The availability of the SPEC_CTRL MSR is enumerated by a CPUID bit on
Intel and implied by IBRS or STIBP support on AMD. That's just confusing
and in case an AMD CPU has IBRS not supported because the underlying
problem has been fixed but has another bit valid in the SPEC_CTRL MSR,
the thing falls apart.
Add a synthetic feature bit X86_FEATURE_MSR_SPEC_CTRL to denote the
availability on both Intel and AMD.
While at it replace the boot_cpu_has() checks with static_cpu_has() where
possible. This prevents late microcode loading from exposing SPEC_CTRL, but
late loading is already very limited as it does not reevaluate the
mitigation options and other bits and pieces. Having static_cpu_has() is
the simplest and least fragile solution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Intel and AMD have different CPUID bits hence for those use synthetic bits
which get set on the respective vendor's in init_speculation_control(). So
that debacles like what the commit message of
c65732e4f7 ("x86/cpu: Restore CPUID_8000_0008_EBX reload")
talks about don't happen anymore.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180504161815.GG9257@pd.tnic
Replace the open coded string fetch from user-space with strncpy_from_user().
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/20180515180535.89703-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The helper returns index of the matching string in an array.
Replace the open coded array lookup with match_string().
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/20180515175759.89315-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Variants of proc_create{,_data} that directly take a seq_file show
callback and drastically reduces the boilerplate code in the callers.
All trivial callers converted over.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Clang builds with defconfig started crashing after the following
commit:
fb43d6cb91 ("x86/mm: Do not auto-massage page protections")
This was caused by introducing a new global access in __startup_64().
Code in __startup_64() can be relocated during execution, but the compiler
doesn't have to generate PC-relative relocations when accessing globals
from that function. Clang actually does not generate them, which leads
to boot-time crashes. To work around this problem, every global pointer
must be adjusted using fixup_pointer().
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dvyukov@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: linux-mm@kvack.org
Cc: md@google.com
Cc: mka@chromium.org
Fixes: fb43d6cb91 ("x86/mm: Do not auto-massage page protections")
Link: http://lkml.kernel.org/r/20180509091822.191810-1-glider@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kbuild uses the first file as the name for KBUILD_MODNAME.
mtrr uses main.c as its first file, so rename that file to mtrr.c
and fixup the Makefile.
Remove the now duplicate "mtrr: " prefixes from the logging calls.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/ae1fa81a0d1fad87571967b91ea90f70f486e853.1525964384.git.joe@perches.com
dev_err is becoming a macro calling _dev_err to allow prefixing of
dev_fmt to any dev_<level> use that has a #define dev_fmt(fmt) similar
to the existing #define pr_fmt(fmt) uses.
Remove this dev_err macro and convert the existing two uses to pr_err.
This allows clean compilation in the patch that introduces dev_fmt which
can prefix dev_<level> logging macros with arbitrary content similar to
the #define pr_fmt macro.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/8fb4b2a77d50e21ae1f7e4e267e68691efe2c270.1525878372.git.joe@perches.com
Since MOV SS and POP SS instructions will delay the exceptions until the
next instruction is executed, single-stepping on it by uprobes must be
prohibited.
uprobe already rejects probing on POP SS (0x1f), but allows probing on MOV
SS (0x8e and reg == 2). This checks the target instruction and if it is
MOV SS or POP SS, returns -ENOTSUPP to reject probing.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Francis Deslauriers <francis.deslauriers@efficios.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S . Miller" <davem@davemloft.net>
Link: https://lkml.kernel.org/r/152587072544.17316.5950935243917346341.stgit@devbox
Since MOV SS and POP SS instructions will delay the exceptions until the
next instruction is executed, single-stepping on it by kprobes must be
prohibited.
However, kprobes usually executes those instructions directly on trampoline
buffer (a.k.a. kprobe-booster), except for the kprobes which has
post_handler. Thus if kprobe user probes MOV SS with post_handler, it will
do single-stepping on the MOV SS.
This means it is safe that if it is used via ftrace or perf/bpf since those
don't use the post_handler.
Anyway, since the stack switching is a rare case, it is safer just
rejecting kprobes on such instructions.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Francis Deslauriers <francis.deslauriers@efficios.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S . Miller" <davem@davemloft.net>
Link: https://lkml.kernel.org/r/152587069574.17316.3311695234863248641.stgit@devbox
>From ff82bedd3e12f0d3353282054ae48c3bd8c72012 Mon Sep 17 00:00:00 2001
From: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Date: Wed, 9 May 2018 12:12:39 +0900
Subject: [PATCH v3] x86/kexec: avoid double free_page() upon do_kexec_load() failure.
syzbot is reporting crashes after memory allocation failure inside
do_kexec_load() [1]. This is because free_transition_pgtable() is called
by both init_transition_pgtable() and machine_kexec_cleanup() when memory
allocation failed inside init_transition_pgtable().
Regarding 32bit code, machine_kexec_free_page_tables() is called by both
machine_kexec_alloc_page_tables() and machine_kexec_cleanup() when memory
allocation failed inside machine_kexec_alloc_page_tables().
Fix this by leaving the error handling to machine_kexec_cleanup()
(and optionally setting NULL after free_page()).
[1] https://syzkaller.appspot.com/bug?id=91e52396168cf2bdd572fe1e1bc0bc645c1c6b40
Fixes: f5deb79679 ("x86: kexec: Use one page table in x86_64 machine_kexec")
Fixes: 92be3d6bdf ("kexec/i386: allocate page table pages dynamically")
Reported-by: syzbot <syzbot+d96f60296ef613fe1d69@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: prudo@linux.vnet.ibm.com
Cc: Huang Ying <ying.huang@intel.com>
Cc: syzkaller-bugs@googlegroups.com
Cc: takahiro.akashi@linaro.org
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: akpm@linux-foundation.org
Cc: dyoung@redhat.com
Cc: kirill.shutemov@linux.intel.com
Link: https://lkml.kernel.org/r/201805091942.DGG12448.tMFVFSJFQOOLHO@I-love.SAKURA.ne.jp
Add Raven Ridge root bridge and data fabric PCI IDs.
This is required for amd_pci_dev_to_node_id() and amd_smn_read().
Cc: stable@vger.kernel.org # v4.16+
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
VMLINUX_SYMBOL() is no-op unless CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX
is defined. It has ever been selected only by BLACKFIN and METAG.
VMLINUX_SYMBOL() is unneeded for x86-specific code.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch <linux-arch@vger.kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1525852174-29022-1-git-send-email-yamada.masahiro@socionext.com
No point in exposing all these functions globaly as they are strict local
to the cpu management code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7bb4d366c ("x86/bugs: Make cpu_show_common() static")
Fixes: 24f7fc83b ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpu_show_common() is not used outside of arch/x86/kernel/cpu/bugs.c, so
make it static.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__ssb_select_mitigation() returns one of the members of enum ssb_mitigation,
not ssb_mitigation_cmd; fix the prototype to reflect that.
Fixes: 24f7fc83b9 ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2]
as SSBD (Speculative Store Bypass Disable).
Hence changing it.
It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name
is going to be. Following the rename it would be SSBD_NO but that rolls out
to Speculative Store Bypass Disable No.
Also fixed the missing space in X86_FEATURE_AMD_SSBD.
[ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently the architecture specific code is expected to display the
protection keys in smap for a given vma. This can lead to redundant
code and possibly to divergent formats in which the key gets
displayed.
This patch changes the implementation. It displays the pkey only if
the architecture support pkeys, i.e arch_pkeys_enabled() returns true.
x86 arch_show_smap() function is not needed anymore, delete it.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[mpe: Split out from larger patch, rebased on header changes]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Most mainstream architectures are using 65536 entries, so lets stick to
that. If someone is really desperate to override it that can still be
done through <asm/dma-mapping.h>, but I'd rather see a really good
rationale for that.
dma_debug_init is now called as a core_initcall, which for many
architectures means much earlier, and provides dma-debug functionality
earlier in the boot process. This should be safe as it only relies
on the memory allocator already being available.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Pull x86 fix from Thomas Gleixner:
"Unbreak the CPUID CPUID_8000_0008_EBX reload which got dropped when
the evaluation of physical and virtual bits which uses the same CPUID
leaf was moved out of get_cpu_cap()"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Restore CPUID_8000_0008_EBX reload
Derive topology information from Extended Topology Enumeration (CPUID
function 0xB) when the information is available.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524865681-112110-3-git-send-email-suravee.suthikulpanit@amd.com
Current implementation does not communicate whether it can successfully
detect CPUID function 0xB information. Therefore, modify the function to
return success or error codes. This will be used by subsequent patches.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1524865681-112110-2-git-send-email-suravee.suthikulpanit@amd.com
Last Level Cache ID can be calculated from the number of threads sharing
the cache, which is available from CPUID Fn0x8000001D (Cache Properties).
This is used to left-shift the APIC ID to derive LLC ID.
Therefore, default to this method unless the APIC ID enumeration does not
follow the scheme.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-5-git-send-email-suravee.suthikulpanit@amd.com
Since this file contains general cache-related information for x86,
rename the file to a more generic name.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-4-git-send-email-suravee.suthikulpanit@amd.com
Move smp_num_siblings and cpu_llc_id to cpu/common.c so that they're
always present as symbols and not only in the CONFIG_SMP case. Then,
other code using them doesn't need ugly ifdeffery anymore. Get rid of
some ifdeffery.
Signed-off-by: Borislav Petkov <bpetkov@suse.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-2-git-send-email-suravee.suthikulpanit@amd.com
Each of the strings that we want to put into the buf[MAX_FLAG_OPT_SIZE]
in flags_read() is two characters long. But the sprintf() adds
a trailing newline and will add a terminating NUL byte. So
MAX_FLAG_OPT_SIZE needs to be 4.
sprintf() calls vsnprintf() and *that* does return:
" * The return value is the number of characters which would
* be generated for the given input, excluding the trailing
* '\0', as per ISO C99."
Note the "excluding".
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180427163707.ktaiysvbk3yhk4wm@agluck-desk
Unless explicitly opted out of, anything running under seccomp will have
SSB mitigations enabled. Choosing the "prctl" mode will disable this.
[ tglx: Adjusted it to the new arch_seccomp_spec_mitigate() mechanism ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The migitation control is simpler to implement in architecture code as it
avoids the extra function call to check the mode. Aside of that having an
explicit seccomp enabled mode in the architecture mitigations would require
even more workarounds.
Move it into architecture code and provide a weak function in the seccomp
code. Remove the 'which' argument as this allows the architecture to decide
which mitigations are relevant for seccomp.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For certain use cases it is desired to enforce mitigations so they cannot
be undone afterwards. That's important for loader stubs which want to
prevent a child from disabling the mitigation again. Will also be used for
seccomp(). The extra state preserving of the prctl state for SSB is a
preparatory step for EBPF dymanic speculation control.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There's no reason for these to be changed after boot.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Adjust arch_prctl_get/set_spec_ctrl() to operate on tasks other than
current.
This is needed both for /proc/$pid/status queries and for seccomp (since
thread-syncing can trigger seccomp in non-current threads).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add prctl based control for Speculative Store Bypass mitigation and make it
the default mitigation for Intel and AMD.
