mirror of
https://github.com/torvalds/linux.git
synced 2024-12-02 00:51:44 +00:00
d9462140f7
174 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Vlastimil Babka
|
2583d67132 |
mm, compaction: split off flag for not updating skip hints
Pageblock skip hints were added as a heuristic for compaction, which
shares core code with CMA. Since CMA reliability would suffer from the
heuristics, compact_control flag ignore_skip_hint was added for the CMA
use case. Since
|
||
Michal Hocko
|
cd04ae1e2d |
mm, oom: do not rely on TIF_MEMDIE for memory reserves access
For ages we have been relying on TIF_MEMDIE thread flag to mark OOM
victims and then, among other things, to give these threads full access
to memory reserves. There are few shortcomings of this implementation,
though.
First of all and the most serious one is that the full access to memory
reserves is quite dangerous because we leave no safety room for the
system to operate and potentially do last emergency steps to move on.
Secondly this flag is per task_struct while the OOM killer operates on
mm_struct granularity so all processes sharing the given mm are killed.
Giving the full access to all these task_structs could lead to a quick
memory reserves depletion. We have tried to reduce this risk by giving
TIF_MEMDIE only to the main thread and the currently allocating task but
that doesn't really solve this problem while it surely opens up a room
for corner cases - e.g. GFP_NO{FS,IO} requests might loop inside the
allocator without access to memory reserves because a particular thread
was not the group leader.
Now that we have the oom reaper and that all oom victims are reapable
after
|
||
Michal Hocko
|
72675e131e |
mm, memory_hotplug: drop zone from build_all_zonelists
build_all_zonelists gets a zone parameter to initialize zone's pagesets.
There is only a single user which gives a non-NULL zone parameter and
that one doesn't really need the rest of the build_all_zonelists (see
commit
|
||
Mel Gorman
|
3ea277194d |
mm, mprotect: flush TLB if potentially racing with a parallel reclaim leaving stale TLB entries
Nadav Amit identified a theoritical race between page reclaim and mprotect due to TLB flushes being batched outside of the PTL being held. He described the race as follows: CPU0 CPU1 ---- ---- user accesses memory using RW PTE [PTE now cached in TLB] try_to_unmap_one() ==> ptep_get_and_clear() ==> set_tlb_ubc_flush_pending() mprotect(addr, PROT_READ) ==> change_pte_range() ==> [ PTE non-present - no flush ] user writes using cached RW PTE ... try_to_unmap_flush() The same type of race exists for reads when protecting for PROT_NONE and also exists for operations that can leave an old TLB entry behind such as munmap, mremap and madvise. For some operations like mprotect, it's not necessarily a data integrity issue but it is a correctness issue as there is a window where an mprotect that limits access still allows access. For munmap, it's potentially a data integrity issue although the race is massive as an munmap, mmap and return to userspace must all complete between the window when reclaim drops the PTL and flushes the TLB. However, it's theoritically possible so handle this issue by flushing the mm if reclaim is potentially currently batching TLB flushes. Other instances where a flush is required for a present pte should be ok as either the page lock is held preventing parallel reclaim or a page reference count is elevated preventing a parallel free leading to corruption. In the case of page_mkclean there isn't an obvious path that userspace could take advantage of without using the operations that are guarded by this patch. Other users such as gup as a race with reclaim looks just at PTEs. huge page variants should be ok as they don't race with reclaim. mincore only looks at PTEs. userfault also should be ok as if a parallel reclaim takes place, it will either fault the page back in or read some of the data before the flush occurs triggering a fault. Note that a variant of this patch was acked by Andy Lutomirski but this was for the x86 parts on top of his PCID work which didn't make the 4.13 merge window as expected. His ack is dropped from this version and there will be a follow-on patch on top of PCID that will include his ack. [akpm@linux-foundation.org: tweak comments] [akpm@linux-foundation.org: fix spello] Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de Reported-by: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: <stable@vger.kernel.org> [v4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
dcda9b0471 |
mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to the page allocator. This has been true but only for allocations requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always ignored for smaller sizes. This is a bit unfortunate because there is no way to express the same semantic for those requests and they are considered too important to fail so they might end up looping in the page allocator for ever, similarly to GFP_NOFAIL requests. Now that the whole tree has been cleaned up and accidental or misled usage of __GFP_REPEAT flag has been removed for !costly requests we can give the original flag a better name and more importantly a more useful semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user that the allocator would try really hard but there is no promise of a success. This will work independent of the order and overrides the default allocator behavior. Page allocator users have several levels of guarantee vs. cost options (take GFP_KERNEL as an example) - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_ attempt to free memory at all. The most light weight mode which even doesn't kick the background reclaim. Should be used carefully because it might deplete the memory and the next user might hit the more aggressive reclaim - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic allocation without any attempt to free memory from the current context but can wake kswapd to reclaim memory if the zone is below the low watermark. Can be used from either atomic contexts or when the request is a performance optimization and there is another fallback for a slow path. - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) - non sleeping allocation with an expensive fallback so it can access some portion of memory reserves. Usually used from interrupt/bh context with an expensive slow path fallback. - GFP_KERNEL - both background and direct reclaim are allowed and the _default_ page allocator behavior is used. That means that !costly allocation requests are basically nofail but there is no guarantee of that behavior so failures have to be checked properly by callers (e.g. OOM killer victim is allowed to fail currently). - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior and all allocation requests fail early rather than cause disruptive reclaim (one round of reclaim in this implementation). The OOM killer is not invoked. - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator behavior and all allocation requests try really hard. The request will fail if the reclaim cannot make any progress. The OOM killer won't be triggered. - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior and all allocation requests will loop endlessly until they succeed. This might be really dangerous especially for larger orders. Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL because they already had their semantic. No new users are added. __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if there is no progress and we have already passed the OOM point. This means that all the reclaim opportunities have been exhausted except the most disruptive one (the OOM killer) and a user defined fallback behavior is more sensible than keep retrying in the page allocator. [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c] [mhocko@suse.com: semantic fix] Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz [mhocko@kernel.org: address other thing spotted by Vlastimil] Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
