Commit Graph

11 Commits

Author SHA1 Message Date
David Howells
dd2f6c4481 X.509: If available, use the raw subjKeyId to form the key description
Module signing matches keys by comparing against the key description exactly.
However, the way the key description gets constructed got changed to be
composed of the subject name plus the certificate serial number instead of the
subject name and the subjectKeyId.  I changed this to avoid problems with
certificates that don't *have* a subjectKeyId.

Instead, if available, use the raw subjectKeyId to form the key description
and only use the serial number if the subjectKeyId doesn't exist.

Reported-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2014-10-03 16:17:02 +01:00
David Howells
4155942000 PKCS#7: Better handling of unsupported crypto
Provide better handling of unsupported crypto when verifying a PKCS#7 message.
If we can't bridge the gap between a pair of X.509 certs or between a signed
info block and an X.509 cert because it involves some crypto we don't support,
that's not necessarily the end of the world as there may be other ways points
at which we can intersect with a ring of trusted keys.

Instead, only produce ENOPKG immediately if all the signed info blocks in a
PKCS#7 message require unsupported crypto to bridge to the first X.509 cert.
Otherwise, we defer the generation of ENOPKG until we get ENOKEY during trust
validation.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 17:36:15 +01:00
David Howells
46963b774d KEYS: Overhaul key identification when searching for asymmetric keys
Make use of the new match string preparsing to overhaul key identification
when searching for asymmetric keys.  The following changes are made:

 (1) Use the previously created asymmetric_key_id struct to hold the following
     key IDs derived from the X.509 certificate or PKCS#7 message:

	id: serial number + issuer
	skid: subjKeyId + subject
	authority: authKeyId + issuer

 (2) Replace the hex fingerprint attached to key->type_data[1] with an
     asymmetric_key_ids struct containing the id and the skid (if present).

 (3) Make the asymmetric_type match data preparse select one of two searches:

     (a) An iterative search for the key ID given if prefixed with "id:".  The
     	 prefix is expected to be followed by a hex string giving the ID to
     	 search for.  The criterion key ID is checked against all key IDs
     	 recorded on the key.

     (b) A direct search if the key ID is not prefixed with "id:".  This will
     	 look for an exact match on the key description.

 (4) Make x509_request_asymmetric_key() take a key ID.  This is then converted
     into "id:<hex>" and passed into keyring_search() where match preparsing
     will turn it back into a binary ID.

 (5) X.509 certificate verification then takes the authority key ID and looks
     up a key that matches it to find the public key for the certificate
     signature.

 (6) PKCS#7 certificate verification then takes the id key ID and looks up a
     key that matches it to find the public key for the signed information
     block signature.

Additional changes:

 (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the
     cert to be rejected with -EBADMSG.

 (2) The 'fingerprint' ID is gone.  This was primarily intended to convey PGP
     public key fingerprints.  If PGP is supported in future, this should
     generate a key ID that carries the fingerprint.

 (3) Th ca_keyid= kernel command line option is now converted to a key ID and
     used to match the authority key ID.  Possibly this should only match the
     actual authKeyId part and not the issuer as well.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 17:36:13 +01:00
David Howells
84aabd46bf X.509: Add bits needed for PKCS#7
PKCS#7 validation requires access to the serial number and the raw names in an
X.509 certificate.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2014-07-01 16:40:19 +01:00
Dmitry Kasatkin
c7c8bb237f ima: provide support for arbitrary hash algorithms
In preparation of supporting more hash algorithms with larger hash sizes
needed for signature verification, this patch replaces the 20 byte sized
digest, with a more flexible structure.  The new structure includes the
hash algorithm, digest size, and digest.

Changelog:
- recalculate filedata hash for the measurement list, if the signature
  hash digest size is greater than 20 bytes.
- use generic HASH_ALGO_
- make ima_calc_file_hash static
- scripts lindent and checkpatch fixes

Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2013-10-25 17:16:58 -04:00
Dmitry Kasatkin
3fe78ca2fb keys: change asymmetric keys to use common hash definitions
This patch makes use of the newly defined common hash algorithm info,
replacing, for example, PKEY_HASH with HASH_ALGO.

Changelog:
- Lindent fixes - Mimi

CC: David Howells <dhowells@redhat.com>
Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2013-10-25 17:15:18 -04:00
David Howells
b426beb6ee X.509: Embed public_key_signature struct and create filler function
Embed a public_key_signature struct in struct x509_certificate, eliminating
now unnecessary fields, and split x509_check_signature() to create a filler
function for it that attaches a digest of the signed data and an MPI that
represents the signature data.  x509_free_certificate() is then modified to
deal with these.

Whilst we're at it, export both x509_check_signature() and the new
x509_get_sig_params().

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 17:17:00 +01:00
David Howells
57be4a784b X.509: struct x509_certificate needs struct tm declaring
struct x509_certificate needs struct tm declaring by #inclusion of linux/time.h
prior to its definition.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 17:17:00 +01:00
David Howells
67f7d60b3a KEYS: Store public key algo ID in public_key struct
Store public key algo ID in public_key struct for reference purposes.  This
allows it to be removed from the x509_certificate struct and used to find a
default in public_key_verify_signature().

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 17:17:00 +01:00
David Howells
a5752d11b3 MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking
The current choice of lifetime for the autogenerated X.509 of 100 years,
putting the validTo date in 2112, causes problems on 32-bit systems where a
32-bit time_t wraps in 2106.  64-bit x86_64 systems seem to be unaffected.

This can result in something like:

	Loading module verification certificates
	X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 has expired
	MODSIGN: Problem loading in-kernel X.509 certificate (-127)

Or:

	X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 is not yet valid
	MODSIGN: Problem loading in-kernel X.509 certificate (-129)

Instead of turning the dates into time_t values and comparing, turn the system
clock and the ASN.1 dates into tm structs and compare those piecemeal instead.

Reported-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-10 20:06:37 +10:30
David Howells
c26fd69fa0 X.509: Add a crypto key parser for binary (DER) X.509 certificates
Add a crypto key parser for binary (DER) encoded X.509 certificates.  The
certificate is parsed and, if possible, the signature is verified.

An X.509 key can be added like this:

	# keyctl padd crypto bar @s </tmp/x509.cert
	15768135

and displayed like this:

	# cat /proc/keys
	00f09a47 I--Q---     1 perm 39390000     0     0 asymmetri bar: X509.RSA e9fd6d08 []

Note that this only works with binary certificates.  PEM encoded certificates
are ignored by the parser.

Note also that the X.509 key ID is not congruent with the PGP key ID, but for
the moment, they will match.

If a NULL or "" name is given to add_key(), then the parser will generate a key
description from the CertificateSerialNumber and Name fields of the
TBSCertificate:

	00aefc4e I--Q---     1 perm 39390000     0     0 asymmetri bfbc0cd76d050ea4:/C=GB/L=Cambridge/O=Red Hat/CN=kernel key: X509.RSA 0c688c7b []

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:22 +10:30