Andi Kleen provided the following rationale (slightly redacted):
There are multiple levels of impact of Speculative Store Bypass:
1) JITed sandbox.
It cannot invoke system calls, but can do PRIME+PROBE and may have call
interfaces to other code
2) Native code process.
No protection inside the process at this level.
3) Kernel.
4) Between processes.
The prctl tries to protect against case (1) doing attacks.
If the untrusted code can do random system calls then control is already
lost in a much worse way. So there needs to be system call protection in
some way (using a JIT not allowing them or seccomp). Or rather if the
process can subvert its environment somehow to do the prctl it can already
execute arbitrary code, which is much worse than SSB.
To put it differently, the point of the prctl is to not allow JITed code
to read data it shouldn't read from its JITed sandbox. If it already has
escaped its sandbox then it can already read everything it wants in its
address space, and do much worse.
The ability to control Speculative Store Bypass allows to enable the
protection selectively without affecting overall system performance.
Based on an initial patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The Speculative Store Bypass vulnerability can be mitigated with the
Reduced Data Speculation (RDS) feature. To allow finer grained control of
this eventually expensive mitigation a per task mitigation control is
required.
Add a new TIF_RDS flag and put it into the group of TIF flags which are
evaluated for mismatch in switch_to(). If these bits differ in the previous
and the next task, then the slow path function __switch_to_xtra() is
invoked. Implement the TIF_RDS dependent mitigation control in the slow
path.
If the prctl for controlling Speculative Store Bypass is disabled or no
task uses the prctl then there is no overhead in the switch_to() fast
path.
Update the KVM related speculation control functions to take TID_RDS into
account as well.
Based on a patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Having everything in nospec-branch.h creates a hell of dependencies when
adding the prctl based switching mechanism. Move everything which is not
required in nospec-branch.h to spec-ctrl.h and fix up the includes in the
relevant files.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
AMD does not need the Speculative Store Bypass mitigation to be enabled.
The parameters for this are already available and can be done via MSR
C001_1020. Each family uses a different bit in that MSR for this.
[ tglx: Expose the bit mask via a variable and move the actual MSR fiddling
into the bugs code as that's the right thing to do and also required
to prepare for dynamic enable/disable ]
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Intel and AMD SPEC_CTRL (0x48) MSR semantics may differ in the
future (or in fact use different MSRs for the same functionality).
As such a run-time mechanism is required to whitelist the appropriate MSR
values.
[ tglx: Made the variable __ro_after_init ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Intel CPUs expose methods to:
- Detect whether RDS capability is available via CPUID.7.0.EDX[31],
- The SPEC_CTRL MSR(0x48), bit 2 set to enable RDS.
- MSR_IA32_ARCH_CAPABILITIES, Bit(4) no need to enable RRS.
With that in mind if spec_store_bypass_disable=[auto,on] is selected set at
boot-time the SPEC_CTRL MSR to enable RDS if the platform requires it.
Note that this does not fix the KVM case where the SPEC_CTRL is exposed to
guests which can muck with it, see patch titled :
KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS.
And for the firmware (IBRS to be set), see patch titled:
x86/spectre_v2: Read SPEC_CTRL MSR during boot and re-use reserved bits
[ tglx: Distangled it from the intel implementation and kept the call order ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Contemporary high performance processors use a common industry-wide
optimization known as "Speculative Store Bypass" in which loads from
addresses to which a recent store has occurred may (speculatively) see an
older value. Intel refers to this feature as "Memory Disambiguation" which
is part of their "Smart Memory Access" capability.
Memory Disambiguation can expose a cache side-channel attack against such
speculatively read values. An attacker can create exploit code that allows
them to read memory outside of a sandbox environment (for example,
malicious JavaScript in a web page), or to perform more complex attacks
against code running within the same privilege level, e.g. via the stack.
As a first step to mitigate against such attacks, provide two boot command
line control knobs:
nospec_store_bypass_disable
spec_store_bypass_disable=[off,auto,on]
By default affected x86 processors will power on with Speculative
Store Bypass enabled. Hence the provided kernel parameters are written
from the point of view of whether to enable a mitigation or not.
The parameters are as follows:
- auto - Kernel detects whether your CPU model contains an implementation
of Speculative Store Bypass and picks the most appropriate
mitigation.
- on - disable Speculative Store Bypass
- off - enable Speculative Store Bypass
[ tglx: Reordered the checks so that the whole evaluation is not done
when the CPU does not support RDS ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Add the sysfs file for the new vulerability. It does not do much except
show the words 'Vulnerable' for recent x86 cores.
Intel cores prior to family 6 are known not to be vulnerable, and so are
some Atoms and some Xeon Phi.
It assumes that older Cyrix, Centaur, etc. cores are immune.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
A guest may modify the SPEC_CTRL MSR from the value used by the
kernel. Since the kernel doesn't use IBRS, this means a value of zero is
what is needed in the host.
But the 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to
the other bits as reserved so the kernel should respect the boot time
SPEC_CTRL value and use that.
This allows to deal with future extensions to the SPEC_CTRL interface if
any at all.
Note: This uses wrmsrl() instead of native_wrmsl(). I does not make any
difference as paravirt will over-write the callq *0xfff.. with the wrmsrl
assembler code.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
The 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to all
the other bits as reserved. The Intel SDM glossary defines reserved as
implementation specific - aka unknown.
As such at bootup this must be taken it into account and proper masking for
the bits in use applied.
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
[ tglx: Made x86_spec_ctrl_base __ro_after_init ]
Suggested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Those SysFS functions have a similar preamble, as such make common
code to handle them.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Combine the various logic which goes through all those
x86_cpu_id matching structures in one function.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
The recent commt which addresses the x86_phys_bits corruption with
encrypted memory on CPUID reload after a microcode update lost the reload
of CPUID_8000_0008_EBX as well.
As a consequence IBRS and IBRS_FW are not longer detected
Restore the behaviour by bringing the reload of CPUID_8000_0008_EBX
back. This restore has a twist due to the convoluted way the cpuid analysis
works:
CPUID_8000_0008_EBX is used by AMD to enumerate IBRB, IBRS, STIBP. On Intel
EBX is not used. But the speculation control code sets the AMD bits when
running on Intel depending on the Intel specific speculation control
bits. This was done to use the same bits for alternatives.
The change which moved the 8000_0008 evaluation out of get_cpu_cap() broke
this nasty scheme due to ordering. So that on Intel the store to
CPUID_8000_0008_EBX clears the IBRB, IBRS, STIBP bits which had been set
before by software.
So the actual CPUID_8000_0008_EBX needs to go back to the place where it
was and the phys/virt address space calculation cannot touch it.
In hindsight this should have used completely synthetic bits for IBRB,
IBRS, STIBP instead of reusing the AMD bits, but that's for 4.18.
/me needs to find time to cleanup that steaming pile of ...
Fixes: d94a155c59 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption")
Reported-by: Jörg Otte <jrg.otte@gmail.com>
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: kirill.shutemov@linux.intel.com
Cc: Borislav Petkov <bp@alien8.de
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805021043510.1668@nanos.tec.linutronix.de
mark_tsc_unstable() also needs to affect tsc_early, Now that
clocksource_mark_unstable() can be used on a clocksource irrespective of
its registration state, use it on both tsc_early and tsc.
This does however require cs->list to be initialized empty, otherwise it
cannot tell the registation state before registation.
Fixes: aa83c45762 ("x86/tsc: Introduce early tsc clocksource")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Diego Viola <diego.viola@gmail.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: rui.zhang@intel.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180430100344.533326547@infradead.org
Don't leave the tsc-early clocksource registered if it errors out
early.
This was reported by Diego, who on his Core2 era machine got TSC
invalidated while it was running with tsc-early (due to C-states).
This results in keeping tsc-early with very bad effects.
Reported-and-Tested-by: Diego Viola <diego.viola@gmail.com>
Fixes: aa83c45762 ("x86/tsc: Introduce early tsc clocksource")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: diego.viola@gmail.com
Cc: rui.zhang@intel.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180430100344.350507853@infradead.org
Xen PV domains cannot shut down and start a crash kernel. Instead,
the crashing kernel makes a SCHEDOP_shutdown hypercall with the
reason code SHUTDOWN_crash, cf. xen_crash_shutdown() machine op in
arch/x86/xen/enlighten_pv.c.
A crash kernel reservation is merely a waste of RAM in this case. It
may also confuse users of kexec_load(2) and/or kexec_file_load(2).
When flags include KEXEC_ON_CRASH or KEXEC_FILE_ON_CRASH,
respectively, these syscalls return success, which is technically
correct, but the crash kexec image will never be actually used.
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: xen-devel@lists.xenproject.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jean Delvare <jdelvare@suse.de>
Link: https://lkml.kernel.org/r/20180425120835.23cef60c@ezekiel.suse.cz
From Skylake onwards, the platform controller hub (Sunrisepoint PCH) does
not support legacy DMA operations to IO ports 81h-83h, 87h, 89h-8Bh, 8Fh.
Currently this driver registers as syscore ops and its resume function is
called on every resume from S3. On Skylake and Kabylake, this causes a
resume delay of around 100ms due to port IO operations, which is a problem.
This change allows to load the driver only when the platform bios
explicitly supports such devices or has a cut-off date earlier than 2017
due to the following reasons:
- The platforms released before year 2017 have support for the 8237.
(except Sunrisepoint PCH e.g. Skylake)
- Some of the BIOS that were released for platforms (Skylake, Kabylake)
during 2016-17 are buggy. These BIOS do not set/unset the
ACPI_FADT_LEGACY_DEVICES field in FADT table properly based on the
presence or absence of the DMA device.
Very recently, open source system firmware like coreboot started unsetting
ACPI_FADT_LEGACY_DEVICES field in FADT table if the 8237 DMA device is not
present on the PCH.
Please refer to chapter 21 of 6th Generation Intel® Core™ Processor
Platform Controller Hub Family: BIOS Specification.
Signed-off-by: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
Signed-off-by: Anshuman Gupta <anshuman.gupta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: rjw@rjwysocki.net
Cc: hpa@zytor.com
Cc: Alan Cox <alan@linux.intel.com>
Link: https://lkml.kernel.org/r/1522336015-22994-1-git-send-email-anshuman.gupta@intel.com
Make kernel print the correct number of TLB entries on Intel Xeon Phi 7210
(and others)
Before:
[ 0.320005] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0, 1GB 0
After:
[ 0.320005] Last level dTLB entries: 4KB 256, 2MB 128, 4MB 128, 1GB 16
The entries do exist in the official Intel SMD but the type column there is
incorrect (states "Cache" where it should read "TLB"), but the entries for
the values 0x6B, 0x6C and 0x6D are correctly described as 'Data TLB'.
Signed-off-by: Jacek Tomaka <jacek.tomaka@poczta.fm>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180423161425.24366-1-jacekt@dugeo.com
The whole reasoning behind the amount of opcode bytes dumped and prologue
length isn't very clear so write down some of the reasons for why it is
done the way it is.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-10-bp@alien8.de
Save the regs set when __die() is onvoked for the first time and print it
in oops_end().