baf6a9a1db |
mm, compaction: finish whole pageblock to reduce fragmentation
The main goal of direct compaction is to form a high-order page for allocation, but it should also help against long-term fragmentation when possible. Most lower-than-pageblock-order compactions are for non-movable allocations, which means that if we compact in a movable pageblock and terminate as soon as we create the high-order page, it's unlikely that the fallback heuristics will claim the whole block. Instead there might be a single unmovable page in a pageblock full of movable pages, and the next unmovable allocation might pick another pageblock and increase long-term fragmentation. To help against such scenarios, this patch changes the termination criteria for compaction so that the current pageblock is finished even though the high-order page already exists. Note that it might be possible that the high-order page formed elsewhere in the zone due to parallel activity, but this patch doesn't try to detect that. This is only done with sync compaction, because async compaction is limited to pageblock of the same migratetype, where it cannot result in a migratetype fallback. (Async compaction also eagerly skips order-aligned blocks where isolation fails, which is against the goal of migrating away as much of the pageblock as possible.) As a result of this patch, long-term memory fragmentation should be reduced. In testing based on 4.9 kernel with stress-highalloc from mmtests configured for order-4 GFP_KERNEL allocations, this patch has reduced the number of unmovable allocations falling back to movable pageblocks by 20%. The number Link: http://lkml.kernel.org/r/20170307131545.28577-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
d39773a062 |
mm, compaction: add migratetype to compact_control
Preparation patch. We are going to need migratetype at lower layers than compact_zone() and compact_finished(). Link: http://lkml.kernel.org/r/20170307131545.28577-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
f25ba6dccc |
mm, compaction: reorder fields in struct compact_control
Patch series "try to reduce fragmenting fallbacks", v3. Last year, Johannes Weiner has reported a regression in page mobility grouping [1] and while the exact cause was not found, I've come up with some ways to improve it by reducing the number of allocations falling back to different migratetype and causing permanent fragmentation. The series was tested with mmtests stress-highalloc modified to do GFP_KERNEL order-4 allocations, on 4.9 with "mm, vmscan: fix zone balance check in prepare_kswapd_sleep" (without that, kcompactd indeed wasn't woken up) on UMA machine with 4GB memory. There were 5 repeats of each run, as the extfrag stats are quite volatile (note the stats below are sums, not averages, as it was less perl hacking for me). Success rate are the same, already high due to the low allocation order used, so I'm not including them. Compaction stats: (the patches are stacked, and I haven't measured the non-functional-changes patches separately) patch 1 patch 2 patch 3 patch 4 patch 7 patch 8 Compaction stalls 22449 24680 24846 19765 22059 17480 Compaction success 12971 14836 14608 10475 11632 8757 Compaction failures 9477 9843 10238 9290 10426 8722 Page migrate success 3109022 3370438 3312164 1695105 1608435 2111379 Page migrate failure 911588 1149065 1028264 1112675 1077251 1026367 Compaction pages isolated 7242983 8015530 7782467 4629063 4402787 5377665 Compaction migrate scanned 980838938 987367943 957690188 917647238 947155598 1018922197 Compaction free scanned 557926893 598946443 602236894 594024490 541169699 763651731 Compaction cost 10243 10578 10304 8286 8398 9440 Compaction stats are mostly within noise until patch 4, which decreases the number of compactions, and migrations. Part of that could be due to more pageblocks marked as unmovable, and async compaction skipping those. This changes a bit with patch 7, but not so much. Patch 8 increases free scanner stats and migrations, which comes from the changed termination criteria. Interestingly number of compactions decreases - probably the fully compacted pageblock satisfies multiple subsequent allocations, so it amortizes. Next comes the extfrag tracepoint, where "fragmenting" means that an allocation had to fallback to a pageblock of another migratetype which wasn't fully free (which is almost all of the fallbacks). I have locally added another tracepoint for "Page steal" into steal_suitable_fallback() which triggers in situations where we are allowed to do move_freepages_block(). If we decide to also do set_pageblock_migratetype(), it's "Pages steal with pageblock" with break down for which allocation migratetype we are stealing and from which fallback migratetype. The last part "due to counting" comes from patch 4 and counts the events where the counting of movable pages allowed us to change pageblock's migratetype, while the number of free pages alone wouldn't be enough to cross the threshold. patch 1 patch 2 patch 3 patch 4 patch 7 patch 8 Page alloc extfrag event 10155066 8522968 10164959 15622080 13727068 13140319 Extfrag fragmenting 10149231 8517025 10159040 15616925 13721391 13134792 Extfrag fragmenting for unmovable 159504 168500 184177 97835 70625 56948 Extfrag fragmenting unmovable placed with movable 153613 163549 172693 91740 64099 50917 Extfrag fragmenting unmovable placed with reclaim. 5891 4951 11484 6095 6526 6031 Extfrag fragmenting for reclaimable 4738 4829 6345 4822 5640 5378 Extfrag fragmenting reclaimable placed with movable 1836 1902 1851 1579 1739 1760 Extfrag fragmenting reclaimable placed with unmov. 2902 2927 4494 3243 3901 3618 Extfrag fragmenting for movable 9984989 8343696 9968518 15514268 13645126 13072466 Pages steal 179954 192291 210880 123254 94545 81486 Pages steal with pageblock 22153 18943 20154 33562 29969 33444 Pages steal with pageblock for unmovable 14350 12858 13256 20660 19003 20852 Pages steal with pageblock for unmovable from mov. 12812 11402 11683 19072 17467 19298 Pages steal with pageblock for unmovable from recl. 1538 1456 1573 1588 1536 1554 Pages steal with pageblock for movable 7114 5489 5965 11787 10012 11493 Pages steal with pageblock for movable from unmov. 6885 5291 5541 11179 9525 10885 Pages steal with pageblock for movable from recl. 229 198 424 608 487 608 Pages steal with pageblock for reclaimable 689 596 933 1115 954 1099 Pages steal with pageblock for reclaimable from unmov. 273 219 537 658 547 667 Pages steal with pageblock for reclaimable from mov. 416 377 396 457 407 432 Pages steal with pageblock due to counting 11834 10075 7530 ... for unmovable 8993 7381 4616 ... for movable 2792 2653 2851 ... for reclaimable 49 41 63 What we can see is that "Extfrag fragmenting for unmovable" and "... placed with movable" drops with almost each patch, which is good as we are polluting less movable pageblocks with unmovable pages. The most significant change is patch 4 with movable page counting. On the other hand it increases "Extfrag fragmenting for movable" by 50%. "Pages steal" drops though, so these movable allocation fallbacks find only small free pages and are not allowed to steal whole pageblocks back. "Pages steal with pageblock" raises, because the patch increases the chances of pageblock migratetype changes to happen. This affects all migratetypes. The summary is that patch 4 is not a clear win wrt these stats, but I believe that the tradeoff it makes is a good one. There's less pollution of movable pageblocks by unmovable allocations. There's less stealing between pageblock, and those that remain have higher chance of changing migratetype also the pageblock itself, so it should more faithfully reflect the migratetype of the pages within the pageblock. The increase of movable allocations falling back to unmovable pageblock might look dramatic, but those allocations can be migrated by compaction when needed, and other patches in the series (7-9) improve that aspect. Patches 7 and 8 continue the trend of reduced unmovable fallbacks and also reduce the impact on movable fallbacks from patch 4. [1] https://www.spinics.net/lists/linux-mm/msg114237.html This patch (of 8): While currently there are (mostly by accident) no holes in struct compact_control (on x86_64), but we are going to add more bool flags, so place them all together to the end of the structure. While at it, just order all fields from largest to smallest. Link: http://lkml.kernel.org/r/20170307131545.28577-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Xishi Qiu
