Coming patches to x86/mm2 require the changes and advanced baseline in
x86/boot.
Resolved Conflicts:
arch/x86/kernel/setup.c
mm/nobootmem.c
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
This reverts commit bd52276fa1 ("x86-64/efi: Use EFI to deal with
platform wall clock (again)"), and the two supporting commits:
da5a108d05: "x86/kernel: remove tboot 1:1 page table creation code"
185034e72d: "x86, efi: 1:1 pagetable mapping for virtual EFI calls")
as they all depend semantically on commit 53b87cf088 ("x86, mm:
Include the entire kernel memory map in trampoline_pgd") that got
reverted earlier due to the problems it caused.
This was pointed out by Yinghai Lu, and verified by me on my Macbook Air
that uses EFI.
Pointed-out-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 53b87cf088.
It causes odd bootup problems on x86-64. Markus Trippelsdorf gets a
repeatable oops, and I see a non-repeatable oops (or constant stream of
messages that scroll off too quickly to read) that seems to go away with
this commit reverted.
So we don't know exactly what is wrong with the commit, but it's
definitely problematic, and worth reverting sooner rather than later.
Bisected-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: H Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 EFI update from Peter Anvin:
"EFI tree, from Matt Fleming. Most of the patches are the new efivarfs
filesystem by Matt Garrett & co. The balance are support for EFI
wallclock in the absence of a hardware-specific driver, and various
fixes and cleanups."
* 'core-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
efivarfs: Make efivarfs_fill_super() static
x86, efi: Check table header length in efi_bgrt_init()
efivarfs: Use query_variable_info() to limit kmalloc()
efivarfs: Fix return value of efivarfs_file_write()
efivarfs: Return a consistent error when efivarfs_get_inode() fails
efivarfs: Make 'datasize' unsigned long
efivarfs: Add unique magic number
efivarfs: Replace magic number with sizeof(attributes)
efivarfs: Return an error if we fail to read a variable
efi: Clarify GUID length calculations
efivarfs: Implement exclusive access for {get,set}_variable
efivarfs: efivarfs_fill_super() ensure we clean up correctly on error
efivarfs: efivarfs_fill_super() ensure we free our temporary name
efivarfs: efivarfs_fill_super() fix inode reference counts
efivarfs: efivarfs_create() ensure we drop our reference on inode on error
efivarfs: efivarfs_file_read ensure we free data in error paths
x86-64/efi: Use EFI to deal with platform wall clock (again)
x86/kernel: remove tboot 1:1 page table creation code
x86, efi: 1:1 pagetable mapping for virtual EFI calls
x86, mm: Include the entire kernel memory map in trampoline_pgd
...
Merge misc VM changes from Andrew Morton:
"The rest of most-of-MM. The other MM bits await a slab merge.
This patch includes the addition of a huge zero_page. Not a
performance boost but it an save large amounts of physical memory in
some situations.
Also a bunch of Fujitsu engineers are working on memory hotplug.
Which, as it turns out, was badly broken. About half of their patches
are included here; the remainder are 3.8 material."
However, this merge disables CONFIG_MOVABLE_NODE, which was totally
broken. We don't add new features with "default y", nor do we add
Kconfig questions that are incomprehensible to most people without any
help text. Does the feature even make sense without compaction or
memory hotplug?
* akpm: (54 commits)
mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic()
mm/memory.c: remove unused code from do_wp_page()
asm-generic, mm: pgtable: consolidate zero page helpers
mm/hugetlb.c: fix warning on freeing hwpoisoned hugepage
hwpoison, hugetlbfs: fix RSS-counter warning
hwpoison, hugetlbfs: fix "bad pmd" warning in unmapping hwpoisoned hugepage
mm: protect against concurrent vma expansion
memcg: do not check for mm in __mem_cgroup_count_vm_event
tmpfs: support SEEK_DATA and SEEK_HOLE (reprise)
mm: provide more accurate estimation of pages occupied by memmap
fs/buffer.c: remove redundant initialization in alloc_page_buffers()
fs/buffer.c: do not inline exported function
writeback: fix a typo in comment
mm: introduce new field "managed_pages" to struct zone
mm, oom: remove statically defined arch functions of same name
mm, oom: remove redundant sleep in pagefault oom handler
mm, oom: cleanup pagefault oom handler
memory_hotplug: allow online/offline memory to result movable node
numa: add CONFIG_MOVABLE_NODE for movable-dedicated node
mm, memcg: avoid unnecessary function call when memcg is disabled
...