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-9-bp@alien8.de
... which shows the Instruction Pointer along with the insn bytes around
it. Use it whenever rIP is printed. Drop the rIP < PAGE_OFFSET check since
probe_kernel_read() can handle any address properly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-8-bp@alien8.de
Will be used in the next patch.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-6-bp@alien8.de
The code used to iterate byte-by-byte over the bytes around RIP and that
is expensive: disabling pagefaults around it, copy_from_user, etc...
Make it read the whole buffer of OPCODE_BUFSIZE size in one go. Use a
statically allocated 64 bytes buffer so that concurrent show_opcodes()
do not interleave in the output even though in the majority of the cases
it's serialized via die_lock. Except the #PF path which doesn't...
Also, do the PAGE_OFFSET check outside of the function because latter
will be reused in other context.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-5-bp@alien8.de
No functionality change, carve it out into a separate function for later
changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-4-bp@alien8.de
The only user outside of arch/ is not a module since
86cd47334b ("ACPI, APEI, GHES, Prevent GHES to be built as module")
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-3-bp@alien8.de
This was added by
86c4183742 ("[PATCH] i386: add option to show more code in oops reports")
long time ago but experience shows that 64 instruction bytes are plenty
when deciphering an oops. So get rid of it.
Removing it will simplify further enhancements to the opcodes dumping
machinery coming in the following patches.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20180417161124.5294-2-bp@alien8.de
Recent AMD systems support using MWAIT for C1 state. However, MWAIT will
not allow deeper cstates than C1 on current systems.
play_dead() expects to use the deepest state available. The deepest state
available on AMD systems is reached through SystemIO or HALT. If MWAIT is
available, it is preferred over the other methods, so the CPU never reaches
the deepest possible state.
Don't try to use MWAIT to play_dead() on AMD systems. Instead, use CPUIDLE
to enter the deepest state advertised by firmware. If CPUIDLE is not
available then fallback to HALT.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20180403140228.58540-1-Yazen.Ghannam@amd.com
Both powerpc and alpha have cases where they wronly set si_code to 0
in combination with SIGTRAP and don't mean SI_USER.
About half the time this is because the architecture can not report
accurately what kind of trap exception triggered the trap exception.
The other half the time it looks like no one has bothered to
figure out an appropriate si_code.
For the cases where the architecture does not have enough information
or is too lazy to figure out exactly what kind of trap exception
it is define TRAP_UNK.
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Call clear_siginfo to ensure every stack allocated siginfo is properly
initialized before being passed to the signal sending functions.
Note: It is not safe to depend on C initializers to initialize struct
siginfo on the stack because C is allowed to skip holes when
initializing a structure.
The initialization of struct siginfo in tracehook_report_syscall_exit
was moved from the helper user_single_step_siginfo into
tracehook_report_syscall_exit itself, to make it clear that the local
variable siginfo gets fully initialized.
In a few cases the scope of struct siginfo has been reduced to make it
clear that siginfo siginfo is not used on other paths in the function
in which it is declared.
Instances of using memset to initialize siginfo have been replaced
with calls clear_siginfo for clarity.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Vitezslav reported a case where the
"Timeout during microcode update!"
panic would hit. After a deeper look, it turned out that his .config had
CONFIG_HOTPLUG_CPU disabled which practically made save_mc_for_early() a
no-op.
When that happened, the discovered microcode patch wasn't saved into the
cache and the late loading path wouldn't find any.
This, then, lead to early exit from __reload_late() and thus CPUs waiting
until the timeout is reached, leading to the panic.
In hindsight, that function should have been written so it does not return
before the post-synchronization. Oh well, I know better now...
Fixes: bb8c13d61a ("x86/microcode: Fix CPU synchronization routine")
Reported-by: Vitezslav Samel <vitezslav@samel.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vitezslav Samel <vitezslav@samel.cz>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180418081140.GA2439@pc11.op.pod.cz
Link: https://lkml.kernel.org/r/20180421081930.15741-2-bp@alien8.de
save_mc_for_early() was a no-op on !CONFIG_HOTPLUG_CPU but the
generic_load_microcode() path saves the microcode patches it has found into
the cache of patches which is used for late loading too. Regardless of
whether CPU hotplug is used or not.
Make the saving unconditional so that late loading can find the proper
patch.
Reported-by: Vitezslav Samel <vitezslav@samel.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vitezslav Samel <vitezslav@samel.cz>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180418081140.GA2439@pc11.op.pod.cz
Link: https://lkml.kernel.org/r/20180421081930.15741-1-bp@alien8.de
GPL2.0 is not a valid SPDX identiier. Replace it with GPL-2.0.
Fixes: 4a362601ba ("x86/jailhouse: Add infrastructure for running in non-root cell")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Link: https://lkml.kernel.org/r/20180422220832.815346488@linutronix.de
Pull x86 fixes from Thomas Gleixner:
"A small set of fixes for x86:
- Prevent X2APIC ID 0xFFFFFFFF from being treated as valid, which
causes the possible CPU count to be wrong.
- Prevent 32bit truncation in calc_hpet_ref() which causes the TSC
calibration to fail
- Fix the page table setup for temporary text mappings in the resume
code which causes resume failures
- Make the page table dump code handle HIGHPTE correctly instead of
oopsing
- Support for topologies where NUMA nodes share an LLC to prevent a
invalid topology warning and further malfunction on such systems.
- Remove the now unused pci-nommu code
- Remove stale function declarations"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/power/64: Fix page-table setup for temporary text mapping
x86/mm: Prevent kernel Oops in PTDUMP code with HIGHPTE=y
x86,sched: Allow topologies where NUMA nodes share an LLC
x86/processor: Remove two unused function declarations
x86/acpi: Prevent X2APIC id 0xffffffff from being accounted
x86/tsc: Prevent 32bit truncation in calc_hpet_ref()
x86: Remove pci-nommu.c
Chun-Yi reported a kernel warning message below:
WARNING: CPU: 0 PID: 0 at ../mm/early_ioremap.c:182 early_iounmap+0x4f/0x12c()
early_iounmap(ffffffffff200180, 00000118) [0] size not consistent 00000120
The problem is x86 kexec_file_load adds extra alignment to the efi
memmap: in bzImage64_load():
efi_map_sz = efi_get_runtime_map_size();
efi_map_sz = ALIGN(efi_map_sz, 16);
And __efi_memmap_init maps with the size including the alignment bytes
but efi_memmap_unmap use nr_maps * desc_size which does not include the
extra bytes.
The alignment in kexec code is only needed for the kexec buffer internal
use Actually kexec should pass exact size of the efi memmap to 2nd
kernel.
Link: http://lkml.kernel.org/r/20180417083600.GA1972@dhcp-128-65.nay.redhat.com
Signed-off-by: Dave Young <dyoung@redhat.com>
Reported-by: joeyli <jlee@suse.com>
Tested-by: Randy Wright <rwright@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the first set of system call entry point changes to enable 32-bit
architectures to have variants on both 32-bit and 64-bit time_t. Typically
these system calls take a 'struct timespec' argument, but that structure
is defined in user space by the C library and its layout will change.
The kernel already supports handling the 32-bit time_t on 64-bit
architectures through the CONFIG_COMPAT mechanism. As there are a total
of 51 system calls suffering from this problem, reusing that mechanism
on 32-bit architectures.
We already have patches for most of the remaining system calls, but this
set contains most of the complexity and is best tested. There was one
last-minute regression that prevented it from going into 4.17, but that
is fixed now.
More details from Deepa's patch series description:
Big picture is as per the lwn article:
https://lwn.net/Articles/643234/ [2]
The series is directed at converting posix clock syscalls:
clock_gettime, clock_settime, clock_getres and clock_nanosleep
to use a new data structure __kernel_timespec at syscall boundaries.
__kernel_timespec maintains 64 bit time_t across all execution modes.
vdso will be handled as part of each architecture when they enable
support for 64 bit time_t.
The compat syscalls are repurposed to provide backward compatibility
by using them as native syscalls as well for 32 bit architectures.
They will continue to use timespec at syscall boundaries.
CONFIG_64_BIT_TIME controls whether the syscalls use __kernel_timespec
or timespec at syscall boundaries.
The series does the following:
1. Enable compat syscalls on 32 bit architectures.
2. Add a new __kernel_timespec type to be used as the data structure
for all the new syscalls.
3. Add new config CONFIG_64BIT_TIME(intead of the CONFIG_COMPAT_TIME in
[1] and [2] to switch to new definition of __kernel_timespec. It is
the same as struct timespec otherwise.
4. Add new CONFIG_32BIT_TIME to conditionally compile compat syscalls.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJa2IAgAAoJEGCrR//JCVInWDMP/2n44rfblcBVZSt+WPOBXIxD
nXkCrFqUQzhK/7ccQhd9Ij/Zjl+eed+nSe98fyfq23//eg18s9FCHqFYLlTTkJRt
iXvxCdjiKTO527VZcHy4gIQaovytbzLSn9PMKgaaOTh8bFiPi/JLHHw2IcC7Hg4X
oLxg+6XNBAN63JXgjzWF1mwmRyCOyN5JIUCIIQPySfRuQekPAd0EbgW8hvWvZJl/
L42VSszP5gPoSF1u+JKVtpNlDXB9POhoBSpVn+Kh19TJAYH9yxOOPxJ3RRvWGSS+
thMkNHlwJpyF3e5xgc24FgozW1lyKzMWSaUcYxLr0JNuehDX2oJCdpDkDQTXWPL2
IFIX7w/5wwVlC152wkAcwR/OdfrwhNiU9Ed6sgXZscm9MRN8Qdn1DjQ+xU79zalM
feeTdYST8L0MiLOafkQOJWbZzALibUQ+wnFWYGd66O5CMZLDcNU8oE3LbwODi8Gb
91LcFxCmdJMC+O3tRVONpZknG6+qyjXvNmaosgTE8KiHeOY7+FgCRRnVz5yYPKty
PHIajRP82+tf5b6tCZRkbQZJMWVA9AzCTS51DOXXrYK3LDF6X8wbQXPguVVZFbiN
mmXLHDEVjKC3SHhY/Y8FDkUfy+1dWA1Wd121T/84+UfTchLRJ2S9Yrye/0EvU4gj
Szb79+vKmtgK+R+Dn4Cu
=8Bch
-----END PGP SIGNATURE-----
Merge tag 'y2038-timekeeping' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground into timers/core
Pull y2038 timekeeping syscall changes from Arnd Bergmann:
This is the first set of system call entry point changes to enable 32-bit
architectures to have variants on both 32-bit and 64-bit time_t. Typically
these system calls take a 'struct timespec' argument, but that structure
is defined in user space by the C library and its layout will change.
The kernel already supports handling the 32-bit time_t on 64-bit
architectures through the CONFIG_COMPAT mechanism. As there are a total
of 51 system calls suffering from this problem, reusing that mechanism
on 32-bit architectures.
We already have patches for most of the remaining system calls, but this
set contains most of the complexity and is best tested. There was one
last-minute regression that prevented it from going into 4.17, but that
is fixed now.
More details from Deepa's patch series description:
Big picture is as per the lwn article:
https://lwn.net/Articles/643234/ [2]
The series is directed at converting posix clock syscalls:
clock_gettime, clock_settime, clock_getres and clock_nanosleep
to use a new data structure __kernel_timespec at syscall boundaries.
