedoryshchenko, we found that tcp connect() (and fastopen) do not call
sk_wmem_schedule() for SYN packet (and/or SYN/DATA packet), so
sk_forward_alloc is negative while connect is in progress.
We can fix this by calling regular sk_stream_alloc_skb() both for the
SYN packet (in tcp_connect()) and the syn_data packet in
tcp_send_syn_data()
Then, tcp_send_syn_data() can avoid copying syn_data as we simply
can manipulate syn_data->cb[] to remove SYN flag (and increment seq)
Instead of open coding memcpy_fromiovecend(), simply use this helper.
This leaves in socket write queue clean fast clone skbs.
This was tested against our fastopen packetdrill tests.
Reported-by: Denys Fedoryshchenko <nuclearcat@nuclearcat.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In DC world, GSO packets initially cooked by tcp_sendmsg() are usually
big, as sk_pacing_rate is high.
When network is congested, cwnd can be smaller than the GSO packets
found in socket write queue. tcp_write_xmit() splits GSO packets
using the available cwnd, and we end up sending a single GSO packet,
consuming all available cwnd.
With GRO aggregation on the receiver, we might handle a single GRO
packet, sending back a single ACK.
1) This single ACK might be lost
TLP or RTO are forced to attempt a retransmit.
2) This ACK releases a full cwnd, sender sends another big GSO packet,
in a ping pong mode.
This behavior does not fill the pipes in the best way, because of
scheduling artifacts.
Make sure we always have at least two GSO packets in flight.
This allows us to safely increase GRO efficiency without risking
spurious retransmits.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch allows to set ECN on a per-route basis in case the sysctl
tcp_ecn is not set to 1. In other words, when ECN is set for specific
routes, it provides a tcp_ecn=1 behaviour for that route while the rest
of the stack acts according to the global settings.
One can use 'ip route change dev $dev $net features ecn' to toggle this.
Having a more fine-grained per-route setting can be beneficial for various
reasons, for example, 1) within data centers, or 2) local ISPs may deploy
ECN support for their own video/streaming services [1], etc.
There was a recent measurement study/paper [2] which scanned the Alexa's
publicly available top million websites list from a vantage point in US,
Europe and Asia:
Half of the Alexa list will now happily use ECN (tcp_ecn=2, most likely
blamed to commit 255cac91c3 ("tcp: extend ECN sysctl to allow server-side
only ECN") ;)); the break in connectivity on-path was found is about
1 in 10,000 cases. Timeouts rather than receiving back RSTs were much
more common in the negotiation phase (and mostly seen in the Alexa
middle band, ranks around 50k-150k): from 12-thousand hosts on which
there _may_ be ECN-linked connection failures, only 79 failed with RST
when _not_ failing with RST when ECN is not requested.
It's unclear though, how much equipment in the wild actually marks CE
when buffers start to fill up.
We thought about a fallback to non-ECN for retransmitted SYNs as another
global option (which could perhaps one day be made default), but as Eric
points out, there's much more work needed to detect broken middleboxes.
Two examples Eric mentioned are buggy firewalls that accept only a single
SYN per flow, and middleboxes that successfully let an ECN flow establish,
but later mark CE for all packets (so cwnd converges to 1).
[1] http://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf, p.15
[2] http://ecn.ethz.ch/
Joint work with Daniel Borkmann.
Reference: http://thread.gmane.org/gmane.linux.network/335797
Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some drivers are unable to perform TX completions in a bound time.
They instead call skb_orphan()
Problem is skb_fclone_busy() has to detect this case, otherwise
we block TCP retransmits and can freeze unlucky tcp sessions on
mostly idle hosts.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Fixes: 1f3279ae0c ("tcp: avoid retransmits of TCP packets hanging in host queues")
Signed-off-by: David S. Miller <davem@davemloft.net>