Pull trivial branch from Jiri Kosina:
"Usual stuff -- comment/printk typo fixes, documentation updates, dead
code elimination."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
HOWTO: fix double words typo
x86 mtrr: fix comment typo in mtrr_bp_init
propagate name change to comments in kernel source
doc: Update the name of profiling based on sysfs
treewide: Fix typos in various drivers
treewide: Fix typos in various Kconfig
wireless: mwifiex: Fix typo in wireless/mwifiex driver
messages: i2o: Fix typo in messages/i2o
scripts/kernel-doc: check that non-void fcts describe their return value
Kernel-doc: Convention: Use a "Return" section to describe return values
radeon: Fix typo and copy/paste error in comments
doc: Remove unnecessary declarations from Documentation/accounting/getdelays.c
various: Fix spelling of "asynchronous" in comments.
Fix misspellings of "whether" in comments.
eisa: Fix spelling of "asynchronous".
various: Fix spelling of "registered" in comments.
doc: fix quite a few typos within Documentation
target: iscsi: fix comment typos in target/iscsi drivers
treewide: fix typo of "suport" in various comments and Kconfig
treewide: fix typo of "suppport" in various comments
...
out_of_memory() is a globally defined function to call the oom killer.
x86, sh, and powerpc all use a function of the same name within file scope
in their respective fault.c unnecessarily. Inline the functions into the
pagefault handlers to clean the code up.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.
The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.
Since we introduced N_MEMORY, we update the initialization of node_states.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull "Nuke 386-DX/SX support" from Ingo Molnar:
"This tree removes ancient-386-CPUs support and thus zaps quite a bit
of complexity:
24 files changed, 56 insertions(+), 425 deletions(-)
... which complexity has plagued us with extra work whenever we wanted
to change SMP primitives, for years.
Unfortunately there's a nostalgic cost: your old original 386 DX33
system from early 1991 won't be able to boot modern Linux kernels
anymore. Sniff."
I'm not sentimental. Good riddance.
* 'x86-nuke386-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, 386 removal: Document Nx586 as a 386 and thus unsupported
x86, cleanups: Simplify sync_core() in the case of no CPUID
x86, 386 removal: Remove CONFIG_X86_POPAD_OK
x86, 386 removal: Remove CONFIG_X86_WP_WORKS_OK
x86, 386 removal: Remove CONFIG_INVLPG
x86, 386 removal: Remove CONFIG_BSWAP
x86, 386 removal: Remove CONFIG_XADD
x86, 386 removal: Remove CONFIG_CMPXCHG
x86, 386 removal: Remove CONFIG_M386 from Kconfig
Pull RCU update from Ingo Molnar:
"The major features of this tree are:
1. A first version of no-callbacks CPUs. This version prohibits
offlining CPU 0, but only when enabled via CONFIG_RCU_NOCB_CPU=y.
Relaxing this constraint is in progress, but not yet ready
for prime time. These commits were posted to LKML at
https://lkml.org/lkml/2012/10/30/724.
2. Changes to SRCU that allows statically initialized srcu_struct
structures. These commits were posted to LKML at
https://lkml.org/lkml/2012/10/30/296.
3. Restructuring of RCU's debugfs output. These commits were posted
to LKML at https://lkml.org/lkml/2012/10/30/341.
4. Additional CPU-hotplug/RCU improvements, posted to LKML at
https://lkml.org/lkml/2012/10/30/327.
Note that the commit eliminating __stop_machine() was judged to
be too-high of risk, so is deferred to 3.9.
5. Changes to RCU's idle interface, most notably a new module
parameter that redirects normal grace-period operations to
their expedited equivalents. These were posted to LKML at
https://lkml.org/lkml/2012/10/30/739.
6. Additional diagnostics for RCU's CPU stall warning facility,
posted to LKML at https://lkml.org/lkml/2012/10/30/315.
The most notable change reduces the
default RCU CPU stall-warning time from 60 seconds to 21 seconds,
so that it once again happens sooner than the softlockup timeout.
7. Documentation updates, which were posted to LKML at
https://lkml.org/lkml/2012/10/30/280.
A couple of late-breaking changes were posted at
https://lkml.org/lkml/2012/11/16/634 and
https://lkml.org/lkml/2012/11/16/547.
8. Miscellaneous fixes, which were posted to LKML at
https://lkml.org/lkml/2012/10/30/309.
9. Finally, a fix for an lockdep-RCU splat was posted to LKML
at https://lkml.org/lkml/2012/11/7/486."