__kernel_timespec maintains 64 bit time_t across all execution modes.
vdso will be handled as part of each architecture when they enable
support for 64 bit time_t.
The compat syscalls are repurposed to provide backward compatibility
by using them as native syscalls as well for 32 bit architectures.
They will continue to use timespec at syscall boundaries.
CONFIG_64_BIT_TIME controls whether the syscalls use __kernel_timespec
or timespec at syscall boundaries.
The series does the following:
1. Enable compat syscalls on 32 bit architectures.
2. Add a new __kernel_timespec type to be used as the data structure
for all the new syscalls.
3. Add new config CONFIG_64BIT_TIME(intead of the CONFIG_COMPAT_TIME in
[1] and [2] to switch to new definition of __kernel_timespec. It is
the same as struct timespec otherwise.
4. Add new CONFIG_32BIT_TIME to conditionally compile compat syscalls.
Intel's Skylake Server CPUs have a different LLC topology than previous
generations. When in Sub-NUMA-Clustering (SNC) mode, the package is divided
into two "slices", each containing half the cores, half the LLC, and one
memory controller and each slice is enumerated to Linux as a NUMA
node. This is similar to how the cores and LLC were arranged for the
Cluster-On-Die (CoD) feature.
CoD allowed the same cache line to be present in each half of the LLC.
But, with SNC, each line is only ever present in *one* slice. This means
that the portion of the LLC *available* to a CPU depends on the data being
accessed:
Remote socket: entire package LLC is shared
Local socket->local slice: data goes into local slice LLC
Local socket->remote slice: data goes into remote-slice LLC. Slightly
higher latency than local slice LLC.
The biggest implication from this is that a process accessing all
NUMA-local memory only sees half the LLC capacity.
The CPU describes its cache hierarchy with the CPUID instruction. One of
the CPUID leaves enumerates the "logical processors sharing this
cache". This information is used for scheduling decisions so that tasks
move more freely between CPUs sharing the cache.
But, the CPUID for the SNC configuration discussed above enumerates the LLC
as being shared by the entire package. This is not 100% precise because the
entire cache is not usable by all accesses. But, it *is* the way the
hardware enumerates itself, and this is not likely to change.
The userspace visible impact of all the above is that the sysfs info
reports the entire LLC as being available to the entire package. As noted
above, this is not true for local socket accesses. This patch does not
correct the sysfs info. It is the same, pre and post patch.
The current code emits the following warning:
sched: CPU #3's llc-sibling CPU #0 is not on the same node! [node: 1 != 0]. Ignoring dependency.
The warning is coming from the topology_sane() check in smpboot.c because
the topology is not matching the expectations of the model for obvious
reasons.
To fix this, add a vendor and model specific check to never call
topology_sane() for these systems. Also, just like "Cluster-on-Die" disable
the "coregroup" sched_domain_topology_level and use NUMA information from
the SRAT alone.
This is OK at least on the hardware we are immediately concerned about
because the LLC sharing happens at both the slice and at the package level,
which are also NUMA boundaries.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: brice.goglin@gmail.com
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lkml.kernel.org/r/20180407002130.GA18984@alison-desk.jf.intel.com
RongQing reported that there are some X2APIC id 0xffffffff in his machine's
ACPI MADT table, which makes the number of possible CPU inaccurate.
The reason is that the ACPI X2APIC parser has no sanity check for APIC ID
0xffffffff, which is an invalid id in all APIC types. See "Intel® 64
Architecture x2APIC Specification", Chapter 2.4.1.
Add a sanity check to acpi_parse_x2apic() which ignores the invalid id.
Reported-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180412014052.25186-1-douly.fnst@cn.fujitsu.com
The TSC calibration code uses HPET as reference. The conversion normalizes
the delta of two HPET timestamps:
hpetref = ((tshpet1 - tshpet2) * HPET_PERIOD) / 1e6
and then divides the normalized delta of the corresponding TSC timestamps
by the result to calulate the TSC frequency.
tscfreq = ((tstsc1 - tstsc2 ) * 1e6) / hpetref
This uses do_div() which takes an u32 as the divisor, which worked so far
because the HPET frequency was low enough that 'hpetref' never exceeded
32bit.
On Skylake machines the HPET frequency increased so 'hpetref' can exceed
32bit. do_div() truncates the divisor, which causes the calibration to
fail.
Use div64_u64() to avoid the problem.
[ tglx: Fixes whitespace mangled patch and rewrote changelog ]
Signed-off-by: Xiaoming Gao <newtongao@tencent.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: peterz@infradead.org
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/38894564-4fc9-b8ec-353f-de702839e44e@gmail.com
The |= operator will let us end up with an invalid PTE. Use
the correct &= instead.
[ The bug was also independently reported by Shuah Khan ]
Fixes: fb43d6cb91 ('x86/mm: Do not auto-massage page protections')
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Thomas Gleixner:
"A set of fixes and updates for x86:
- Address a swiotlb regression which was caused by the recent DMA
rework and made driver fail because dma_direct_supported() returned
false
- Fix a signedness bug in the APIC ID validation which caused invalid
APIC IDs to be detected as valid thereby bloating the CPU possible
space.
- Fix inconsisten config dependcy/select magic for the MFD_CS5535
driver.
- Fix a corruption of the physical address space bits when encryption
has reduced the address space and late cpuinfo updates overwrite
the reduced bit information with the original value.
- Dominiks syscall rework which consolidates the architecture
specific syscall functions so all syscalls can be wrapped with the
same macros. This allows to switch x86/64 to struct pt_regs based
syscalls. Extend the clearing of user space controlled registers in
the entry patch to the lower registers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Fix signedness bug in APIC ID validity checks
x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption
x86/olpc: Fix inconsistent MFD_CS5535 configuration
swiotlb: Use dma_direct_supported() for swiotlb_ops
syscalls/x86: Adapt syscall_wrapper.h to the new syscall stub naming convention
syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()
syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention
syscalls/core, syscalls/x86: Clean up syscall stub naming convention
syscalls/x86: Extend register clearing on syscall entry to lower registers
syscalls/x86: Unconditionally enable 'struct pt_regs' based syscalls on x86_64
syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32
syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls
syscalls/x86: Use 'struct pt_regs' based syscall calling convention for 64-bit syscalls
syscalls/core: Introduce CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y
x86/syscalls: Don't pointlessly reload the system call number
x86/mm: Fix documentation of module mapping range with 4-level paging
x86/cpuid: Switch to 'static const' specifier
Pull x86 pti updates from Thomas Gleixner:
"Another series of PTI related changes:
- Remove the manual stack switch for user entries from the idtentry
code. This debloats entry by 5k+ bytes of text.
- Use the proper types for the asm/bootparam.h defines to prevent
user space compile errors.
- Use PAGE_GLOBAL for !PCID systems to gain back performance
- Prevent setting of huge PUD/PMD entries when the entries are not
leaf entries otherwise the entries to which the PUD/PMD points to
and are populated get lost"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pgtable: Don't set huge PUD/PMD on non-leaf entries
x86/pti: Leave kernel text global for !PCID
x86/pti: Never implicitly clear _PAGE_GLOBAL for kernel image
x86/pti: Enable global pages for shared areas
x86/mm: Do not forbid _PAGE_RW before init for __ro_after_init
x86/mm: Comment _PAGE_GLOBAL mystery
x86/mm: Remove extra filtering in pageattr code
x86/mm: Do not auto-massage page protections
x86/espfix: Document use of _PAGE_GLOBAL
x86/mm: Introduce "default" kernel PTE mask
x86/mm: Undo double _PAGE_PSE clearing
x86/mm: Factor out pageattr _PAGE_GLOBAL setting
x86/entry/64: Drop idtentry's manual stack switch for user entries
x86/uapi: Fix asm/bootparam.h userspace compilation errors
For s390 new kernels are loaded to fixed addresses in memory before they
are booted. With the current code this is a problem as it assumes the
kernel will be loaded to an 'arbitrary' address. In particular,
kexec_locate_mem_hole searches for a large enough memory region and sets
the load address (kexec_bufer->mem) to it.
Luckily there is a simple workaround for this problem. By returning 1
in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This
allows the architecture to set kbuf->mem by hand. While the trick works
fine for the kernel it does not for the purgatory as here the
architectures don't have access to its kexec_buffer.
Give architectures access to the purgatories kexec_buffer by changing
kexec_load_purgatory to take a pointer to it. With this change
architectures have access to the buffer and can edit it as they need.
A nice side effect of this change is that we can get rid of the
purgatory_info->purgatory_load_address field. As now the information
stored there can directly be accessed from kbuf->mem.
Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code uses the sh_offset field in purgatory_info->sechdrs to
store a pointer to the current load address of the section. Depending
whether the section will be loaded or not this is either a pointer into
purgatory_info->purgatory_buf or kexec_purgatory. This is not only a
violation of the ELF standard but also makes the code very hard to
understand as you cannot tell if the memory you are using is read-only
or not.
Remove this misuse and store the offset of the section in
pugaroty_info->purgatory_buf in sh_offset.
Link: http://lkml.kernel.org/r/20180321112751.22196-10-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the relocations are applied to the purgatory only the section the
relocations are applied to is writable. The other sections, i.e. the
symtab and .rel/.rela, are in read-only kexec_purgatory. Highlight this
by marking the corresponding variables as 'const'.
While at it also change the signatures of arch_kexec_apply_relocations* to
take section pointers instead of just the index of the relocation section.
This removes the second lookup and sanity check of the sections in arch
code.
Link: http://lkml.kernel.org/r/20180321112751.22196-6-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the previous patches, commonly-used routines, exclude_mem_range() and
prepare_elf64_headers(), were carved out. Now place them in kexec
common code. A prefix "crash_" is given to each of their names to avoid
possible name collisions.
Link: http://lkml.kernel.org/r/20180306102303.9063-8-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Removing bufp variable in prepare_elf64_headers() makes the code simpler
and more understandable.
Link: http://lkml.kernel.org/r/20180306102303.9063-7-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While CRASH_MAX_RANGES (== 16) seems to be good enough, fixed-number
array is not a good idea in general.
In this patch, size of crash_mem buffer is calculated as before and the
buffer is now dynamically allocated. This change also allows removing
crash_elf_data structure.
Link: http://lkml.kernel.org/r/20180306102303.9063-6-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code guarded by CONFIG_X86_64 is necessary on some architectures
which have a dedicated kernel mapping outside of linear memory mapping.
(arm64 is among those.)
In this patch, an additional argument, kernel_map, is added to enable/
disable the code removing #ifdef.
Link: http://lkml.kernel.org/r/20180306102303.9063-5-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While prepare_elf64_headers() in x86 looks pretty generic for other
architectures' use, it contains some code which tries to list crash
memory regions by walking through system resources, which is not always
architecture agnostic. To make this function more generic, the related
code should be purged.
In this patch, prepare_elf64_headers() simply scans crash_mem buffer
passed and add all the listed regions to elf header as a PT_LOAD
segment. So walk_system_ram_res(prepare_elf64_headers_callback) have
been moved forward before prepare_elf64_headers() where the callback,
prepare_elf64_headers_callback(), is now responsible for filling up
crash_mem buffer.
