When running without MIO support, with pci=nomio or for devices which
are not MIO-capable the zPCI subsystem generates pseudo-MMIO addresses
to allow access to PCI BARs via MMIO based Linux APIs even though the
platform uses function handles and BAR numbers.
This is done by stashing an index into our global IOMAP array which
contains the function handle in the 16 most significant bits of the
addresses returned by ioremap() always setting the most significant bit.
On the other hand the MIO addresses assigned by the platform for use,
while requiring special instructions, allow PCI access with virtually
mapped physical addresses. Now the problem is that these MIO addresses
and our own pseudo-MMIO addresses may overlap, while functionally this
would not be a problem by itself this overlap is detected by common code
as both address types are added as resources in the iomem_resource tree.
This leads to the overlapping resource claim of either the MIO capable
or non-MIO capable devices with being rejected.
Since PCI is tightly coupled to the use of the iomem_resource tree, see
for example the code for request_mem_region(), we can't reasonably get
rid of the overlap being detected by keeping our pseudo-MMIO addresses
out of the iomem_resource tree.
Instead let's move the range used by our own pseudo-MMIO addresses by
starting at (1UL << 62) and only using addresses below (1UL << 63) thus
avoiding the range currently used for MIO addresses.
Fixes: c7ff0e918a ("s390/pci: deal with devices that have no support for MIO instructions")
Cc: stable@vger.kernel.org # 5.3+
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
The s390_mmio_read/write syscalls are currently broken when running with
MIO.
The new pcistb_mio/pcstg_mio/pcilg_mio instructions are executed
similiarly to normal load/store instructions and do address translation
in the current address space. That means inside the kernel they are
aware of mappings into kernel address space while outside the kernel
they use user space mappings (usually created through mmap'ing a PCI
device file).
Now when existing user space applications use the s390_pci_mmio_write
and s390_pci_mmio_read syscalls, they pass I/O addresses that are mapped
into user space so as to be usable with the new instructions without
needing a syscall. Accessing these addresses with the old instructions
as done currently leads to a kernel panic.
Also, for such a user space mapping there may not exist an equivalent
kernel space mapping which means we can't just use the new instructions
in kernel space.
Instead of replicating user mappings in the kernel which then might
collide with other mappings, we can conceptually execute the new
instructions as if executed by the user space application using the
secondary address space. This even allows us to directly store to the
user pointer without the need for copy_to/from_user().
Cc: stable@vger.kernel.org
Fixes: 71ba41c9b1 ("s390/pci: provide support for MIO instructions")
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
This is a preparation patch for usage of new pci instructions.
No functional change.
Signed-off-by: Sebastian Ott <sebott@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Most of the constants defined in pci_io.h depend on each other
and thus can be calculated.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Provide and use a ZPCI_ADDR macro as the complement of ZPCI_IDX
to get rid of some constants in the code.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
ZPCI_IOMAP_MAX_ENTRIES is off by one. Let's adjust this
for the sake of correctness.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Virtio drivers should map the part of the range they need, not
necessarily all of it.
To this end, support mapping ranges within BAR on s390.
Since multiple ranges can now be mapped within a BAR, we keep track of
the number of mappings created, and only clear out the mapping for a BAR
when this number reaches 0.
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-pci@vger.kernel.org
Tested-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Fix the following warnings from the sparse code checker:
arch/s390/include/asm/pci_io.h:165:49: warning: cast removes address space of expression
arch/s390/pci/pci.c:476:44: warning: cast removes address space of expression
arch/s390/pci/pci.c:491:36: warning: incorrect type in argument 2 (different address spaces)
arch/s390/pci/pci.c:491:36: expected void [noderef] <asn:2>*addr
arch/s390/pci/pci.c:491:36: got void *<noident>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
If a pci load instruction fails the content of the register where the
data is stored is possibly unchanged. Fix the inline assembly wrapper
__pcilg to not return stale data. Additionally fix the callers of this
function who access uninitialized variables.
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Don't let pci_load and friends crash the kernel when called with
e.g. an invalid offset. Return -ENXIO instead.
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use distinct (and hopefully sane) names for the pci instruction
wrappers.
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add PCI support for s390, (only 64 bit mode is supported by hardware):
- PCI facility tests
- PCI instructions: pcilg, pcistg, pcistb, stpcifc, mpcifc, rpcit
- map readb/w/l/q and writeb/w/l/q to pcilg and pcistg instructions
- pci_iomap implementation
- memcpy_fromio/toio
- pci_root_ops using special pcilg/pcistg
- device, bus and domain allocation
Signed-off-by: Jan Glauber <jang@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>