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
context_tracking: New context tracking susbsystem
sched: Mark RCU reader in sched_show_task()
rcu: Separate accounting of callbacks from callback-free CPUs
rcu: Add callback-free CPUs
rcu: Add documentation for the new rcuexp debugfs trace file
rcu: Update documentation for TREE_RCU debugfs tracing
rcu: Reduce default RCU CPU stall warning timeout
rcu: Fix TINY_RCU rcu_is_cpu_rrupt_from_idle check
rcu: Clarify memory-ordering properties of grace-period primitives
rcu: Add new rcutorture module parameters to start/end test messages
rcu: Remove list_for_each_continue_rcu()
rcu: Fix batch-limit size problem
rcu: Add tracing for synchronize_sched_expedited()
rcu: Remove old debugfs interfaces and also RCU flavor name
rcu: split 'rcuhier' to each flavor
rcu: split 'rcugp' to each flavor
rcu: split 'rcuboost' to each flavor
rcu: split 'rcubarrier' to each flavor
rcu: Fix tracing formatting
rcu: Remove the interface "rcudata.csv"
...
Update the i386 hugetlb_get_unmapped_area function to make use of
vm_unmapped_area() instead of implementing a brute force search.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Intel has an architectural guarantee that the TLB entry causing
a page fault gets invalidated automatically. This means
we should be able to drop the local TLB invalidation.
Because of the way other areas of the page fault code work,
chances are good that all x86 CPUs do this. However, if
someone somewhere has an x86 CPU that does not invalidate
the TLB entry causing a page fault, this one-liner should
be easy to revert.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
The function ptep_set_access_flags() is only ever invoked to set access
flags or add write permission on a PTE. The write bit is only ever set
together with the dirty bit.
Because we only ever upgrade a PTE, it is safe to skip flushing entries on
remote TLBs. The worst that can happen is a spurious page fault on other
CPUs, which would flush that TLB entry.
Lazily letting another CPU incur a spurious page fault occasionally is
(much!) cheaper than aggressively flushing everybody else's TLB.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
I've legally changed my name with New York State, the US Social Security
Administration, et al. This patch propagates the name change and change
in initials and login to comments in the kernel source as well.
Signed-off-by: Nadia Yvette Chambers <nyc@holomorphy.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Conflicts:
arch/x86/kernel/ptrace.c
Pull the latest RCU tree from Paul E. McKenney:
" The major features of this series are:
1. A first version of no-callbacks CPUs. This version prohibits
offlining CPU 0, but only when enabled via CONFIG_RCU_NOCB_CPU=y.
Relaxing this constraint is in progress, but not yet ready
for prime time. These commits were posted to LKML at
https://lkml.org/lkml/2012/10/30/724, and are at branch rcu/nocb.
2. Changes to SRCU that allows statically initialized srcu_struct
structures. These commits were posted to LKML at
https://lkml.org/lkml/2012/10/30/296, and are at branch rcu/srcu.
3. Restructuring of RCU's debugfs output. These commits were posted
to LKML at https://lkml.org/lkml/2012/10/30/341, and are at
branch rcu/tracing.
4. Additional CPU-hotplug/RCU improvements, posted to LKML at
https://lkml.org/lkml/2012/10/30/327, and are at branch rcu/hotplug.
Note that the commit eliminating __stop_machine() was judged to
be too-high of risk, so is deferred to 3.9.
5. Changes to RCU's idle interface, most notably a new module
parameter that redirects normal grace-period operations to
their expedited equivalents. These were posted to LKML at
https://lkml.org/lkml/2012/10/30/739, and are at branch rcu/idle.
6. Additional diagnostics for RCU's CPU stall warning facility,
posted to LKML at https://lkml.org/lkml/2012/10/30/315, and
are at branch rcu/stall. The most notable change reduces the
default RCU CPU stall-warning time from 60 seconds to 21 seconds,
so that it once again happens sooner than the softlockup timeout.
7. Documentation updates, which were posted to LKML at
https://lkml.org/lkml/2012/10/30/280, and are at branch rcu/doc.
A couple of late-breaking changes were posted at
https://lkml.org/lkml/2012/11/16/634 and
https://lkml.org/lkml/2012/11/16/547.
8. Miscellaneous fixes, which were posted to LKML at
https://lkml.org/lkml/2012/10/30/309, along with a late-breaking
change posted at Fri, 16 Nov 2012 11:26:25 -0800 with message-ID
<20121116192625.GA447@linux.vnet.ibm.com>, but which lkml.org
seems to have missed. These are at branch rcu/fixes.