Meanwhile exclude_elf_header_ranges() used to be called every time in
this callback it is rather redundant and now called only once in
prepare_elf_headers() as well.
Link: http://lkml.kernel.org/r/20180306102303.9063-4-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As arch_kexec_kernel_image_{probe,load}(),
arch_kimage_file_post_load_cleanup() and arch_kexec_kernel_verify_sig()
are almost duplicated among architectures, they can be commonalized with
an architecture-defined kexec_file_ops array. So let's factor them out.
Link: http://lkml.kernel.org/r/20180306102303.9063-3-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull parisc updates from Helge Deller:
- fix panic when halting system via "shutdown -h now"
- drop own coding in favour of generic CONFIG_COMPAT_BINFMT_ELF
implementation
- add FPE_CONDTRAP constant: last outstanding parisc-specific cleanup
for Eric Biedermans siginfo patches
- move some functions to .init and some to .text.hot linker sections
* 'parisc-4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Prevent panic at system halt
parisc: Switch to generic COMPAT_BINFMT_ELF
parisc: Move cache flush functions into .text.hot section
parisc/signal: Add FPE_CONDTRAP for conditional trap handling
I was mystified as to where the _PAGE_GLOBAL in the kernel page tables
for kernel text came from. I audited all the places I could find, but
I missed one: head_64.S.
The page tables that we create in here live for a long time, and they
also have _PAGE_GLOBAL set, despite whether the processor supports it
or not. It's harmless, and we got *lucky* that the pageattr code
accidentally clears it when we wipe it out of __supported_pte_mask and
then later try to mark kernel text read-only.
Comment some of these properties to make it easier to find and
understand in the future.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205513.079BB265@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A PTE is constructed from a physical address and a pgprotval_t.
__PAGE_KERNEL, for instance, is a pgprot_t and must be converted
into a pgprotval_t before it can be used to create a PTE. This is
done implicitly within functions like pfn_pte() by massage_pgprot().
However, this makes it very challenging to set bits (and keep them
set) if your bit is being filtered out by massage_pgprot().
This moves the bit filtering out of pfn_pte() and friends. For
users of PAGE_KERNEL*, filtering will be done automatically inside
those macros but for users of __PAGE_KERNEL*, they need to do their
own filtering now.
Note that we also just move pfn_pte/pmd/pud() over to check_pgprot()
instead of massage_pgprot(). This way, we still *look* for
unsupported bits and properly warn about them if we find them. This
might happen if an unfiltered __PAGE_KERNEL* value was passed in,
for instance.
- printk format warning fix from: Arnd Bergmann <arnd@arndb.de>
- boot crash fix from: Tom Lendacky <thomas.lendacky@amd.com>
- crash bisected by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reported-and-fixed-by: Arnd Bergmann <arnd@arndb.de>
Fixed-by: Tom Lendacky <thomas.lendacky@amd.com>
Bisected-by: Mike Galbraith <efault@gmx.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205509.77E1D7F6@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Juergen Gross noticed that commit f7f99100d8 ("mm: stop zeroing memory
during allocation in vmemmap") broke XEN PV domains when deferred struct
page initialization is enabled.
This is because the xen's PagePinned() flag is getting erased from
struct pages when they are initialized later in boot.
Juergen fixed this problem by disabling deferred pages on xen pv
domains. It is desirable, however, to have this feature available as it
reduces boot time. This fix re-enables the feature for pv-dmains, and
fixes the problem the following way:
The fix is to delay setting PagePinned flag until struct pages for all
allocated memory are initialized, i.e. until after free_all_bootmem().
A new x86_init.hyper op init_after_bootmem() is called to let xen know
that boot allocator is done, and hence struct pages for all the
allocated memory are now initialized. If deferred page initialization
is enabled, the rest of struct pages are going to be initialized later
in boot once page_alloc_init_late() is called.
xen_after_bootmem() walks page table's pages and marks them pinned.
Link: http://lkml.kernel.org/r/20180226160112.24724-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Tested-by: Juergen Gross <jgross@suse.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Jinbum Park <jinb.park7@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Jia Zhang <zhang.jia@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Posix and common sense requires that SI_USER not be a signal specific
si_code. Thus add a new FPE_CONDTRAP si_code for conditional traps.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
The APIC ID as parsed from ACPI MADT is validity checked with the
apic->apic_id_valid() callback, which depends on the selected APIC type.
For non X2APIC types APIC IDs >= 0xFF are invalid, but values > 0x7FFFFFFF
are detected as valid. This happens because the 'apicid' argument of the
apic_id_valid() callback is type 'int'. So the resulting comparison
apicid < 0xFF
evaluates to true for all unsigned int values > 0x7FFFFFFF which are handed
to default_apic_id_valid(). As a consequence, invalid APIC IDs in !X2APIC
mode are considered valid and accounted as possible CPUs.
Change the apicid argument type of the apic_id_valid() callback to u32 so
the evaluation is unsigned and returns the correct result.
[ tglx: Massaged changelog ]
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: jgross@suse.com
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1523322966-10296-1-git-send-email-lirongqing@baidu.com
Some features (Intel MKTME, AMD SME) reduce the number of effectively
available physical address bits. cpuinfo_x86::x86_phys_bits is adjusted
accordingly during the early cpu feature detection.
Though if get_cpu_cap() is called later again then this adjustement is
overwritten. That happens in setup_pku(), which is called after
detect_tme().
To address this, extract the address sizes enumeration into a separate
function, which is only called only from early_identify_cpu() and from
generic_identify().
This makes get_cpu_cap() safe to be called later during boot proccess
without overwriting cpuinfo_x86::x86_phys_bits.
[ tglx: Massaged changelog ]
Fixes: cb06d8e3d0 ("x86/tme: Detect if TME and MKTME is activated by BIOS")
Reported-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: linux-mm@kvack.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180410092704.41106-1-kirill.shutemov@linux.intel.com
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
The "normal" kernel page table creation mechanisms using
PAGE_KERNEL_* page protections will never set _PAGE_GLOBAL with PTI.
The few places in the kernel that always want _PAGE_GLOBAL must
avoid using PAGE_KERNEL_*.
Document that we want it here and its use is not accidental.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205507.BCF4D4F0@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- the v9fs maintainers have been missing for a long time. I've taken
over v9fs patch slinging.
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (116 commits)
mm,oom_reaper: check for MMF_OOM_SKIP before complaining
mm/ksm: fix interaction with THP
mm/memblock.c: cast constant ULLONG_MAX to phys_addr_t
headers: untangle kmemleak.h from mm.h
include/linux/mmdebug.h: make VM_WARN* non-rvals
mm/page_isolation.c: make start_isolate_page_range() fail if already isolated
mm: change return type to vm_fault_t
mm, oom: remove 3% bonus for CAP_SYS_ADMIN processes
mm, page_alloc: wakeup kcompactd even if kswapd cannot free more memory
kernel/fork.c: detect early free of a live mm
mm: make counting of list_lru_one::nr_items lockless
mm/swap_state.c: make bool enable_vma_readahead and swap_vma_readahead() static
block_invalidatepage(): only release page if the full page was invalidated
mm: kernel-doc: add missing parameter descriptions
mm/swap.c: remove @cold parameter description for release_pages()
mm/nommu: remove description of alloc_vm_area
zram: drop max_zpage_size and use zs_huge_class_size()
zsmalloc: introduce zs_huge_class_size()
mm: fix races between swapoff and flush dcache
fs/direct-io.c: minor cleanups in do_blockdev_direct_IO
...
Currently <linux/slab.h> #includes <linux/kmemleak.h> for no obvious
reason. It looks like it's only a convenience, so remove kmemleak.h
from slab.h and add <linux/kmemleak.h> to any users of kmemleak_* that
don't already #include it. Also remove <linux/kmemleak.h> from source
files that do not use it.
This is tested on i386 allmodconfig and x86_64 allmodconfig. It would
be good to run it through the 0day bot for other $ARCHes. I have
neither the horsepower nor the storage space for the other $ARCHes.
Update: This patch has been extensively build-tested by both the 0day
bot & kisskb/ozlabs build farms. Both of them reported 2 build failures
for which patches are included here (in v2).
[ slab.h is the second most used header file after module.h; kernel.h is
right there with slab.h. There could be some minor error in the
counting due to some #includes having comments after them and I didn't
combine all of those. ]
[akpm@linux-foundation.org: security/keys/big_key.c needs vmalloc.h, per sfr]
Link: http://lkml.kernel.org/r/e4309f98-3749-93e1-4bb7-d9501a39d015@infradead.org
Link: http://kisskb.ellerman.id.au/kisskb/head/13396/
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Michael Ellerman <mpe@ellerman.id.au> [2 build failures]
Reported-by: Fengguang Wu <fengguang.wu@intel.com> [2 build failures]
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull trivial tree updates from Jiri Kosina.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
kfifo: fix inaccurate comment
tools/thermal: tmon: fix for segfault
net: Spelling s/stucture/structure/
edd: don't spam log if no EDD information is present
Documentation: Fix early-microcode.txt references after file rename
tracing: Block comments should align the * on each line
treewide: Fix typos in printk
GenWQE: Fix a typo in two comments
treewide: Align function definition open/close braces
Here is the big set of char/misc driver patches for 4.17-rc1.
There are a lot of little things in here, nothing huge, but all
important to the different hardware types involved:
- thunderbolt driver updates
- parport updates (people still care...)
- nvmem driver updates
- mei updates (as always)
- hwtracing driver updates
- hyperv driver updates
- extcon driver updates
- and a handfull of even smaller driver subsystem and individual
driver updates
All of these have been in linux-next with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWsShSQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykNqwCfUbfvopswb1PesHCLABDBsFQChgoAniDa6pS9
kI8TN5MdLN85UU27Mkb6
=BzFR
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc updates from Greg KH:
"Here is the big set of char/misc driver patches for 4.17-rc1.
There are a lot of little things in here, nothing huge, but all
important to the different hardware types involved:
- thunderbolt driver updates
- parport updates (people still care...)
- nvmem driver updates
- mei updates (as always)
- hwtracing driver updates
- hyperv driver updates
- extcon driver updates
- ... and a handful of even smaller driver subsystem and individual
driver updates
All of these have been in linux-next with no reported issues"
* tag 'char-misc-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (149 commits)
hwtracing: Add HW tracing support menu
intel_th: Add ACPI glue layer
intel_th: Allow forcing host mode through drvdata
intel_th: Pick up irq number from resources
intel_th: Don't touch switch routing in host mode
intel_th: Use correct method of finding hub
intel_th: Add SPDX GPL-2.0 header to replace GPLv2 boilerplate
stm class: Make dummy's master/channel ranges configurable
stm class: Add SPDX GPL-2.0 header to replace GPLv2 boilerplate
MAINTAINERS: Bestow upon myself the care for drivers/hwtracing
hv: add SPDX license id to Kconfig
hv: add SPDX license to trace
Drivers: hv: vmbus: do not mark HV_PCIE as perf_device
Drivers: hv: vmbus: respect what we get from hv_get_synint_state()
/dev/mem: Avoid overwriting "err" in read_mem()
eeprom: at24: use SPDX identifier instead of GPL boiler-plate
eeprom: at24: simplify the i2c functionality checking
eeprom: at24: fix a line break
eeprom: at24: tweak newlines
eeprom: at24: refactor at24_probe()
...