|
a6ffdc0784 |
mm: use is_migrate_highatomic() to simplify the code
Introduce two helpers, is_migrate_highatomic() and is_migrate_highatomic_page(). Simplify the code, no functional changes. [akpm@linux-foundation.org: use static inlines rather than macros, per mhocko] Link: http://lkml.kernel.org/r/58B94F15.6060606@huawei.com Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
c822f6223d |
mm: delete NR_PAGES_SCANNED and pgdat_reclaimable()
NR_PAGES_SCANNED counts number of pages scanned since the last page free event in the allocator. This was used primarily to measure the reclaimability of zones and nodes, and determine when reclaim should give up on them. In that role, it has been replaced in the preceding patches by a different mechanism. Being implemented as an efficient vmstat counter, it was automatically exported to userspace as well. It's however unlikely that anyone outside the kernel is using this counter in any meaningful way. Remove the counter and the unused pgdat_reclaimable(). Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jia He <hejianet@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
c73322d098 |
mm: fix 100% CPU kswapd busyloop on unreclaimable nodes
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit
|
||
Michal Hocko
|
ce612879dd |
mm: move pcp and lru-pcp draining into single wq
We currently have 2 specific WQ_RECLAIM workqueues in the mm code. vmstat_wq for updating pcp stats and lru_add_drain_wq dedicated to drain per cpu lru caches. This seems more than necessary because both can run on a single WQ. Both do not block on locks requiring a memory allocation nor perform any allocations themselves. We will save one rescuer thread this way. On the other hand drain_all_pages() queues work on the system wq which doesn't have rescuer and so this depend on memory allocation (when all workers are stuck allocating and new ones cannot be created). Initially we thought this would be more of a theoretical problem but Hugh Dickins has reported: : 4.11-rc has been giving me hangs after hours of swapping load. At : first they looked like memory leaks ("fork: Cannot allocate memory"); : but for no good reason I happened to do "cat /proc/sys/vm/stat_refresh" : before looking at /proc/meminfo one time, and the stat_refresh stuck : in D state, waiting for completion of flush_work like many kworkers. : kthreadd waiting for completion of flush_work in drain_all_pages(). This worker should be using WQ_RECLAIM as well in order to guarantee a forward progress. We can reuse the same one as for lru draining and vmstat. Link: http://lkml.kernel.org/r/20170307131751.24936-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Tested-by: Yang Li <pku.leo@gmail.com> Tested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
a8fa41ad2f |
mm, rmap: check all VMAs that PTE-mapped THP can be part of
Current rmap code can miss a VMA that maps PTE-mapped THP if the first suppage of the THP was unmapped from the VMA. We need to walk rmap for the whole range of offsets that THP covers, not only the first one. vma_address() also need to be corrected to check the range instead of the first subpage. Link: http://lkml.kernel.org/r/20170129173858.45174-6-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
235190738a |
oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA
Logic on whether we can reap pages from the VMA should match what we have in madvise_dontneed(). In particular, we should skip, VM_PFNMAP VMAs, but we don't now. Let's just extract condition on which we can shoot down pagesi from a VMA with MADV_DONTNEED into separate function and use it in both places. Link: http://lkml.kernel.org/r/20170118122429.43661-4-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
7f354a548d |
mm, compaction: add vmstats for kcompactd work
A "compact_daemon_wake" vmstat exists that represents the number of times kcompactd has woken up. This doesn't represent how much work it actually did, though. It's useful to understand how much compaction work is being done by kcompactd versus other methods such as direct compaction and explicitly triggered per-node (or system) compaction. This adds two new vmstats: "compact_daemon_migrate_scanned" and "compact_daemon_free_scanned" to represent the number of pages kcompactd has scanned as part of its migration scanner and freeing scanner, respectively. These values are still accounted for in the general "compact_migrate_scanned" and "compact_free_scanned" for compatibility. It could be argued that explicitly triggered compaction could also be tracked separately, and that could be added if others find it useful. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612071749390.69852@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
76741e776a |
mm, page_alloc: don't convert pfn to idx when merging
In __free_one_page() we do the buddy merging arithmetics on "page/buddy index", which is just the lower MAX_ORDER bits of pfn. The operations we do that affect the higher bits are bitwise AND and subtraction (in that order), where the final result will be the same with the higher bits left unmasked, as long as these bits are equal for both buddies - which must be true by the definition of a buddy. We can therefore use pfn's directly instead of "index" and skip the zeroing of >MAX_ORDER bits. This can help a bit by itself, although compiler might be smart enough already. It also helps the next patch to avoid page_to_pfn() for memory hole checks. Link: http://lkml.kernel.org/r/20161216120009.20064-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nicholas Piggin
|
6290602709 |
mm: add PageWaiters indicating tasks are waiting for a page bit
Add a new page flag, PageWaiters, to indicate the page waitqueue has tasks waiting. This can be tested rather than testing waitqueue_active which requires another cacheline load. This bit is always set when the page has tasks on page_waitqueue(page), and is set and cleared under the waitqueue lock. It may be set when there are no tasks on the waitqueue, which will cause a harmless extra wakeup check that will clears the bit. The generic bit-waitqueue infrastructure is no longer used for pages. Instead, waitqueues are used directly with a custom key type. The generic code was not flexible enough to have PageWaiters manipulation under the waitqueue lock (which simplifies concurrency). This improves the performance of page lock intensive microbenchmarks by 2-3%. Putting two bits in the same word opens the opportunity to remove the memory barrier between clearing the lock bit and testing the waiters bit, after some work on the arch primitives (e.g., ensuring memory operand widths match and cover both bits). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jan Kara
|
2994302bc8 |
mm: add orig_pte field into vm_fault
Add orig_pte field to vm_fault structure to allow ->page_mkwrite handlers to fully handle the fault. This also allows us to save some passing of extra arguments around. Link: http://lkml.kernel.org/r/1479460644-25076-8-git-send-email-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jan Kara
|
82b0f8c39a |