9. Finally, a fix for an lockdep-RCU splat was posted to LKML
at https://lkml.org/lkml/2012/11/7/486. This is at rcu/next. "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Create a new subsystem that probes on kernel boundaries
to keep track of the transitions between level contexts
with two basic initial contexts: user or kernel.
This is an abstraction of some RCU code that use such tracking
to implement its userspace extended quiescent state.
We need to pull this up from RCU into this new level of indirection
because this tracking is also going to be used to implement an "on
demand" generic virtual cputime accounting. A necessary step to
shutdown the tick while still accounting the cputime.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Gilad Ben-Yossef <gilad@benyossef.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
[ paulmck: fix whitespace error and email address. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now NO_BOOTMEM version free_all_bootmem_node() does not really
do free_bootmem at all, and it only call register_page_bootmem_info_node
instead.
That is confusing, try to kill that free_all_bootmem_node().
Before that, this patch will remove numa_free_all_bootmem().
That function could be replaced with register_page_bootmem_info() and
free_all_bootmem();
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-43-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
after_bootmem has different meaning in 32bit and 64bit.
32bit: after bootmem is ready
64bit: after bootmem is distroyed
Let's merget them make 32bit the same as 64bit.
for 32bit, it is mixing alloc_bootmem_pages, and alloc_low_page under
after_bootmem is set or not set.
alloc_bootmem is just wrapper for memblock for x86.
Now we have alloc_low_page() with memblock too. We can drop bootmem path
now, and only alloc_low_page only.
At the same time, we make alloc_low_page could handle real after_bootmem
for 32bit, because alloc_bootmem_pages could fallback to use slab too.
At last move after_bootmem set position for 32bit the same as 64bit.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-40-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
During test patch that adjust page_size_mask to map small range ram with
big page size, found page table is setup wrongly for 32bit. And
native_pagetable_init wrong clear pte for pmd with large page support.
1. add more comments about why we are expecting pte.
2. add BUG checking, so next time we could find problem earlier
when we mess up page table setup again.
3. max_low_pfn is not included boundary for low memory mapping.
We should check from max_low_pfn instead of +1.
4. add print out when some pte really get cleared, or we should use
WARN() to find out why above max_low_pfn get mapped? so we could
fix it.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-35-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Put it in mm/init.c, and call it from probe_page_mask().
init_mem_mapping is calling probe_page_mask at first.
So calling sequence is not changed.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-32-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
On 32bit, before patcheset that only set page table for ram, we only
call that one time.
Now, we are calling that during every init_memory_mapping if we have holes
under max_low_pfn.
We should only call it one time after all ranges under max_low_page get
mapped just like we did before.
Also that could avoid the risk to run out of pgt_buf in BRK.
Need to update page_table_range_init() to count the pages for kmap page table
at first, and use new added alloc_low_pages() to get pages in sequence.
That will conform to the requirement that pages need to be in low to high order.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-30-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
32bit kmap mapping needs pages to be used for low to high.
At this point those pages are still from pgt_buf_* from BRK, so it is
ok now.
But we want to move early_ioremap_page_table_range_init() out of
init_memory_mapping() and only call it one time later, that will
make page_table_range_init/page_table_kmap_check/alloc_low_page to
use memblock to get page.
memblock allocation for pages are from high to low.
So will get panic from page_table_kmap_check() that has BUG_ON to do
ordering checking.
This patch add alloc_low_pages to make it possible to allocate serveral
pages at first, and hand out pages one by one from low to high.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-28-git-send-email-yinghai@kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Page table area are pre-mapped now after
x86, mm: setup page table in top-down
x86, mm: Remove early_memremap workaround for page table accessing on 64bit
mapping_pagetable_reserve is not used anymore, so remove it.
Also remove operation in mask_rw_pte(), as modified allow_low_page
always return pages that are already mapped, moreover
xen_alloc_pte_init, xen_alloc_pmd_init, etc, will mark the page RO
before hooking it into the pagetable automatically.
-v2: add changelog about mask_rw_pte() from Stefano.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-27-git-send-email-yinghai@kernel.org
Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
They are almost same except 64 bit need to handle after_bootmem case.
Add mm_internal.h to make that alloc_low_page() only to be accessible
from arch/x86/mm/init*.c
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-25-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Now all page table buf are pre-mapped, and could use virtual address directly.
So don't need to remember physical address anymore.
Remove that phys pointer in alloc_low_page(), and that will allow us to merge
alloc_low_page between 64bit and 32bit.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-24-git-send-email-yinghai@kernel.org
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We try to put page table high to make room for kdump, and at that time
those ranges are not mapped yet, and have to use ioremap to access it.