Nothing particularly stands out here, probably because people were tied
up with spectre/meltdown stuff last time around. Still, the main pieces
are:
- Rework of our CPU features framework so that we can whitelist CPUs that
don't require kpti even in a heterogeneous system
- Support for the IDC/DIC architecture extensions, which allow us to elide
instruction and data cache maintenance when writing out instructions
- Removal of the large memory model which resulted in suboptimal codegen
by the compiler and increased the use of literal pools, which could
potentially be used as ROP gadgets since they are mapped as executable
- Rework of forced signal delivery so that the siginfo_t is well-formed
and handling of show_unhandled_signals is consolidated and made
consistent between different fault types
- More siginfo cleanup based on the initial patches from Eric Biederman
- Workaround for Cortex-A55 erratum #1024718
- Some small ACPI IORT updates and cleanups from Lorenzo Pieralisi
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaw1TCAAoJELescNyEwWM0gyQIAJVMK4QveBW+LwF96NYdZo16
p90Aa+nqKelh/s93govQArDMv1gxyuXdFlQZVOGPQHfqpz6RhJWmBA2tFsUbQrUc
OBcioPrRihqTmKBe+1r1XORwZxkVX6GGmCn0LYpPR7I3TjxXZpvxqaxGxiUvHkci
yVxWlDTyN/7eL3akhCpCDagN3Fxwk3QnJLqE3fxOFMlY7NvQcmUxcITiUl/s469q
xK6SWH9SRH1JK8jTHPitwUBiU//3FfCqSI9HLEdDIDoTuPcVM8UetWvi4QzrzJL1
UYg8lmU0CXNmflDzZJDaMf+qFApOrGxR0YVPpBzlQvxe0JIY69g48f+JzDPz8nc=
=+gNa
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Nothing particularly stands out here, probably because people were
tied up with spectre/meltdown stuff last time around. Still, the main
pieces are:
- Rework of our CPU features framework so that we can whitelist CPUs
that don't require kpti even in a heterogeneous system
- Support for the IDC/DIC architecture extensions, which allow us to
elide instruction and data cache maintenance when writing out
instructions
- Removal of the large memory model which resulted in suboptimal
codegen by the compiler and increased the use of literal pools,
which could potentially be used as ROP gadgets since they are
mapped as executable
- Rework of forced signal delivery so that the siginfo_t is
well-formed and handling of show_unhandled_signals is consolidated
and made consistent between different fault types
- More siginfo cleanup based on the initial patches from Eric
Biederman
- Workaround for Cortex-A55 erratum #1024718
- Some small ACPI IORT updates and cleanups from Lorenzo Pieralisi
- Misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (70 commits)
arm64: uaccess: Fix omissions from usercopy whitelist
arm64: fpsimd: Split cpu field out from struct fpsimd_state
arm64: tlbflush: avoid writing RES0 bits
arm64: cmpxchg: Include linux/compiler.h in asm/cmpxchg.h
arm64: move percpu cmpxchg implementation from cmpxchg.h to percpu.h
arm64: cmpxchg: Include build_bug.h instead of bug.h for BUILD_BUG
arm64: lse: Include compiler_types.h and export.h for out-of-line LL/SC
arm64: fpsimd: include <linux/init.h> in fpsimd.h
drivers/perf: arm_pmu_platform: do not warn about affinity on uniprocessor
perf: arm_spe: include linux/vmalloc.h for vmap()
Revert "arm64: Revert L1_CACHE_SHIFT back to 6 (64-byte cache line size)"
arm64: cpufeature: Avoid warnings due to unused symbols
arm64: Add work around for Arm Cortex-A55 Erratum 1024718
arm64: Delay enabling hardware DBM feature
arm64: Add MIDR encoding for Arm Cortex-A55 and Cortex-A35
arm64: capabilities: Handle shared entries
arm64: capabilities: Add support for checks based on a list of MIDRs
arm64: Add helpers for checking CPU MIDR against a range
arm64: capabilities: Clean up midr range helpers
arm64: capabilities: Change scope of VHE to Boot CPU feature
...
Pull sparc updates from David Miller:
1) Add support for ADI (Application Data Integrity) found in more
recent sparc64 cpus. Essentially this is keyed based access to
virtual memory, and if the key encoded in the virual address is
wrong you get a trap.
The mm changes were reviewed by Andrew Morton and others.
Work by Khalid Aziz.
2) Validate DAX completion index range properly, from Rob Gardner.
3) Add proper Kconfig deps for DAX driver. From Guenter Roeck.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next:
sparc64: Make atomic_xchg() an inline function rather than a macro.
sparc64: Properly range check DAX completion index
sparc: Make auxiliary vectors for ADI available on 32-bit as well
sparc64: Oracle DAX driver depends on SPARC64
sparc64: Update signal delivery to use new helper functions
sparc64: Add support for ADI (Application Data Integrity)
mm: Allow arch code to override copy_highpage()
mm: Clear arch specific VM flags on protection change
mm: Add address parameter to arch_validate_prot()
sparc64: Add auxiliary vectors to report platform ADI properties
sparc64: Add handler for "Memory Corruption Detected" trap
sparc64: Add HV fault type handlers for ADI related faults
sparc64: Add support for ADI register fields, ASIs and traps
mm, swap: Add infrastructure for saving page metadata on swap
signals, sparc: Add signal codes for ADI violations
Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
"System calls are interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or
compat_sys_xyzzy() should only be called from userspace via the
syscall table, but not from elsewhere in the kernel.
At least on 64-bit x86, it will likely be a hard requirement from
v4.17 onwards to not call system call functions in the kernel: It is
better to use use a different calling convention for system calls
there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
which then hands processing over to the actual syscall function. This
means that only those parameters which are actually needed for a
specific syscall are passed on during syscall entry, instead of
filling in six CPU registers with random user space content all the
time (which may cause serious trouble down the call chain). Those
x86-specific patches will be pushed through the x86 tree in the near
future.
Moreover, rules on how data may be accessed may differ between kernel
data and user data. This is another reason why calling sys_xyzzy() is
generally a bad idea, and -- at most -- acceptable in arch-specific
code.
This patchset removes all in-kernel calls to syscall functions in the
kernel with the exception of arch/. On top of this, it cleans up the
three places where many syscalls are referenced or prototyped, namely
kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"
* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
bpf: whitelist all syscalls for error injection
kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
kernel/sys_ni: sort cond_syscall() entries
syscalls/x86: auto-create compat_sys_*() prototypes
syscalls: sort syscall prototypes in include/linux/compat.h
net: remove compat_sys_*() prototypes from net/compat.h
syscalls: sort syscall prototypes in include/linux/syscalls.h
kexec: move sys_kexec_load() prototype to syscalls.h
x86/sigreturn: use SYSCALL_DEFINE0
x86: fix sys_sigreturn() return type to be long, not unsigned long
x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
...
Pull x86 dma mapping updates from Ingo Molnar:
"This tree, by Christoph Hellwig, switches over the x86 architecture to
the generic dma-direct and swiotlb code, and also unifies more of the
dma-direct code between architectures. The now unused x86-only
primitives are removed"
* 'x86-dma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
dma-mapping: Don't clear GFP_ZERO in dma_alloc_attrs
swiotlb: Make swiotlb_{alloc,free}_buffer depend on CONFIG_DMA_DIRECT_OPS
dma/swiotlb: Remove swiotlb_{alloc,free}_coherent()
dma/direct: Handle force decryption for DMA coherent buffers in common code
dma/direct: Handle the memory encryption bit in common code
dma/swiotlb: Remove swiotlb_set_mem_attributes()
set_memory.h: Provide set_memory_{en,de}crypted() stubs
x86/dma: Remove dma_alloc_coherent_gfp_flags()
iommu/intel-iommu: Enable CONFIG_DMA_DIRECT_OPS=y and clean up intel_{alloc,free}_coherent()
iommu/amd_iommu: Use CONFIG_DMA_DIRECT_OPS=y and dma_direct_{alloc,free}()
x86/dma/amd_gart: Use dma_direct_{alloc,free}()
x86/dma/amd_gart: Look at dev->coherent_dma_mask instead of GFP_DMA
x86/dma: Use generic swiotlb_ops
x86/dma: Use DMA-direct (CONFIG_DMA_DIRECT_OPS=y)
x86/dma: Remove dma_alloc_coherent_mask()
Pull x86 timer updates from Ingo Molnar:
"Two changes: add the new convert_art_ns_to_tsc() API for upcoming
Intel Goldmont+ drivers, and remove the obsolete rdtscll() API"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsc: Get rid of rdtscll()
x86/tsc: Convert ART in nanoseconds to TSC
Pull x86 platform updates from Ingo Molnar:
"The main changes in this cycle were:
- Add "Jailhouse" hypervisor support (Jan Kiszka)
- Update DeviceTree support (Ivan Gorinov)
- Improve DMI date handling (Andy Shevchenko)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/PCI: Fix a potential regression when using dmi_get_bios_year()
firmware/dmi_scan: Uninline dmi_get_bios_year() helper
x86/devicetree: Use CPU description from Device Tree
of/Documentation: Specify local APIC ID in "reg"
MAINTAINERS: Add entry for Jailhouse
x86/jailhouse: Allow to use PCI_MMCONFIG without ACPI
x86: Consolidate PCI_MMCONFIG configs
x86: Align x86_64 PCI_MMCONFIG with 32-bit variant
x86/jailhouse: Enable PCI mmconfig access in inmates
PCI: Scan all functions when running over Jailhouse
jailhouse: Provide detection for non-x86 systems
x86/devicetree: Fix device IRQ settings in DT
x86/devicetree: Initialize device tree before using it
pci: Simplify code by using the new dmi_get_bios_year() helper
ACPI/sleep: Simplify code by using the new dmi_get_bios_year() helper
x86/pci: Simplify code by using the new dmi_get_bios_year() helper
dmi: Introduce the dmi_get_bios_year() helper function
x86/platform/quark: Re-use DEFINE_SHOW_ATTRIBUTE() macro
x86/platform/atom: Re-use DEFINE_SHOW_ATTRIBUTE() macro
Pull x86 mm updates from Ingo Molnar:
- Extend the memmap= boot parameter syntax to allow the redeclaration
and dropping of existing ranges, and to support all e820 range types
(Jan H. Schönherr)
- Improve the W+X boot time security checks to remove false positive
warnings on Xen (Jan Beulich)
- Support booting as Xen PVH guest (Juergen Gross)
- Improved 5-level paging (LA57) support, in particular it's possible
now to have a single kernel image for both 4-level and 5-level
hardware (Kirill A. Shutemov)
- AMD hardware RAM encryption support (SME/SEV) fixes (Tom Lendacky)
- Preparatory commits for hardware-encrypted RAM support on Intel CPUs.