mm: join struct fault_env and vm_fault
Currently we have two different structures for passing fault information around - struct vm_fault and struct fault_env. DAX will need more information in struct vm_fault to handle its faults so the content of that structure would become event closer to fault_env. Furthermore it would need to generate struct fault_env to be able to call some of the generic functions. So at this point I don't think there's much use in keeping these two structures separate. Just embed into struct vm_fault all that is needed to use it for both purposes. Link: http://lkml.kernel.org/r/1479460644-25076-2-git-send-email-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
9f7e338793 |
mm, compaction: make full priority ignore pageblock suitability
Several people have reported premature OOMs for order-2 allocations (stack) due to OOM rework in 4.7. In the scenario (parallel kernel build and dd writing to two drives) many pageblocks get marked as Unmovable and compaction free scanner struggles to isolate free pages. Joonsoo Kim pointed out that the free scanner skips pageblocks that are not movable to prevent filling them and forcing non-movable allocations to fallback to other pageblocks. Such heuristic makes sense to help prevent long-term fragmentation, but premature OOMs are relatively more urgent problem. As a compromise, this patch disables the heuristic only for the ultimate compaction priority. Link: http://lkml.kernel.org/r/20160906135258.18335-5-vbabka@suse.cz Reported-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com> Reported-by: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com> Reported-by: Olaf Hering <olaf@aepfle.de> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
06ed29989f |
mm, compaction: make whole_zone flag ignore cached scanner positions
Patch series "make direct compaction more deterministic") This is mostly a followup to Michal's oom detection rework, which highlighted the need for direct compaction to provide better feedback in reclaim/compaction loop, so that it can reliably recognize when compaction cannot make further progress, and allocation should invoke OOM killer or fail. We've discussed this at LSF/MM [1] where I proposed expanding the async/sync migration mode used in compaction to more general "priorities". This patchset adds one new priority that just overrides all the heuristics and makes compaction fully scan all zones. I don't currently think that we need more fine-grained priorities, but we'll see. Other than that there's some smaller fixes and cleanups, mainly related to the THP-specific hacks. I've tested this with stress-highalloc in GFP_KERNEL order-4 and THP-like order-9 scenarios. There's some improvement for compaction stats for the order-4, which is likely due to the better watermarks handling. In the previous version I reported mostly noise wrt compaction stats, and decreased direct reclaim - now the reclaim is without difference. I believe this is due to the less aggressive compaction priority increase in patch 6. "before" is a mmotm tree prior to 4.7 release plus the first part of the series that was sent and merged separately before after order-4: Compaction stalls 27216 30759 Compaction success 19598 25475 Compaction failures 7617 5283 Page migrate success 370510 464919 Page migrate failure 25712 27987 Compaction pages isolated 849601 1041581 Compaction migrate scanned 143146541 101084990 Compaction free scanned 208355124 144863510 Compaction cost 1403 1210 order-9: Compaction stalls 7311 7401 Compaction success 1634 1683 Compaction failures 5677 5718 Page migrate success 194657 183988 Page migrate failure 4753 4170 Compaction pages isolated 498790 456130 Compaction migrate scanned 565371 524174 Compaction free scanned 4230296 4250744 Compaction cost 215 203 [1] https://lwn.net/Articles/684611/ This patch (of 11): A recent patch has added whole_zone flag that compaction sets when scanning starts from the zone boundary, in order to report that zone has been fully scanned in one attempt. For allocations that want to try really hard or cannot fail, we will want to introduce a mode where scanning whole zone is guaranteed regardless of the cached positions. This patch reuses the whole_zone flag in a way that if it's already passed true to compaction, the cached scanner positions are ignored. Employing this flag during reclaim/compaction loop will be done in the next patch. This patch however converts compaction invoked from userspace via procfs to use this flag. Before this patch, the cached positions were first reset to zone boundaries and then read back from struct zone, so there was a window where a parallel compaction could replace the reset values, making the manual compaction less effective. Using the flag instead of performing reset is more robust. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20160810091226.6709-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
c3486f5376 |
mm, compaction: simplify contended compaction handling
Async compaction detects contention either due to failing trylock on
zone->lock or lru_lock, or by need_resched(). Since
|
||
Mel Gorman
|
e6cbd7f2ef |
mm, page_alloc: remove fair zone allocation policy
The fair zone allocation policy interleaves allocation requests between zones to avoid an age inversion problem whereby new pages are reclaimed to balance a zone. Reclaim is now node-based so this should no longer be an issue and the fair zone allocation policy is not free. This patch removes it. Link: http://lkml.kernel.org/r/1467970510-21195-30-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a5f5f91da6 |
mm: convert zone_reclaim to node_reclaim
As reclaim is now per-node based, convert zone_reclaim to be node_reclaim. It is possible that a node will be reclaimed multiple times if it has multiple zones but this is unavoidable without caching all nodes traversed so far. The documentation and interface to userspace is the same from a configuration perspective and will will be similar in behaviour unless the node-local allocation requests were also limited to lower zones. Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
bae473a423 |
mm: introduce fault_env
The idea borrowed from Peter's patch from patchset on speculative page faults[1]: Instead of passing around the endless list of function arguments, replace the lot with a single structure so we can change context without endless function signature changes. The changes are mostly mechanical with exception of faultaround code: filemap_map_pages() got reworked a bit. This patch is preparation for the next one. [1] http://lkml.kernel.org/r/20141020222841.302891540@infradead.org Link: http://lkml.kernel.org/r/1466021202-61880-9-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ebru Akagunduz
|
8a966ed746 |
mm: make swapin readahead to improve thp collapse rate
This patch makes swapin readahead to improve thp collapse rate. When khugepaged scanned pages, there can be a few of the pages in swap area. With the patch THP can collapse 4kB pages into a THP when there are up to max_ptes_swap swap ptes in a 2MB range. The patch was tested with a test program that allocates 400B of memory, writes to it, and then sleeps. I force the system to swap out all. Afterwards, the test program touches the area by writing, it skips a page in each 20 pages of the area. Without the patch, system did not swap in readahead. THP rate was %65 of the program of the memory, it did not change over time. With this patch, after 10 minutes of waiting khugepaged had collapsed %99 of the program's memory. [kirill.shutemov@linux.intel.com: trivial cleanup of exit path of the function] [kirill.shutemov@linux.intel.com: __collapse_huge_page_swapin(): drop unused 'pte' parameter] [kirill.shutemov@linux.intel.com: do not hold anon_vma lock during swap in] Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Xie XiuQi <xiexiuqi@huawei.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
