Commit Graph

5 Commits

Author SHA1 Message Date
Aneesh Kumar K.V
8f4b01fcde libnvdimm/namespace: Differentiate between probe mapping and runtime mapping
The nvdimm core currently maps the full namespace to an ioremap range
while probing the namespace mode. This can result in probe failures on
architectures that have limited ioremap space.

For example, with a large btt namespace that consumes most of I/O remap
range, depending on the sequence of namespace initialization, the user
can find a pfn namespace initialization failure due to unavailable I/O
remap space which nvdimm core uses for temporary mapping.

nvdimm core can avoid this failure by only mapping the reserved info
block area to check for pfn superblock type and map the full namespace
resource only before using the namespace.

Given that personalities like BTT can be layered on top of any namespace
type create a generic form of devm_nsio_enable (devm_namespace_enable)
and use it inside the per-personality attach routines. Now
devm_namespace_enable() is always paired with disable unless the mapping
is going to be used for long term runtime access.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Link: https://lore.kernel.org/r/20191017073308.32645-1-aneesh.kumar@linux.ibm.com
[djbw: reworks to move devm_namespace_{en,dis}able into *attach helpers]
Reported-by: kbuild test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/20191031105741.102793-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-11-14 19:08:47 -08:00
Christoph Hellwig
1e240e8d4a memremap: move dev_pagemap callbacks into a separate structure
The dev_pagemap is a growing too many callbacks.  Move them into a
separate ops structure so that they are not duplicated for multiple
instances, and an attacker can't easily overwrite them.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-07-02 14:32:44 -03:00
Vishal Verma
d521fbaeda dax/pmem: Fix whitespace in dax_pmem
A few lines were whitespace damaged, with spaces at the start instead of
tabs. This was noticed while debugging an nfit_test failure, so fix
them.

Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-04-22 15:56:20 -07:00
Dan Williams
8fc5c73554 acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node
Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware
Interface Table), is the first known instance of a memory range
described by a unique "target" proximity domain. Where "initiator" and
"target" proximity domains is an approach that the ACPI HMAT
(Heterogeneous Memory Attributes Table) uses to described the unique
performance properties of a memory range relative to a given initiator
(e.g. CPU or DMA device).

Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y
char-device follows the traditional notion of 'numa-node' where the
attribute conveys the closest online numa-node. That numa-node attribute
is useful for cpu-binding and memory-binding processes *near* the
device. However, when the memory range backing a 'pmem', or 'dax' device
is onlined (memory hot-add) the memory-only-numa-node representing that
address needs to be differentiated from the set of online nodes. In
other words, the numa-node association of the device depends on whether
you can bind processes *near* the cpu-numa-node in the offline
device-case, or bind process *on* the memory-range directly after the
backing address range is onlined.

Allow for the case that platform firmware describes persistent memory
with a unique proximity domain, i.e. when it is distinct from the
proximity of DRAM and CPUs that are on the same socket. Plumb the Linux
numa-node translation of that proximity through the libnvdimm region
device to namespaces that are in device-dax mode. With this in place the
proposed kmem driver [1] can optionally discover a unique numa-node
number for the address range as it transitions the memory from an
offline state managed by a device-driver to an online memory range
managed by the core-mm.

[1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com

Reported-by: Fan Du <fan.du@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-06 21:41:57 -08:00
Dan Williams
730926c3b0 device-dax: Add /sys/class/dax backwards compatibility
On the expectation that some environments may not upgrade libdaxctl
(userspace component that depends on the /sys/class/dax hierarchy),
provide a default / legacy dax_pmem_compat driver. The dax_pmem_compat
driver implements the original /sys/class/dax sysfs layout rather than
/sys/bus/dax. When userspace is upgraded it can blacklist this module
and switch to the dax_pmem driver going forward.

CONFIG_DEV_DAX_PMEM_COMPAT and supporting code will be deleted according
to the dax_pmem entry in Documentation/ABI/obsolete/.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-06 21:41:57 -08:00