(Kirill A. Shutemov)
- Improved Intel-MID support (Andy Shevchenko)
- Show EFI page tables in page_tables debug files (Andy Lutomirski)
- ... plus misc fixes and smaller cleanups
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits)
x86/cpu/tme: Fix spelling: "configuation" -> "configuration"
x86/boot: Fix SEV boot failure from change to __PHYSICAL_MASK_SHIFT
x86/mm: Update comment in detect_tme() regarding x86_phys_bits
x86/mm/32: Remove unused node_memmap_size_bytes() & CONFIG_NEED_NODE_MEMMAP_SIZE logic
x86/mm: Remove pointless checks in vmalloc_fault
x86/platform/intel-mid: Add special handling for ACPI HW reduced platforms
ACPI, x86/boot: Introduce the ->reduced_hw_early_init() ACPI callback
ACPI, x86/boot: Split out acpi_generic_reduce_hw_init() and export
x86/pconfig: Provide defines and helper to run MKTME_KEY_PROG leaf
x86/pconfig: Detect PCONFIG targets
x86/tme: Detect if TME and MKTME is activated by BIOS
x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G
x86/boot/compressed/64: Use page table in trampoline memory
x86/boot/compressed/64: Use stack from trampoline memory
x86/boot/compressed/64: Make sure we have a 32-bit code segment
x86/mm: Do not use paravirtualized calls in native_set_p4d()
kdump, vmcoreinfo: Export pgtable_l5_enabled value
x86/boot/compressed/64: Prepare new top-level page table for trampoline
x86/boot/compressed/64: Set up trampoline memory
x86/boot/compressed/64: Save and restore trampoline memory
...
Pull x86 cleanups and msr updates from Ingo Molnar:
"The main change is a performance/latency improvement to /dev/msr
access. The rest are misc cleanups"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/msr: Make rdmsrl_safe_on_cpu() scheduling safe as well
x86/cpuid: Allow cpuid_read() to schedule
x86/msr: Allow rdmsr_safe_on_cpu() to schedule
x86/rtc: Stop using deprecated functions
x86/dumpstack: Unify show_regs()
x86/fault: Do not print IP in show_fault_oops()
x86/MSR: Move native_* variants to msr.h
Pull x86 build updates from Ingo Molnar:
"The biggest change is the forcing of asm-goto support on x86, which
effectively increases the GCC minimum supported version to gcc-4.5 (on
x86)"
* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/build: Don't pass in -D__KERNEL__ multiple times
x86: Remove FAST_FEATURE_TESTS
x86: Force asm-goto
x86/build: Drop superfluous ALIGN from the linker script
Pull x86 apic updates from Ingo Molnar:
"The main x86 APIC/IOAPIC changes in this cycle were:
- Robustify kexec support to more carefully restore IRQ hardware
state before calling into kexec/kdump kernels. (Baoquan He)
- Clean up the local APIC code a bit (Dou Liyang)
- Remove unused callbacks (David Rientjes)"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Finish removing unused callbacks
x86/apic: Drop logical_smp_processor_id() inline
x86/apic: Modernize the pending interrupt code
x86/apic: Move pending interrupt check code into it's own function
x86/apic: Set up through-local-APIC mode on the boot CPU if 'noapic' specified
x86/apic: Rename variables and functions related to x86_io_apic_ops
x86/apic: Remove the (now) unused disable_IO_APIC() function
x86/apic: Fix restoring boot IRQ mode in reboot and kexec/kdump
x86/apic: Split disable_IO_APIC() into two functions to fix CONFIG_KEXEC_JUMP=y
x86/apic: Split out restore_boot_irq_mode() from disable_IO_APIC()
x86/apic: Make setup_local_APIC() static
x86/apic: Simplify init_bsp_APIC() usage
x86/x2apic: Mark set_x2apic_phys_mode() as __init
Pull x86 RAS updates from Ingo Molnar:
"The main changes in this cycle were:
- AMD MCE support/decoding improvements (Yazen Ghannam)
- general MCE header cleanups and reorganization (Borislav Petkov)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "x86/mce/AMD: Collect error info even if valid bits are not set"
x86/MCE: Cleanup and complete struct mce fields definitions
x86/mce/AMD: Carve out SMCA get_block_address() code
x86/mce/AMD: Get address from already initialized block
x86/mce/AMD, EDAC/mce_amd: Enumerate Reserved SMCA bank type
x86/mce/AMD: Pass the bank number to smca_get_bank_type()
x86/mce/AMD: Collect error info even if valid bits are not set
x86/mce: Issue the 'mcelog --ascii' message only on !AMD
x86/mce: Convert 'struct mca_config' bools to a bitfield
x86/mce: Put private structures and definitions into the internal header
All definitions of syscalls in x86 except for those patched here have
already been using the appropriate SYSCALL_DEFINE*.
Signed-off-by: Michael Tautschnig <tautschn@amazon.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jaswinder Singh <jaswinder@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: x86@kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Same as with other system calls, sys_sigreturn() should return a value
of type long, not unsigned long. This also matches the behaviour for
IA32_EMULATION, see sys32_sigreturn() in arch/x86/ia32/ia32_signal.c .
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: x86@kernel.org
Cc: Michael Tautschnig <tautschn@amazon.co.uk>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_ioperm() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the same
calling convention as sys_ioperm().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: x86@kernel.org
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the
sys_mmap_pgoff() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_mmap_pgoff().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJavDxYAAoJEAx081l5xIa+pCoP/iwjuxkSTdJpZUx5g0daGkCK
O18moGqGPChb7qJovfHqCKZ1f9PGulQt7SxwFzzJXNbv0PbfMA/Og0EhMLBImb+Q
VfYgq2vJLpmkikgcI5fBrzs9DRMQKKobGIzw24VS7IkPYA7d8KgAyywBwG0+LUFR
G3sobClgapsfaUcleb3ZOeDwymGkGCuuYRpYE4giHtuMDIxCWLePKJKOaOIq8o6P
A1557EvSbKuLQGI9X50jzJOoBE3TKRQYkzuM1GthdOF8RHaMNcFy44lDNO030HwZ
hzwAIg5Izhu16PqZGyEdIQ6SJTv3isRJWEciPnOsijvjl1li3ehMdQfhGISa/jZO
ivEGd32kaactiT0jJ5OyexergEViCPVKCIORksSIk46L84luDva9L22A3yu0mf3F
ixB63bAiLH7Py77kH3DmeJdqhMxlVZXCbdBVFDvzZvY4O3Mx0Dv9mmN/nw1FVCFH
scSYnXea9/o4IY5yGASU6FAUJEEGu20HAN12oHJw7/taqV/gbbEos3F7AGmjJE0f
qe6Rt/8fwi7Lhm2va6EoOo6yltH/gL4/AgnsN76VzppNGbaIv7W8Qa4Y/ES1lAE1
SATAEUJfU8kiLrVOolIElPbgfdJwv8TzoxiKB5wK/eoH20wf4BTmOuBMviaL2qXK
Sz6wihq+IlMXW7Y7pIl/
=DrA+
-----END PGP SIGNATURE-----
Merge tag 'drm-for-v4.17' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
"Cannonlake and Vega12 support are probably the two major things. This
pull lacks nouveau, Ben had some unforseen leave and a few other
blockers so we'll see how things look or maybe leave it for this merge
window.
core:
- Device links to handle sound/gpu pm dependency
- Color encoding/range properties
- Plane clipping into plane check helper
- Backlight helpers
- DP TP4 + HBR3 helper support
amdgpu:
- Vega12 support
- Enable DC by default on all supported GPUs
- Powerplay restructuring and cleanup
- DC bandwidth calc updates
- DC backlight on pre-DCE11
- TTM backing store dropping support
- SR-IOV fixes
- Adding "wattman" like functionality
- DC crc support
- Improved DC dual-link handling
amdkfd:
- GPUVM support for dGPU
- KFD events for dGPU
- Enable PCIe atomics for dGPUs
- HSA process eviction support
- Live-lock fixes for process eviction
- VM page table allocation fix for large-bar systems
panel:
- Raydium RM68200
- AUO G104SN02 V2
- KEO TX31D200VM0BAA
- ARM Versatile panels
i915:
- Cannonlake support enabled
- AUX-F port support added
- Icelake base enabling until internal milestone of forcewake support
- Query uAPI interface (used for GPU topology information currently)
- Compressed framebuffer support for sprites
- kmem cache shrinking when GPU is idle
- Avoid boosting GPU when waited item is being processed already
- Avoid retraining LSPCON link unnecessarily
- Decrease request signaling latency
- Deprecation of I915_SET_COLORKEY_NONE
- Kerneldoc and compiler warning cleanup for upcoming CI enforcements
- Full range ycbcr toggling
- HDCP support
i915/gvt:
- Big refactor for shadow ppgtt
- KBL context save/restore via LRI cmd (Weinan)
- Properly unmap dma for guest page (Changbin)
vmwgfx:
- Lots of various improvements
etnaviv:
- Use the drm gpu scheduler
- prep work for GC7000L support
vc4:
- fix alpha blending
- Expose perf counters to userspace
pl111:
- Bandwidth checking/limiting
- Versatile panel support
sun4i:
- A83T HDMI support
- A80 support
- YUV plane support
- H3/H5 HDMI support
omapdrm:
- HPD support for DVI connector
- remove lots of static variables
msm:
- DSI updates from 10nm / SDM845
- fix for race condition with a3xx/a4xx fence completion irq
- some refactoring/prep work for eventual a6xx support (ie. when we
have a userspace)
- a5xx debugfs enhancements
- some mdp5 fixes/cleanups to prepare for eventually merging
writeback
- support (ie. when we have a userspace)
tegra:
- mmap() fixes for fbdev devices
- Overlay plane for hw cursor fix
- dma-buf cache maintenance support
mali-dp:
- YUV->RGB conversion support
rockchip:
- rk3399/chromebook fixes and improvements
rcar-du:
- LVDS support move to drm bridge
- DT bindings for R8A77995
- Driver/DT support for R8A77970
tilcdc:
- DRM panel support"
* tag 'drm-for-v4.17' of git://people.freedesktop.org/~airlied/linux: (1646 commits)
drm/i915: Fix hibernation with ACPI S0 target state
drm/i915/execlists: Use a locked clear_bit() for synchronisation with interrupt
drm/i915: Specify which engines to reset following semaphore/event lockups
drm/i915/dp: Write to SET_POWER dpcd to enable MST hub.
drm/amdkfd: Use ordered workqueue to restore processes
drm/amdgpu: Fix acquiring VM on large-BAR systems
drm/amd/pp: clean header file hwmgr.h
drm/amd/pp: use mlck_table.count for array loop index limit
drm: Fix uabi regression by allowing garbage mode->type from userspace
drm/amdgpu: Add an ATPX quirk for hybrid laptop
drm/amdgpu: fix spelling mistake: "asssert" -> "assert"
drm/amd/pp: Add new asic support in pp_psm.c
drm/amd/pp: Clean up powerplay code on Vega12
drm/amd/pp: Add smu irq handlers for legacy asics
drm/amd/pp: Fix set wrong temperature range on smu7
drm/amdgpu: Don't change preferred domian when fallback GTT v5
drm/vmwgfx: Bump version patchlevel and date
drm/vmwgfx: use monotonic event timestamps
drm/vmwgfx: Unpin the screen object backup buffer when not used
drm/vmwgfx: Stricter count of legacy surface device resources
...