46f24fd857 |
mm/page_alloc: introduce post allocation processing on page allocator
This patch is motivated from Hugh and Vlastimil's concern [1]. There are two ways to get freepage from the allocator. One is using normal memory allocation API and the other is __isolate_free_page() which is internally used for compaction and pageblock isolation. Later usage is rather tricky since it doesn't do whole post allocation processing done by normal API. One problematic thing I already know is that poisoned page would not be checked if it is allocated by __isolate_free_page(). Perhaps, there would be more. We could add more debug logic for allocated page in the future and this separation would cause more problem. I'd like to fix this situation at this time. Solution is simple. This patch commonize some logic for newly allocated page and uses it on all sites. This will solve the problem. [1] http://marc.info/?i=alpine.LSU.2.11.1604270029350.7066%40eggly.anvils%3E [iamjoonsoo.kim@lge.com: mm-page_alloc-introduce-post-allocation-processing-on-page-allocator-v3] Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-9-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e838a45f93 |
mm, sl[au]b: add __GFP_ATOMIC to the GFP reclaim mask
Commit
|
||
Michal Hocko
|
9fbeb5ab59 |
mm: make vm_mmap killable
All the callers of vm_mmap seem to check for the failure already and bail out in one way or another on the error which means that we can change it to use killable version of vm_mmap_pgoff and return -EINTR if the current task gets killed while waiting for mmap_sem. This also means that vm_mmap_pgoff can be killable by default and drop the additional parameter. This will help in the OOM conditions when the oom victim might be stuck waiting for the mmap_sem for write which in turn can block oom_reaper which relies on the mmap_sem for read to make a forward progress and reclaim the address space of the victim. Please note that load_elf_binary is ignoring vm_mmap error for current->personality & MMAP_PAGE_ZERO case but that shouldn't be a problem because the address is not used anywhere and we never return to the userspace if we got killed. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
dc0ef0df7b |
mm: make mmap_sem for write waits killable for mm syscalls
This is a follow up work for oom_reaper [1]. As the async OOM killing depends on oom_sem for read we would really appreciate if a holder for write didn't stood in the way. This patchset is changing many of down_write calls to be killable to help those cases when the writer is blocked and waiting for readers to release the lock and so help __oom_reap_task to process the oom victim. Most of the patches are really trivial because the lock is help from a shallow syscall paths where we can return EINTR trivially and allow the current task to die (note that EINTR will never get to the userspace as the task has fatal signal pending). Others seem to be easy as well as the callers are already handling fatal errors and bail and return to userspace which should be sufficient to handle the failure gracefully. I am not familiar with all those code paths so a deeper review is really appreciated. As this work is touching more areas which are not directly connected I have tried to keep the CC list as small as possible and people who I believed would be familiar are CCed only to the specific patches (all should have received the cover though). This patchset is based on linux-next and it depends on down_write_killable for rw_semaphores which got merged into tip locking/rwsem branch and it is merged into this next tree. I guess it would be easiest to route these patches via mmotm because of the dependency on the tip tree but if respective maintainers prefer other way I have no objections. I haven't covered all the mmap_write(mm->mmap_sem) instances here $ git grep "down_write(.*\<mmap_sem\>)" next/master | wc -l 98 $ git grep "down_write(.*\<mmap_sem\>)" | wc -l 62 I have tried to cover those which should be relatively easy to review in this series because this alone should be a nice improvement. Other places can be changed on top. [0] http://lkml.kernel.org/r/1456752417-9626-1-git-send-email-mhocko@kernel.org [1] http://lkml.kernel.org/r/1452094975-551-1-git-send-email-mhocko@kernel.org [2] http://lkml.kernel.org/r/1456750705-7141-1-git-send-email-mhocko@kernel.org This patch (of 18): This is the first step in making mmap_sem write waiters killable. It focuses on the trivial ones which are taking the lock early after entering the syscall and they are not changing state before. Therefore it is very easy to change them to use down_write_killable and immediately return with -EINTR. This will allow the waiter to pass away without blocking the mmap_sem which might be required to make a forward progress. E.g. the oom reaper will need the lock for reading to dismantle the OOM victim address space. The only tricky function in this patch is vm_mmap_pgoff which has many call sites via vm_mmap. To reduce the risk keep vm_mmap with the original non-killable semantic for now. vm_munmap callers do not bother checking the return value so open code it into the munmap syscall path for now for simplicity. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
c8f7de0bfa |
mm, compaction: distinguish between full and partial COMPACT_COMPLETE
COMPACT_COMPLETE now means that compaction and free scanner met. This is not very useful information if somebody just wants to use this feedback and make any decisions based on that. The current caller might be a poor guy who just happened to scan tiny portion of the zone and that could be the reason no suitable pages were compacted. Make sure we distinguish the full and partial zone walks. Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success and be optimistic in retrying. The existing users of COMPACT_COMPLETE are conservatively changed to use COMPACT_PARTIAL_SKIPPED as well but some of them should be probably reconsidered and only defer the compaction only for COMPACT_COMPLETE with the new semantic. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
93ea9964d1 |
mm, page_alloc: remove field from alloc_context
The classzone_idx can be inferred from preferred_zoneref so remove the unnecessary field and save stack space. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c33d6c06f6 |
mm, page_alloc: avoid looking up the first zone in a zonelist twice
The allocator fast path looks up the first usable zone in a zonelist and then get_page_from_freelist does the same job in the zonelist iterator. This patch preserves the necessary information. 4.6.0-rc2 4.6.0-rc2 fastmark-v1r20 initonce-v1r20 Min alloc-odr0-1 364.00 ( 0.00%) 359.00 ( 1.37%) Min alloc-odr0-2 262.00 ( 0.00%) 260.00 ( 0.76%) Min alloc-odr0-4 214.00 ( 0.00%) 214.00 ( 0.00%) Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%) Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%) Min alloc-odr0-32 165.00 ( 0.00%) 165.00 ( 0.00%) Min alloc-odr0-64 161.00 ( 0.00%) 162.00 ( -0.62%) Min alloc-odr0-128 159.00 ( 0.00%) 161.00 ( -1.26%) Min alloc-odr0-256 168.00 ( 0.00%) 170.00 ( -1.19%) Min alloc-odr0-512 180.00 ( 0.00%) 181.00 ( -0.56%) Min alloc-odr0-1024 190.00 ( 0.00%) 190.00 ( 0.00%) Min alloc-odr0-2048 196.00 ( 0.00%) 196.00 ( 0.00%) Min alloc-odr0-4096 202.00 ( 0.00%) 202.00 ( 0.00%) Min alloc-odr0-8192 206.00 ( 0.00%) 205.00 ( 0.49%) Min alloc-odr0-16384 206.00 ( 0.00%) 205.00 ( 0.49%) The benefit is negligible and the results are within the noise but each cycle counts. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c603844bdc |
mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not necessarily generate the best code depending on the compiler. Even without an impact, it makes more sense that this be unsigned. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
0139aa7b7f |
mm: rename _count, field of the struct page, to _refcount
