blk-mq currently uses percpu_ida for tag allocation. But that only
works well if the ratio between tag space and number of CPUs is
sufficiently high. For most devices and systems, that is not the
case. The end result if that we either only utilize the tag space
partially, or we end up attempting to fully exhaust it and run
into lots of lock contention with stealing between CPUs. This is
not optimal.
This new tagging scheme is a hybrid bitmap allocator. It uses
two tricks to both be SMP friendly and allow full exhaustion
of the space:
1) We cache the last allocated (or freed) tag on a per blk-mq
software context basis. This allows us to limit the space
we have to search. The key element here is not caching it
in the shared tag structure, otherwise we end up dirtying
more shared cache lines on each allocate/free operation.
2) The tag space is split into cache line sized groups, and
each context will start off randomly in that space. Even up
to full utilization of the space, this divides the tag users
efficiently into cache line groups, avoiding dirtying the same
one both between allocators and between allocator and freeer.
This scheme shows drastically better behaviour, both on small
tag spaces but on large ones as well. It has been tested extensively
to show better performance for all the cases blk-mq cares about.
Signed-off-by: Jens Axboe <axboe@fb.com>
blk_mq_wait_for_tags() is only able to wait for "normal" tags,
not reserved tags. Pass in which one we should attempt to get
a tag for, so that waiting for reserved tags will work.
Reserved tags are used for internal commands, which are usually
serialized. Hence no waiting generally takes place, but we should
ensure that it actually works if users need that functionality.
Signed-off-by: Jens Axboe <axboe@fb.com>
Add a new blk_mq_tag_set structure that gets set up before we initialize
the queue. A single blk_mq_tag_set structure can be shared by multiple
queues.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Modular export of blk_mq_{alloc,free}_tagset added by me.
Signed-off-by: Jens Axboe <axboe@fb.com>
Linux currently has two models for block devices:
- The classic request_fn based approach, where drivers use struct
request units for IO. The block layer provides various helper
functionalities to let drivers share code, things like tag
management, timeout handling, queueing, etc.
- The "stacked" approach, where a driver squeezes in between the
block layer and IO submitter. Since this bypasses the IO stack,
driver generally have to manage everything themselves.
With drivers being written for new high IOPS devices, the classic
request_fn based driver doesn't work well enough. The design dates
back to when both SMP and high IOPS was rare. It has problems with
scaling to bigger machines, and runs into scaling issues even on
smaller machines when you have IOPS in the hundreds of thousands
per device.
The stacked approach is then most often selected as the model
for the driver. But this means that everybody has to re-invent
everything, and along with that we get all the problems again
that the shared approach solved.
This commit introduces blk-mq, block multi queue support. The
design is centered around per-cpu queues for queueing IO, which
then funnel down into x number of hardware submission queues.
We might have a 1:1 mapping between the two, or it might be
an N:M mapping. That all depends on what the hardware supports.
blk-mq provides various helper functions, which include:
- Scalable support for request tagging. Most devices need to
be able to uniquely identify a request both in the driver and
to the hardware. The tagging uses per-cpu caches for freed
tags, to enable cache hot reuse.
- Timeout handling without tracking request on a per-device
basis. Basically the driver should be able to get a notification,
if a request happens to fail.
- Optional support for non 1:1 mappings between issue and
submission queues. blk-mq can redirect IO completions to the
desired location.
- Support for per-request payloads. Drivers almost always need
to associate a request structure with some driver private
command structure. Drivers can tell blk-mq this at init time,
and then any request handed to the driver will have the
required size of memory associated with it.
- Support for merging of IO, and plugging. The stacked model
gets neither of these. Even for high IOPS devices, merging
sequential IO reduces per-command overhead and thus
increases bandwidth.
For now, this is provided as a potential 3rd queueing model, with
the hope being that, as it matures, it can replace both the classic
and stacked model. That would get us back to having just 1 real
model for block devices, leaving the stacked approach to dm/md
devices (as it was originally intended).
Contributions in this patch from the following people:
Shaohua Li <shli@fusionio.com>
Alexander Gordeev <agordeev@redhat.com>
Christoph Hellwig <hch@infradead.org>
Mike Christie <michaelc@cs.wisc.edu>
Matias Bjorling <m@bjorling.me>
Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>