Now after patch that pre-map page table top down.
x86, mm: setup page table in top-down
We do not need that workaround anymore.
Just use __va to return directly mapping address.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-23-git-send-email-yinghai@kernel.org
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Get pgt_buf early from BRK, and use it to map PMD_SIZE from top at first.
Then use mapped pages to map more ranges below, and keep looping until
all pages get mapped.
alloc_low_page will use page from BRK at first, after that buffer is used
up, will use memblock to find and reserve pages for page table usage.
Introduce min_pfn_mapped to make sure find new pages from mapped ranges,
that will be updated when lower pages get mapped.
Also add step_size to make sure that don't try to map too big range with
limited mapped pages initially, and increase the step_size when we have
more mapped pages on hand.
We don't need to call pagetable_reserve anymore, reserve work is done
in alloc_low_page() directly.
At last we can get rid of calculation and find early pgt related code.
-v2: update to after fix_xen change,
also use MACRO for initial pgt_buf size and add comments with it.
-v3: skip big reserved range in memblock.reserved near end.
-v4: don't need fix_xen change now.
-v5: add changelog about moving about reserving pagetable to alloc_low_page.
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-22-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
After we add code use buffer in BRK to pre-map buf for page table in
following patch:
x86, mm: setup page table in top-down
it should be safe to remove early_memmap for page table accessing.
Instead we get panic with that.
It turns out that we clear the initial page table wrongly for next range
that is separated by holes.
And it only happens when we are trying to map ram range one by one.
We need to check if the range is ram before clearing page table.
We change the loop structure to remove the extra little loop and use
one loop only, and in that loop will caculate next at first, and check if
[addr,next) is covered by E820_RAM.
-v2: E820_RESERVED_KERN is treated as E820_RAM. EFI one change some E820_RAM
to that, so next kernel by kexec will know that range is used already.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-20-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We could map small range in the middle of big range at first, so should use
big page size at first to avoid using small page size to break down page table.
Only can set big page bit when that range has ram area around it.
-v2: fix 32bit boundary checking. We can not count ram above max_low_pfn
for 32 bit.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-19-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We are going to use buffer in BRK to map small range just under memory top,
and use those new mapped ram to map ram range under it.
The ram range that will be mapped at first could be only page aligned,
but ranges around it are ram too, we could use bigger page to map it to
avoid small page size.
We will adjust page_size_mask in following patch:
x86, mm: Use big page size for small memory range
to use big page size for small ram range.
Before that patch, this patch will make sure start address to be
aligned down according to bigger page size, otherwise entry in page
page will not have correct value.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-18-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT )
and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not
backed by actual DRAM. This is fine for holes under 4GB which are covered
by fixed and variable range MTRRs to be UC. However, we run into trouble
on higher memory addresses which cannot be covered by MTRRs.
Our system with 1TB of RAM has an e820 that looks like this:
BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable
BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved
BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable
BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data
BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS
BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved
BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved
BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved
BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable
BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved
BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable
and so direct mappings are created for huge memory hole between
0x000000e038000000 to 0x0000010000000000. Even though the kernel never
generates memory accesses in that region, since the page tables mark
them incorrectly as being WB, our (AMD) processor ends up causing a MCE
while doing some memory bookkeeping/optimizations around that area.
This patch iterates through e820 and only direct maps ranges that are
marked as E820_RAM, and keeps track of those pfn ranges. Depending on
the alignment of E820 ranges, this may possibly result in using smaller
size (i.e. 4K instead of 2M or 1G) page tables.
-v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range
instead. - Yinghai Lu
-v3: add calculate_all_table_space_size() to get correct needed page table
size. - Yinghai Lu
-v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when
mem map does have hole under 4g that is found by Konard on xen
domU with 8g ram. - Yinghai
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We are going to map ram only, so under max_low_pfn_mapped,
between 4g and max_pfn_mapped does not mean mapped at all.
Use pfn_range_is_mapped() directly.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-13-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
It should take physical address range that will need to be mapped.
find_early_table_space should take range that pgt buff should be in.
Separating page table size calculating and finding early page table to
reduce confusing.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-9-git-send-email-yinghai@kernel.org
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We should not do that in every calling of init_memory_mapping.
At the same time need to move down early_memtest, and could remove after_bootmem
checking.
-v2: fix one early_memtest with 32bit by passing max_pfn_mapped instead.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-8-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>