Move mntget from the very beginning of __ns_get_path to
the success path of __ns_get_path, and remove the mntget
calls.
This removes the possibility that there will be a mntget/mntput
pair of __ns_get_path has to retry, and generally simplifies the code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pid and user namepaces are hierarchical. There is no way to discover
parent-child relationships.
In a future we will use this interface to dump and restore nested
namespaces.
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Each namespace has an owning user namespace and now there is not way
to discover these relationships.
Understending namespaces relationships allows to answer the question:
what capability does process X have to perform operations on a resource
governed by namespace Y?
After a long discussion, Eric W. Biederman proposed to use ioctl-s for
this purpose.
The NS_GET_USERNS ioctl returns a file descriptor to an owning user
namespace.
It returns EPERM if a target namespace is outside of a current user
namespace.
v2: rename parent to relative
v3: Add a missing mntput when returning -EAGAIN --EWB
Acked-by: Serge Hallyn <serge@hallyn.com>
Link: https://lkml.org/lkml/2016/7/6/158
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The seq_<foo> function return values were frequently misused.
See: commit 1f33c41c03 ("seq_file: Rename seq_overflow() to
seq_has_overflowed() and make public")
All uses of these return values have been removed, so convert the
return types to void.
Miscellanea:
o Move seq_put_decimal_<type> and seq_escape prototypes closer the
other seq_vprintf prototypes
o Reorder seq_putc and seq_puts to return early on overflow
o Add argument names to seq_vprintf and seq_printf
o Update the seq_escape kernel-doc
o Convert a couple of leading spaces to tabs in seq_escape
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Today mountinfo displays a very unhelpful "/" for nsfs files. Add a
show_path method returning the same string as ns_dname. This results
in a bind mount of /proc/<pid>/ns/net showing up in /proc/<pid>/mountinfo as
"net:[1234...]" instead of "/".
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
New pseudo-filesystem: nsfs. Targets of /proc/*/ns/* live there now.
It's not mountable (not even registered, so it's not in /proc/filesystems,
etc.). Files on it *are* bindable - we explicitly permit that in do_loopback().
This stuff lives in fs/nsfs.c now; proc_ns_fget() moved there as well.
get_proc_ns() is a macro now (it's simply returning ->i_private; would
have been an inline, if not for header ordering headache).
proc_ns_inode() is an ex-parrot. The interface used in procfs is
ns_get_path(path, task, ops) and ns_get_name(buf, size, task, ops).
Dentries and inodes are never hashed; a non-counting reference to dentry
is stashed in ns_common (removed by ->d_prune()) and reused by ns_get_path()
if present. See ns_get_path()/ns_prune_dentry/nsfs_evict() for details
of that mechanism.
As the result, proc_ns_follow_link() has stopped poking in nd->path.mnt;
it does nd_jump_link() on a consistent <vfsmount,dentry> pair it gets
from ns_get_path().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>