Many developers already know that field for reference count of the struct page is _count and atomic type. They would try to handle it directly and this could break the purpose of page reference count tracepoint. To prevent direct _count modification, this patch rename it to _refcount and add warning message on the code. After that, developer who need to handle reference count will find that field should not be accessed directly. [akpm@linux-foundation.org: fix comments, per Vlastimil] [akpm@linux-foundation.org: Documentation/vm/transhuge.txt too] [sfr@canb.auug.org.au: sync ethernet driver changes] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Sunil Goutham <sgoutham@cavium.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Manish Chopra <manish.chopra@qlogic.com> Cc: Yuval Mintz <yuval.mintz@qlogic.com> Cc: Tariq Toukan <tariqt@mellanox.com> Cc: Saeed Mahameed <saeedm@mellanox.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
aac4536355 |
mm, oom: introduce oom reaper
This patch (of 5): This is based on the idea from Mel Gorman discussed during LSFMM 2015 and independently brought up by Oleg Nesterov. The OOM killer currently allows to kill only a single task in a good hope that the task will terminate in a reasonable time and frees up its memory. Such a task (oom victim) will get an access to memory reserves via mark_oom_victim to allow a forward progress should there be a need for additional memory during exit path. It has been shown (e.g. by Tetsuo Handa) that it is not that hard to construct workloads which break the core assumption mentioned above and the OOM victim might take unbounded amount of time to exit because it might be blocked in the uninterruptible state waiting for an event (e.g. lock) which is blocked by another task looping in the page allocator. This patch reduces the probability of such a lockup by introducing a specialized kernel thread (oom_reaper) which tries to reclaim additional memory by preemptively reaping the anonymous or swapped out memory owned by the oom victim under an assumption that such a memory won't be needed when its owner is killed and kicked from the userspace anyway. There is one notable exception to this, though, if the OOM victim was in the process of coredumping the result would be incomplete. This is considered a reasonable constrain because the overall system health is more important than debugability of a particular application. A kernel thread has been chosen because we need a reliable way of invocation so workqueue context is not appropriate because all the workers might be busy (e.g. allocating memory). Kswapd which sounds like another good fit is not appropriate as well because it might get blocked on locks during reclaim as well. oom_reaper has to take mmap_sem on the target task for reading so the solution is not 100% because the semaphore might be held or blocked for write but the probability is reduced considerably wrt. basically any lock blocking forward progress as described above. In order to prevent from blocking on the lock without any forward progress we are using only a trylock and retry 10 times with a short sleep in between. Users of mmap_sem which need it for write should be carefully reviewed to use _killable waiting as much as possible and reduce allocations requests done with the lock held to absolute minimum to reduce the risk even further. The API between oom killer and oom reaper is quite trivial. wake_oom_reaper updates mm_to_reap with cmpxchg to guarantee only NULL->mm transition and oom_reaper clear this atomically once it is done with the work. This means that only a single mm_struct can be reaped at the time. As the operation is potentially disruptive we are trying to limit it to the ncessary minimum and the reaper blocks any updates while it operates on an mm. mm_struct is pinned by mm_count to allow parallel exit_mmap and a race is detected by atomic_inc_not_zero(mm_users). Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Oleg Nesterov <oleg@redhat.com> Suggested-by: Mel Gorman <mgorman@suse.de> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Argangeli <andrea@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joe Perches
|
1170532bb4 |
mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent. Miscellanea: - Realign arguments - Add missing newline to format - kmemleak-test.c has a "kmemleak: " prefix added to the "Kmemleak testing" logging message via pr_fmt Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
fe896d1878 |
mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of migration and key factor of it is page reference count. Until now, page reference is manipulated by direct calling atomic functions so we cannot follow up who and where manipulate it. Then, it is hard to find actual reason of CMA allocation failure. CMA allocation should be guaranteed to succeed so finding offending place is really important. In this patch, call sites where page reference is manipulated are converted to introduced wrapper function. This is preparation step to add tracepoint to each page reference manipulation function. With this facility, we can easily find reason of CMA allocation failure. There is no functional change in this patch. In addition, this patch also converts reference read sites. It will help a second step that renames page._count to something else and prevents later attempt to direct access to it (Suggested by Andrew). Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
accf62422b |
mm, kswapd: replace kswapd compaction with waking up kcompactd
Similarly to direct reclaim/compaction, kswapd attempts to combine
reclaim and compaction to attempt making memory allocation of given
order available.
The details differ from direct reclaim e.g. in having high watermark as
a goal. The code involved in kswapd's reclaim/compaction decisions has
evolved to be quite complex.
Testing reveals that it doesn't actually work in at least one scenario,
and closer inspection suggests that it could be greatly simplified
without compromising on the goal (make high-order page available) or
efficiency (don't reclaim too much). The simplification relieas of
doing all compaction in kcompactd, which is simply woken up when high
watermarks are reached by kswapd's reclaim.
The scenario where kswapd compaction doesn't work was found with mmtests
test stress-highalloc configured to attempt order-9 allocations without
direct reclaim, just waking up kswapd. There was no compaction attempt
from kswapd during the whole test. Some added instrumentation shows
what happens:
- balance_pgdat() sets end_zone to Normal, as it's not balanced
- reclaim is attempted on DMA zone, which sets nr_attempted to 99, but
it cannot reclaim anything, so sc.nr_reclaimed is 0
- for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so
it merely checks if high watermarks were reached for base pages.
This is true, so no reclaim is attempted. For DMA, testorder=0
wasn't used, as compaction_suitable() returned COMPACT_SKIPPED
- even though the pgdat_needs_compaction flag wasn't set to false, no
compaction happens due to the condition sc.nr_reclaimed >
nr_attempted being false (as 0 < 99)
- priority-- due to nr_reclaimed being 0, repeat until priority reaches
0 pgdat_balanced() is false as only the small zone DMA appears
balanced (curiously in that check, watermark appears OK and
compaction_suitable() returns COMPACT_PARTIAL, because a lower
classzone_idx is used there)
Now, even if it was decided that reclaim shouldn't be attempted on the
DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 >
nr_attempted=0) is also false. The condition really should use >= as
the comment suggests. Then there is a mismatch in the check for setting
pgdat_needs_compaction to false using low watermark, while the rest uses
high watermark, and who knows what other subtlety. Hopefully this
demonstrates that this is unsustainable.