Trivial fix to spelling mistake in the pr_err_once() error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20180313154709.1015-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PPC:
- Fix a bug causing occasional machine check exceptions on POWER8 hosts
(introduced in 4.16-rc1)
x86:
- Fix a guest crashing regression with nested VMX and restricted guest
(introduced in 4.16-rc1)
- Fix dependency check for pv tlb flush (The wrong dependency that
effectively disabled the feature was added in 4.16-rc4, the original
feature in 4.16-rc1, so it got decent testing.)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJavUt5AAoJEED/6hsPKofo8uQH/RuijrsAIUnymkYY+6BYFXlh
Ri8qhG8VB+C3SpWEtsqcqNVkjJTepCD2Ej5BJTL4Gc9BSTWy7Ht6kqskEgwcnzu2
xRfkg0q0vTj1+GDd+UiTZfxiinoHtB9x3fiXali5UNTCd1fweLxdidETfO+GqMMq
KDhTR+S8dXE5VG7r+iJ80LZPtHQJ94f0fh9XpQk3X2ExTG5RBxag1U2nCfiKRAZk
xRv1CNAxNaBxS38CgYfHzg31NJx38fnq/qREsIdOx0Ju9WQkglBFkhLAGUb4vL0I
nn8YX/oV9cW2G8tyPWjC245AouABOLbzu0xyj5KgCY/z1leA9tdLFX/ET6Zye+E=
=++uZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"PPC:
- Fix a bug causing occasional machine check exceptions on POWER8
hosts (introduced in 4.16-rc1)
x86:
- Fix a guest crashing regression with nested VMX and restricted
guest (introduced in 4.16-rc1)
- Fix dependency check for pv tlb flush (the wrong dependency that
effectively disabled the feature was added in 4.16-rc4, the
original feature in 4.16-rc1, so it got decent testing)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Fix pv tlb flush dependencies
KVM: nVMX: sync vmcs02 segment regs prior to vmx_set_cr0
KVM: PPC: Book3S HV: Fix duplication of host SLB entries
TLFS 5.0 says: "Support for an enlightened VMCS interface is reported with
CPUID leaf 0x40000004. If an enlightened VMCS interface is supported,
additional nested enlightenments may be discovered by reading the CPUID
leaf 0x4000000A (see 2.4.11)."
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
mshyperv.h now only contains fucntions/variables we define in kernel, all
definitions from TLFS should go to hyperv-tlfs.h.
'enum hv_cpuid_function' is removed as we already have this info in
hyperv-tlfs.h, code in mshyperv.c is adjusted accordingly.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
hyperv.h is not part of uapi, there are no (known) users outside of kernel.
We are making changes to this file to match current Hyper-V Hypervisor
Top-Level Functional Specification (TLFS, see:
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs)
and we don't want to maintain backwards compatibility.
Move the file renaming to hyperv-tlfs.h to avoid confusing it with
mshyperv.h. In future, all definitions from TLFS should go to it and
all kernel objects should go to mshyperv.h or include/linux/hyperv.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
static_key_disable_cpuslocked(): static key 'virt_spin_lock_key+0x0/0x20' used before call to jump_label_init()
WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:161 static_key_disable_cpuslocked+0x61/0x80
RIP: 0010:static_key_disable_cpuslocked+0x61/0x80
Call Trace:
static_key_disable+0x16/0x20
start_kernel+0x192/0x4b3
secondary_startup_64+0xa5/0xb0
Qspinlock will be choosed when dedicated pCPUs are available, however, the
static virt_spin_lock_key is set in kvm_spinlock_init() before jump_label_init()
has been called, which will result in a WARN(). This patch fixes it by delaying
the virt_spin_lock_key setup to .smp_prepare_cpus().
Reported-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Fixes: b2798ba0b8 ("KVM: X86: Choose qspinlock when dedicated physical CPUs are available")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This reverts commit 4b1e84276a.
Software uses the valid bits to decide if the values can be used for
further processing or other actions. So setting the valid bits will have
software act on values that it shouldn't be acting on.
The recommendation to save all the register values does not mean that
the values are always valid.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: tony.luck@intel.com
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: bp@suse.de
Cc: linux-edac@vger.kernel.org
Link: https://lkml.kernel.org/r/20180326191526.64314-1-Yazen.Ghannam@amd.com
PV TLB FLUSH can only be turned on when steal time is enabled.
The condition got reversed during conflict resolution.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Fixes: 4f2f61fc50 ("KVM: X86: Avoid traversing all the cpus for pv tlb flush when steal time is disabled")
[Rebased on top of kvm/master and reworded the commit message. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
BAU uses the old alloc_initr_gate90 method to setup its interrupt. This
fails silently as the BAU vector is in the range of APIC vectors that are
registered to the spurious interrupt handler. As a consequence BAU
broadcasts are not handled, and the broadcast source CPU hangs.
Update BAU to use new idt structure.
Fixes: dc20b2d526 ("x86/idt: Move interrupt gate initialization to IDT code")
Signed-off-by: Andrew Banman <abanman@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Mike Travis <mike.travis@hpe.com>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Russ Anderson <rja@hpe.com>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1522188546-196177-1-git-send-email-abanman@hpe.com
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJauCZfAAoJEHm+PkMAQRiGWGUH/2rhdQDkoJpYWnjaQkolECG8
MxpGE7nmIIHxQcbSDdHTGJ8IhVm6Z5wZ7ym/PwCDTT043Y1y341sJrIwL2/nTG6d
HVidk8hFvgN6QzlzVAHT3ZZMII/V9Zt+VV5SUYLGnPAVuJNHo/6uzWlTU5g+NTFo
IquFDdQUaGBlkKqby+NoAFnkV1UAIkW0g22cfvPnlO5GMer0gusGyVNvVp7TNj3C
sqj4Hvt3RMDLMNe9RZ2pFTiOD096n8FWpYftZneUTxFImhRV3Jg5MaaYZm9SI3HW
tXrv/LChT/F1mi5Pkx6tkT5Hr8WvcrwDMJ4It1kom10RqWAgjxIR3CMm448ileY=
=YKUG
-----END PGP SIGNATURE-----
Backmerge tag 'v4.16-rc7' into drm-next
Linux 4.16-rc7
This was requested by Daniel, and things were getting
a bit hard to reconcile, most of the conflicts were
trivial though.
High latencies can be observed caused by a daemon periodically reading
CPUID on all cpus. On KASAN enabled kernels ~10ms latencies can be
observed. Even without KASAN, sending an IPI to a CPU, which is in a deep
sleep state or in a long hard IRQ disabled section, waiting for the answer
can consume hundreds of microseconds.
cpuid_read() is invoked in preemptible context, so it can be converted to
sleep instead of busy wait.
Switching to smp_call_function_single_async() and a completion allows to
reschedule and reduces CPU usage and latencies.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Link: https://lkml.kernel.org/r/20180323215818.127774-2-edumazet@google.com
As Kai pointed out, the primary reason for adjusting x86_phys_bits is to
reflect that the the address space is reduced and not the ability to
communicate the available physical address space to virtual machines.
Suggested-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: linux-mm@kvack.org
Link: https://lkml.kernel.org/r/20180315134907.9311-2-kirill.shutemov@linux.intel.com
The file Documentation/x86/early-microcode.txt was renamed to
Documentation/x86/microcode.txt in 0e3258753f, but it was still
referenced by its old name in a three places:
* Documentation/x86/00-INDEX
* arch/x86/Kconfig
* arch/x86/kernel/cpu/microcode/amd.c
This commit updates these references accordingly.
Fixes: 0e3258753f ("x86/microcode: Document the three loading methods")
Signed-off-by: Jaak Ristioja <jaak@ristioja.ee>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Current x86 Device Tree implementation does not support multiprocessing.
Use new DT bindings to describe the processors.
Signed-off-by: Ivan Gorinov <ivan.gorinov@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Link: https://lkml.kernel.org/r/c291fb2cef51b730b59916d7745be0eaa4378c6c.1521753738.git.ivan.gorinov@intel.com
Pull x86 and PTI fixes from Ingo Molnar:
"Misc fixes:
- fix EFI pagetables freeing
- fix vsyscall pagetable setting on Xen PV guests
- remove ancient CONFIG_X86_PPRO_FENCE=y - x86 is TSO again
- fix two binutils (ld) development version related incompatibilities
- clean up breakpoint handling
- fix an x86 self-test"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Don't use IST entry for #BP stack
x86/efi: Free efi_pgd with free_pages()
x86/vsyscall/64: Use proper accessor to update P4D entry
x86/cpu: Remove the CONFIG_X86_PPRO_FENCE=y quirk
x86/boot/64: Verify alignment of the LOAD segment
x86/build/64: Force the linker to use 2MB page size
selftests/x86/ptrace_syscall: Fix for yet more glibc interference
There's nothing IST-worthy about #BP/int3. We don't allow kprobes
in the small handful of places in the kernel that run at CPL0 with
an invalid stack, and 32-bit kernels have used normal interrupt
gates for #BP forever.
Furthermore, we don't allow kprobes in places that have usergs while
in kernel mode, so "paranoid" is also unnecessary.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Commit 99770737ca ("x86/asm/tsc: Add rdtscll() merge helper") added
rdtscll() in August 2015 along with the comment:
/* Deprecated, keep it for a cycle for easier merging: */
12 cycles later it's really overdue for removal.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull in pending siginfo changes from Eric Biederman as we depend on
the definition of FPE_FLTUNK for cleaning up our floating-point exception
signal delivery (which is currently broken and using FPE_FIXME).
All dma_ops implementations used on x86 now take care of setting their own
required GFP_ masks for the allocation. And given that the common code
now clears harmful flags itself that means we can stop the flags in all
the IOMMU implementations as well.
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-10-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This gains support for CMA allocations for the force_iommu case, and
cleans up the code a bit.
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-7-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to phase out looking at the magic GFP_DMA flag in the DMA mapping
routines, so switch the gart driver to use the dev->coherent_dma_mask
instead, which is used to select the GFP_DMA flag in the caller.
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-6-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The generic swiotlb DMA ops were based on the x86 ones and provide
equivalent functionality, so use them.
Also fix the sta2x11 case. For that SOC the DMA map ops need an
additional physical to DMA address translations. For swiotlb buffers
that is done throught the phys_to_dma helper, but the sta2x11_dma_ops
also added an additional translation on the return value from
x86_swiotlb_alloc_coherent, which is only correct if that functions
returns a direct allocation and not a swiotlb buffer. With the
generic swiotlb and DMA-direct code phys_to_dma is not always used
and the separate sta2x11_dma_ops can be replaced with a simple
bit that marks if the additional physical to DMA address translation
is needed.
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-5-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The generic DMA-direct (CONFIG_DMA_DIRECT_OPS=y) implementation is now
functionally equivalent to the x86 nommu dma_map implementation, so
switch over to using it.
That includes switching from using x86_dma_supported in various IOMMU
drivers to use dma_direct_supported instead, which provides the same
functionality.
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-4-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These days all devices (including the ISA fallback device) have a coherent
DMA mask set, so remove the workaround.
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-3-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>