Luckily we can simplify this a lot. The reclaim/compaction decisions
make sense for direct reclaim scenario, but in kswapd, our primary goal
is to reach high watermark in order-0 pages. Afterwards we can attempt
compaction just once. Unlike direct reclaim, we don't reclaim extra
pages (over the high watermark), the current code already disallows it
for good reasons.
After this patch, we simply wake up kcompactd to process the pgdat,
after we have either succeeded or failed to reach the high watermarks in
kswapd, which goes to sleep. We pass kswapd's order and classzone_idx,
so kcompactd can apply the same criteria to determine which zones are
worth compacting. Note that we use the classzone_idx from
wakeup_kswapd(), not balanced_classzone_idx which can include higher
zones that kswapd tried to balance too, but didn't consider them in
pgdat_balanced().
Since kswapd now cannot create high-order pages itself, we need to
adjust how it determines the zones to be balanced. The key element here
is adding a "highorder" parameter to zone_balanced, which, when set to
false, makes it consider only order-0 watermark instead of the desired
higher order (this was done previously by kswapd_shrink_zone(), but not
elsewhere). This false is passed for example in pgdat_balanced().
Importantly, wakeup_kswapd() uses true to make sure kswapd and thus
kcompactd are woken up for a high-order allocation failure.
The last thing is to decide what to do with pageblock_skip bitmap
handling. Compaction maintains a pageblock_skip bitmap to record
pageblocks where isolation recently failed. This bitmap can be reset by
three ways:
1) direct compaction is restarting after going through the full deferred cycle
2) kswapd goes to sleep, and some other direct compaction has previously
finished scanning the whole zone and set zone->compact_blockskip_flush.
Note that a successful direct compaction clears this flag.
3) compaction was invoked manually via trigger in /proc
The case 2) is somewhat fuzzy to begin with, but after introducing
kcompactd we should update it. The check for direct compaction in 1),
and to set the flush flag in 2) use current_is_kswapd(), which doesn't
work for kcompactd. Thus, this patch adds bool direct_compaction to
compact_control to use in 2). For the case 1) we remove the check
completely - unlike the former kswapd compaction, kcompactd does use the
deferred compaction functionality, so flushing tied to restarting from
deferred compaction makes sense here.
Note that when kswapd goes to sleep, kcompactd is woken up, so it will
see the flushed pageblock_skip bits. This is different from when the
former kswapd compaction observed the bits and I believe it makes more
sense. Kcompactd can afford to be more thorough than a direct
compaction trying to limit allocation latency, or kswapd whose primary
goal is to reclaim.
For testing, I used stress-highalloc configured to do order-9
allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just
on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in
phases 1 and 2 work as usual):
stress-highalloc
4.5-rc1+before 4.5-rc1+after
-nodirect -nodirect
Success 1 Min 1.00 ( 0.00%) 5.00 (-66.67%)
Success 1 Mean 1.40 ( 0.00%) 6.20 (-55.00%)
Success 1 Max 2.00 ( 0.00%) 7.00 (-16.67%)
Success 2 Min 1.00 ( 0.00%) 5.00 (-66.67%)
Success 2 Mean 1.80 ( 0.00%) 6.40 (-52.38%)
Success 2 Max 3.00 ( 0.00%) 7.00 (-16.67%)
Success 3 Min 34.00 ( 0.00%) 62.00 ( 1.59%)
Success 3 Mean 41.80 ( 0.00%) 63.80 ( 1.24%)
Success 3 Max 53.00 ( 0.00%) 65.00 ( 2.99%)
User 3166.67 3181.09
System 1153.37 1158.25
Elapsed 1768.53 1799.37
4.5-rc1+before 4.5-rc1+after
-nodirect -nodirect
Direct pages scanned 32938 32797
Kswapd pages scanned 2183166 2202613
Kswapd pages reclaimed 2152359 2143524
Direct pages reclaimed 32735 32545
Percentage direct scans 1% 1%
THP fault alloc 579 612
THP collapse alloc 304 316
THP splits 0 0
THP fault fallback 793 778
THP collapse fail 11 16
Compaction stalls 1013 1007
Compaction success 92 67
Compaction failures 920 939
Page migrate success 238457 721374
Page migrate failure 23021 23469
Compaction pages isolated 504695 1479924
Compaction migrate scanned 661390 8812554
Compaction free scanned 13476658 84327916
Compaction cost 262 838
After this patch we see improvements in allocation success rate
(especially for phase 3) along with increased compaction activity. The
compaction stalls (direct compaction) in the interfering kernel builds
(probably THP's) also decreased somewhat thanks to kcompactd activity,
yet THP alloc successes improved a bit.
Note that elapsed and user time isn't so useful for this benchmark,
because of the background interference being unpredictable. It's just
to quickly spot some major unexpected differences. System time is
somewhat more useful and that didn't increase.
Also (after adjusting mmtests' ftrace monitor):
Time kswapd awake 2547781 2269241
Time kcompactd awake 0 119253
Time direct compacting 939937 557649
Time kswapd compacting 0 0
Time kcompactd compacting 0 119099
The decrease of overal time spent compacting appears to not match the
increased compaction stats. I suspect the tasks get rescheduled and
since the ftrace monitor doesn't see that, the reported time is wall
time, not CPU time. But arguably direct compactors care about overall
latency anyway, whether busy compacting or waiting for CPU doesn't
matter. And that latency seems to almost halved.
It's also interesting how much time kswapd spent awake just going
through all the priorities and failing to even try compacting, over and
over.
We can also configure stress-highalloc to perform both direct
reclaim/compaction and wakeup kswapd/kcompactd, by using
GFP_KERNEL|__GFP_HIGH|__GFP_COMP:
stress-highalloc
4.5-rc1+before 4.5-rc1+after
-direct -direct
Success 1 Min 4.00 ( 0.00%) 9.00 (-50.00%)
Success 1 Mean 8.00 ( 0.00%) 10.00 (-19.05%)
Success 1 Max 12.00 ( 0.00%) 11.00 ( 15.38%)
Success 2 Min 4.00 ( 0.00%) 9.00 (-50.00%)
Success 2 Mean 8.20 ( 0.00%) 10.00 (-16.28%)
Success 2 Max 13.00 ( 0.00%) 11.00 ( 8.33%)
Success 3 Min 75.00 ( 0.00%) 74.00 ( 1.33%)
Success 3 Mean 75.60 ( 0.00%) 75.20 ( 0.53%)
Success 3 Max 77.00 ( 0.00%) 76.00 ( 0.00%)
User 3344.73 3246.04
System 1194.24 1172.29
Elapsed 1838.04 1836.76
4.5-rc1+before 4.5-rc1+after
-direct -direct
Direct pages scanned 125146 120966
Kswapd pages scanned 2119757 2135012
Kswapd pages reclaimed 2073183 2108388
Direct pages reclaimed 124909 120577
Percentage direct scans 5% 5%
THP fault alloc 599 652
THP collapse alloc 323 354
THP splits 0 0
THP fault fallback 806 793
THP collapse fail 17 16
Compaction stalls 2457 2025
Compaction success 906 518
Compaction failures 1551 1507
Page migrate success 2031423 2360608
Page migrate failure 32845 40852
Compaction pages isolated
|
||
Naoya Horiguchi
|
832fc1de01 |
/proc/kpageflags: return KPF_BUDDY for "tail" buddy pages
Currently /proc/kpageflags returns nothing for "tail" buddy pages, which is inconvenient when grasping how free pages are distributed. This patch sets KPF_BUDDY for such pages. With this patch: $ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy MemFree: 3134992 kB flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000400 779272 3044 __________B_______________________________ buddy 0x0000000000000c00 4385 17 __________BM______________________________ buddy,mmap total 783657 3061 783657 pages is 3134628 kB (roughly consistent with the global counter,) so it's OK. [akpm@linux-foundation.org: update comment, per Naoya] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
7cf91a98e6 |
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
edf14cdbf9 |
mm, printk: introduce new format string for flags
In mm we use several kinds of flags bitfields that are sometimes printed for debugging purposes, or exported to userspace via sysfs. To make them easier to interpret independently on kernel version and config, we want to dump also the symbolic flag names. So far this has been done with repeated calls to pr_cont(), which is unreliable on SMP, and not usable for e.g. sysfs export. To get a more reliable and universal solution, this patch extends printk() format string for pointers to handle the page flags (%pGp), gfp_flags (%pGg) and vma flags (%pGv). Existing users of dump_flag_names() are converted and simplified. It would be possible to pass flags by value instead of pointer, but the %p format string for pointers already has extensions for various kernel structures, so it's a good fit, and the extra indirection in a non-critical path is negligible. [linux@rasmusvillemoes.dk: lots of good implementation suggestions] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
30bdbb7800 |
mm: polish virtual memory accounting
* add VM_STACK as alias for VM_GROWSUP/DOWN depending on architecture * always account VMAs with flag VM_STACK as stack (as it was before) * cleanup classifying helpers * update comments and documentation Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Tested-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
d977d56ce5 |
mm: warn about VmData over RLIMIT_DATA
This patch provides a way of working around a slight regression
introduced by commit
|
||
Kirill A. Shutemov
|
e9b61f1985 |
thp: reintroduce split_huge_page()
This patch adds implementation of split_huge_page() for new refcountings. Unlike previous implementation, new split_huge_page() can fail if somebody holds GUP pin on the page. It also means that pin on page would prevent it from bening split under you. It makes situation in many places much cleaner. The basic scheme of split_huge_page(): - Check that sum of mapcounts of all subpage is equal to page_count() plus one (caller pin). Foll off with -EBUSY. This way we can avoid useless PMD-splits. - Freeze the page counters by splitting all PMD and setup migration PTEs. - Re-check sum of mapcounts against page_count(). Page's counts are stable now. -EBUSY if page is pinned. - Split compound page. - Unfreeze the page by removing migration entries. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
ddc58f27f9 |
mm: drop tail page refcounting
Tail page refcounting is utterly complicated and painful to support. It uses ->_mapcount on tail pages to store how many times this page is pinned. get_page() bumps ->_mapcount on tail page in addition to ->_count on head. This information is required by split_huge_page() to be able to distribute pins from head of compound page to tails during the split. We will need ->_mapcount to account PTE mappings of subpages of the compound page. We eliminate need in current meaning of ->_mapcount in tail pages by forbidding split entirely if the page is pinned. The only user of tail page refcounting is THP which is marked BROKEN for now. Let's drop all this mess. It makes get_page() and put_page() much simpler. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
d00181b96e |
mm: use 'unsigned int' for page order
Let's try to be consistent about data type of page order. [sfr@canb.auug.org.au: fix build (type of pageblock_order)] [hughd@google.com: some configs end up with MAX_ORDER and pageblock_order having different types] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
1d798ca3f1 |
mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some context. There's one example: CPU0 CPU1 isolate_migratepages_block() page_count() compound_head() !!PageTail() == true put_page() tail->first_page = NULL head = tail->first_page alloc_pages(__GFP_COMP) prep_compound_page() tail->first_page = head __SetPageTail(p); !!PageTail() == true <head == NULL dereferencing> The race is pure theoretical. I don't it's possible to trigger it in practice. But who knows. We can fix the race by changing how encode PageTail() and compound_head() within struct page to be able to update them in one shot. The patch introduces page->compound_head into third double word block in front of compound_dtor and compound_order. Bit 0 encodes PageTail() and the rest bits are pointer to head page if bit zero is set. The patch moves page->pmd_huge_pte out of word, just in case if an architecture defines pgtable_t into something what can have the bit 0 set. hugetlb_cgroup uses page->lru.next in the second tail page to store pointer struct hugetlb_cgroup. The patch switch it to use page->private in the second tail page instead. The space is free since ->first_page is removed from the union. The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER limitation, since there's now space in first tail page to store struct hugetlb_cgroup pointer. But that's out of scope of the patch. That means page->compound_head shares storage space with: - page->lru.next; - page->next; - page->rcu_head.next; That's too long list to be absolutely sure, but looks like nobody uses bit 0 of the word. page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future call_rcu_lazy() is not allowed as it makes use of the bit and we can get false positive PageTail(). [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
dd56b04642 |
mm: page_alloc: hide some GFP internals and document the bits and flag combinations
Andrew stated the following We have quite a history of remote parts of the kernel using weird/wrong/inexplicable combinations of __GFP_ flags. I tend to think that this is because we didn't adequately explain the interface. And I don't think that gfp.h really improved much in this area as a result of this patchset. Could you go through it some time and decide if we've adequately documented all this stuff? This patches first moves some GFP flag combinations that are part of the MM internals to mm/internal.h. The rest of the patch documents the __GFP_FOO bits under various headings and then documents the flag combinations. It will not help callers that are brain damaged but the clarity might motivate some fixes and avoid future mistakes. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |