Use the governed feature framework to track whether or not the guest can
use 1GiB pages, and drop the one-off helper that wraps the surprisingly
non-trivial logic surrounding 1GiB page usage in the guest.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Introduce yet another X86_FEATURE flag framework to manage and cache KVM
governed features (for lack of a better name). "Governed" in this case
means that KVM has some level of involvement and/or vested interest in
whether or not an X86_FEATURE can be used by the guest. The intent of the
framework is twofold: to simplify caching of guest CPUID flags that KVM
needs to frequently query, and to add clarity to such caching, e.g. it
isn't immediately obvious that SVM's bundle of flags for "optional nested
SVM features" track whether or not a flag is exposed to L1.
Begrudgingly define KVM_MAX_NR_GOVERNED_FEATURES for the size of the
bitmap to avoid exposing governed_features.h in arch/x86/include/asm/, but
add a FIXME to call out that it can and should be cleaned up once
"struct kvm_vcpu_arch" is no longer expose to the kernel at large.
Cc: Zeng Guang <guang.zeng@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the WARN in KVM_RUN that asserts that KVM isn't using the hypervisor
timer, a.k.a. the VMX preemption timer, for a vCPU that is in the
UNINITIALIZIED activity state. The intent of the WARN is to sanity check
that KVM won't drop a timer interrupt due to an unexpected transition to
UNINITIALIZED, but unfortunately userspace can use various ioctl()s to
force the unexpected state.
Drop the sanity check instead of switching from the hypervisor timer to a
software based timer, as the only reason to switch to a software timer
when a vCPU is blocking is to ensure the timer interrupt wakes the vCPU,
but said interrupt isn't a valid wake event for vCPUs in UNINITIALIZED
state *and* the interrupt will be dropped in the end.
Reported-by: Yikebaer Aizezi <yikebaer61@gmail.com>
Closes: https://lore.kernel.org/all/CALcu4rbFrU4go8sBHk3FreP+qjgtZCGcYNpSiEXOLm==qFv7iQ@mail.gmail.com
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230808232057.2498287-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Skip writes to MSR_AMD64_TSC_RATIO that are done in the context of a vCPU
if guest state isn't loaded, i.e. if KVM will update MSR_AMD64_TSC_RATIO
during svm_prepare_switch_to_guest() before entering the guest. Checking
guest_state_loaded may or may not be a net positive for performance as
the current_tsc_ratio cache will optimize away duplicate WRMSRs in the
vast majority of scenarios. However, the cost of the check is negligible,
and the real motivation is to document that KVM needs to load the vCPU's
value only when running the vCPU.
Link: https://lore.kernel.org/r/20230729011608.1065019-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the @offset and @multiplier params from the kvm_x86_ops hooks for
propagating TSC offsets/multipliers into hardware, and instead have the
vendor implementations pull the information directly from the vCPU
structure. The respective vCPU fields _must_ be written at the same
time in order to maintain consistent state, i.e. it's not random luck
that the value passed in by all callers is grabbed from the vCPU.
Explicitly grabbing the value from the vCPU field in SVM's implementation
in particular will allow for additional cleanup without introducing even
more subtle dependencies. Specifically, SVM can skip the WRMSR if guest
state isn't loaded, i.e. svm_prepare_switch_to_guest() will load the
correct value for the vCPU prior to entering the guest.
This also reconciles KVM's handling of related values that are stored in
the vCPU, as svm_write_tsc_offset() already assumes/requires the caller
to have updated l1_tsc_offset.
Link: https://lore.kernel.org/r/20230729011608.1065019-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Explicitly disable preemption when writing MSR_AMD64_TSC_RATIO only in the
"outer" helper, as all direct callers of the "inner" helper now run with
preemption already disabled. And that isn't a coincidence, as the outer
helper requires a vCPU and is intended to be used when modifying guest
state and/or emulating guest instructions, which are typically done with
preemption enabled.
Direct use of the inner helper should be extremely limited, as the only
time KVM should modify MSR_AMD64_TSC_RATIO without a vCPU is when
sanitizing the MSR for a specific pCPU (currently done when {en,dis}abling
disabling SVM). The other direct caller is svm_prepare_switch_to_guest(),
which does have a vCPU, but is a one-off special case: KVM is about to
enter the guest on a specific pCPU and thus must have preemption disabled.
Link: https://lore.kernel.org/r/20230729011608.1065019-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When emulating nested SVM transitions, use the outer helper for writing
the TSC multiplier for L2. Using the inner helper only for one-off cases,
i.e. for paths where KVM is NOT emulating or modifying vCPU state, will
allow for multiple cleanups:
- Explicitly disabling preemption only in the outer helper
- Getting the multiplier from the vCPU field in the outer helper
- Skipping the WRMSR in the outer helper if guest state isn't loaded
Opportunistically delete an extra newline.
No functional change intended.
Link: https://lore.kernel.org/r/20230729011608.1065019-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When emulating nested VM-Exit, load L1's TSC multiplier if L1's desired
ratio doesn't match the current ratio, not if the ratio L1 is using for
L2 diverges from the default. Functionally, the end result is the same
as KVM will run L2 with L1's multiplier if L2's multiplier is the default,
i.e. checking that L1's multiplier is loaded is equivalent to checking if
L2 has a non-default multiplier.
However, the assertion that TSC scaling is exposed to L1 is flawed, as
userspace can trigger the WARN at will by writing the MSR and then
updating guest CPUID to hide the feature (modifying guest CPUID is
allowed anytime before KVM_RUN). E.g. hacking KVM's state_test
selftest to do
vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0);
vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR);
after restoring state in a new VM+vCPU yields an endless supply of:
------------[ cut here ]------------
WARNING: CPU: 10 PID: 206939 at arch/x86/kvm/svm/nested.c:1105
nested_svm_vmexit+0x6af/0x720 [kvm_amd]
Call Trace:
nested_svm_exit_handled+0x102/0x1f0 [kvm_amd]
svm_handle_exit+0xb9/0x180 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm]
kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm]
? trace_hardirqs_off+0x4d/0xa0
__se_sys_ioctl+0x7a/0xc0
__x64_sys_ioctl+0x21/0x30
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Unlike the nested VMRUN path, hoisting the svm->tsc_scaling_enabled check
into the if-statement is wrong as KVM needs to ensure L1's multiplier is
loaded in the above scenario. Alternatively, the WARN_ON() could simply
be deleted, but that would make KVM's behavior even more subtle, e.g. it's
not immediately obvious why it's safe to write MSR_AMD64_TSC_RATIO when
checking only tsc_ratio_msr.
Fixes: 5228eb96a4 ("KVM: x86: nSVM: implement nested TSC scaling")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230729011608.1065019-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Check for nested TSC scaling support on nested SVM VMRUN instead of
asserting that TSC scaling is exposed to L1 if L1's MSR_AMD64_TSC_RATIO
has diverged from KVM's default. Userspace can trigger the WARN at will
by writing the MSR and then updating guest CPUID to hide the feature
(modifying guest CPUID is allowed anytime before KVM_RUN). E.g. hacking
KVM's state_test selftest to do
vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0);
vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR);
after restoring state in a new VM+vCPU yields an endless supply of:
------------[ cut here ]------------
WARNING: CPU: 164 PID: 62565 at arch/x86/kvm/svm/nested.c:699
nested_vmcb02_prepare_control+0x3d6/0x3f0 [kvm_amd]
Call Trace:
<TASK>
enter_svm_guest_mode+0x114/0x560 [kvm_amd]
nested_svm_vmrun+0x260/0x330 [kvm_amd]
vmrun_interception+0x29/0x30 [kvm_amd]
svm_invoke_exit_handler+0x35/0x100 [kvm_amd]
svm_handle_exit+0xe7/0x180 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm]
kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm]
__se_sys_ioctl+0x7a/0xc0
__x64_sys_ioctl+0x21/0x30
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x45ca1b
Note, the nested #VMEXIT path has the same flaw, but needs a different
fix and will be handled separately.
Fixes: 5228eb96a4 ("KVM: x86: nSVM: implement nested TSC scaling")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230729011608.1065019-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Latest Intel platform GraniteRapids-D introduces AMX-COMPLEX, which adds
two instructions to perform matrix multiplication of two tiles containing
complex elements and accumulate the results into a packed single precision
tile.
AMX-COMPLEX is enumerated via CPUID.(EAX=7,ECX=1):EDX[bit 8]
Advertise AMX_COMPLEX if it's supported in hardware. There are no VMX
controls for the feature, i.e. the instructions can't be interecepted, and
KVM advertises base AMX in CPUID if AMX is supported in hardware, even if
KVM doesn't advertise AMX as being supported in XCR0, e.g. because the
process didn't opt-in to allocating tile data.
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230802022954.193843-1-tao1.su@linux.intel.com
[sean: tweak last paragraph of changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Bail from vmx_emergency_disable() without processing the list of loaded
VMCSes if CR4.VMXE=0, i.e. if the CPU can't be post-VMXON. It should be
impossible for the list to have entries if VMX is already disabled, and
even if that invariant doesn't hold, VMCLEAR will #UD anyways, i.e.
processing the list is pointless even if it somehow isn't empty.
Assuming no existing KVM bugs, this should be a glorified nop. The
primary motivation for the change is to avoid having code that looks like
it does VMCLEAR, but then skips VMXON, which is nonsensical.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-20-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that kvm_rebooting is guaranteed to be true prior to disabling SVM
in an emergency, use the existing stgi() helper instead of open coding
STGI. In effect, eat faults on STGI if and only if kvm_rebooting==true.
Link: https://lore.kernel.org/r/20230721201859.2307736-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Set kvm_rebooting when virtualization is disabled in an emergency so that
KVM eats faults on virtualization instructions even if kvm_reboot() isn't
reached.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move cpu_svm_disable() into KVM proper now that all hardware
virtualization management is routed through KVM. Remove the now-empty
virtext.h.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-17-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable migration when probing VMX support during module load to ensure
the CPU is stable, mostly to match similar SVM logic, where allowing
migration effective requires deliberately writing buggy code. As a bonus,
KVM won't report the wrong CPU to userspace if VMX is unsupported, but in
practice that is a very, very minor bonus as the only way that reporting
the wrong CPU would actually matter is if hardware is broken or if the
system is misconfigured, i.e. if KVM gets migrated from a CPU that _does_
support VMX to a CPU that does _not_ support VMX.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Check "this" CPU instead of the boot CPU when querying SVM support so that
the per-CPU checks done during hardware enabling actually function as
intended, i.e. will detect issues where SVM isn't support on all CPUs.
Disable migration for the use from svm_init() mostly so that the standard
accessors for the per-CPU data can be used without getting yelled at by
CONFIG_DEBUG_PREEMPT=y sanity checks. Preventing the "disabled by BIOS"
error message from reporting the wrong CPU is largely a bonus, as ensuring
a stable CPU during module load is a non-goal for KVM.
Link: https://lore.kernel.org/all/ZAdxNgv0M6P63odE@google.com
Cc: Kai Huang <kai.huang@intel.com>
Cc: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fold the guts of cpu_has_svm() into kvm_is_svm_supported(), its sole
remaining user.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the explicit check on the extended CPUID level in cpu_has_svm(), the
kernel's cached CPUID info will leave the entire SVM leaf unset if said
leaf is not supported by hardware. Prior to using cached information,
the check was needed to avoid false positives due to Intel's rather crazy
CPUID behavior of returning the values of the maximum supported leaf if
the specified leaf is unsupported.
Fixes: 682a810887 ("x86/kvm/svm: Simplify cpu_has_svm()")
Link: https://lore.kernel.org/r/20230721201859.2307736-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Make building KVM SVM support depend on support for AMD or Hygon. KVM
already effectively restricts SVM support to AMD and Hygon by virtue of
the vendor string checks in cpu_has_svm(), and KVM VMX supports depends
on one of its three known vendors (Intel, Centaur, or Zhaoxin).
Add the CPU_SUP_HYGON clause even though CPU_SUP_HYGON selects CPU_SUP_AMD
to document that KVM SVM support isn't just for AMD CPUs, and to prevent
breakage should Hygon support ever become a standalone thing.
Link: https://lore.kernel.org/r/20230721201859.2307736-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that VMX is disabled in emergencies via the virt callbacks, move the
VMXOFF helpers into KVM, the only remaining user.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fold the raw CPUID check for VMX into kvm_is_vmx_supported(), its sole
user. Keep the check even though KVM also checks X86_FEATURE_VMX, as the
intent is to provide a unique error message if VMX is unsupported by
hardware, whereas X86_FEATURE_VMX may be clear due to firmware and/or
kernel actions.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Expose the crash/reboot hooks used by KVM to disable virtualization in
hardware and unblock INIT only if there's a potential in-tree user,
i.e. either KVM_INTEL or KVM_AMD is enabled.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Attempt to disable virtualization during an emergency reboot if and only
if there is a registered virt callback, i.e. iff a hypervisor (KVM) is
active. If there's no active hypervisor, then the CPU can't be operating
with VMX or SVM enabled (barring an egregious bug).
Checking for a valid callback instead of simply for SVM or VMX support
can also eliminates spurious NMIs by avoiding the unecessary call to
nmi_shootdown_cpus_on_restart().
Note, IRQs are disabled, which prevents KVM from coming along and
enabling virtualization after the fact.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the various "disable virtualization" helpers above the emergency
reboot path so that emergency_reboot_disable_virtualization() can be
stubbed out in a future patch if neither KVM_INTEL nor KVM_AMD is enabled,
i.e. if there is no in-tree user of CPU virtualization.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Assert that IRQs are disabled when turning off virtualization in an
emergency. KVM enables hardware via on_each_cpu(), i.e. could re-enable
hardware if a pending IPI were delivered after disabling virtualization.
Remove a misleading comment from emergency_reboot_disable_virtualization()
about "just" needing to guarantee the CPU is stable (see above).
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the virt callback to disable SVM (and set GIF=1) during an emergency
instead of blindly attempting to disable SVM. Like the VMX case, if a
hypervisor, i.e. KVM, isn't loaded/active, SVM can't be in use.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use KVM VMX's reboot/crash callback to do VMXOFF in an emergency instead
of manually and blindly doing VMXOFF. There's no need to attempt VMXOFF
if a hypervisor, i.e. KVM, isn't loaded/active, i.e. if the CPU can't
possibly be post-VMXON.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Provide dedicated helpers to (un)register virt hooks used during an
emergency crash/reboot, and WARN if there is an attempt to overwrite
the registered callback, or an attempt to do an unpaired unregister.
Opportunsitically use rcu_assign_pointer() instead of RCU_INIT_POINTER(),
mainly so that the set/unset paths are more symmetrical, but also because
any performance gains from using RCU_INIT_POINTER() are meaningless for
this code.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
VMCLEAR active VMCSes before any emergency reboot, not just if the kernel
may kexec into a new kernel after a crash. Per Intel's SDM, the VMX
architecture doesn't require the CPU to flush the VMCS cache on INIT. If
an emergency reboot doesn't RESET CPUs, cached VMCSes could theoretically
be kept and only be written back to memory after the new kernel is booted,
i.e. could effectively corrupt memory after reboot.
Opportunistically remove the setting of the global pointer to NULL to make
checkpatch happy.
Cc: Andrew Cooper <Andrew.Cooper3@citrix.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Retry the optimized APIC map recalculation if an APIC-enabled vCPU shows
up between allocating the map and filling in the map data. Conditionally
reschedule before retrying even though the number of vCPUs that can be
created is bounded by KVM. Retrying a few thousand times isn't so slow
as to be hugely problematic, but it's not blazing fast either.
Reset xapic_id_mistach on each retry as a vCPU could change its xAPIC ID
between loops, but do NOT reset max_id. The map size also factors in
whether or not a vCPU's local APIC is hardware-enabled, i.e. userspace
and/or the guest can theoretically keep KVM retrying indefinitely. The
only downside is that KVM will allocate more memory than is strictly
necessary if the vCPU with the highest x2APIC ID disabled its APIC while
the recalculation was in-progress.
Refresh kvm->arch.apic_map_dirty to opportunistically change it from
DIRTY => UPDATE_IN_PROGRESS to avoid an unnecessary recalc from a
different task, i.e. if another task is waiting to attempt an update
(which is likely since a retry happens if and only if an update is
required).
Link: https://lore.kernel.org/r/20230602233250.1014316-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM snapshots the host's MSR_IA32_ARCH_CAPABILITIES, drop the
similar snapshot/cache of whether or not KVM is allowed to manipulate
MSR_IA32_MCU_OPT_CTRL.FB_CLEAR_DIS. The motivation for the cache was
presumably to avoid the RDMSR, e.g. boot_cpu_has_bug() is quite cheap, and
modifying the vCPU's MSR_IA32_ARCH_CAPABILITIES is an infrequent option
and a relatively slow path.
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230607004311.1420507-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Snapshot the host's MSR_IA32_ARCH_CAPABILITIES, if it's supported, instead
of reading the MSR every time KVM wants to query the host state, e.g. when
initializing the default value during vCPU creation. The paths that query
ARCH_CAPABILITIES aren't particularly performance sensitive, but creating
vCPUs is a frequent enough operation that burning 8 bytes is a good
trade-off.
Alternatively, KVM could add a field in kvm_caps and thus skip the
on-demand calculations entirely, but a pure snapshot isn't possible due to
the way KVM handles the l1tf_vmx_mitigation module param. And unlike the
other "supported" fields in kvm_caps, KVM doesn't enforce the "supported"
value, i.e. KVM treats ARCH_CAPABILITIES like a CPUID leaf and lets
userspace advertise whatever it wants. Those problems are solvable, but
it's not clear there is real benefit versus snapshotting the host value,
and grabbing the host value will allow additional cleanup of KVM's
FB_CLEAR_CTRL code.
Link: https://lore.kernel.org/all/20230524061634.54141-2-chao.gao@intel.com
Cc: Chao Gao <chao.gao@intel.com>
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230607004311.1420507-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Advertise CPUID 0x80000005 (L1 cache and TLB info) to userspace so that
VMMs that reflect KVM_GET_SUPPORTED_CPUID into KVM_SET_CPUID2 will
enumerate sane cache/TLB information to the guest.
CPUID 0x80000006 (L2 cache and TLB and L3 cache info) has been returned
since commit 43d05de2be ("KVM: pass through CPUID(0x80000006)").
Enumerating both 0x80000005 and 0x80000006 with KVM_GET_SUPPORTED_CPUID
is better than reporting one or the other, and 0x80000005 could be helpful
for VMM to pass it to KVM_SET_CPUID{,2} for the same reason with
0x80000006.
Signed-off-by: Takahiro Itazuri <itazur@amazon.com>
Link: https://lore.kernel.org/all/ZK7NmfKI9xur%2FMop@google.com
Link: https://lore.kernel.org/r/20230712183136.85561-1-itazur@amazon.com
[sean: add link, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove x86_emulate_ops::guest_has_long_mode along with its implementation,
emulator_guest_has_long_mode(). It has been unused since commit
1d0da94cda ("KVM: x86: do not go through ctxt->ops when emulating rsm").
No functional change intended.
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230718101809.1249769-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use sysfs_emit() instead of the sprintf() for sysfs entries. sysfs_emit()
knows the maximum of the temporary buffer used for outputting sysfs
content and avoids overrunning the buffer length.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230625073438.57427-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
group exists yet but the code still goes and iterates over event
siblings
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmS0O2cACgkQEsHwGGHe
VUrCsRAAq+sdCTlD9FEyhm8LkAYa7A1IhXqo0sO1DrVt/gwqj+I9xtxBRu3tEI3d
IzwzNQoWoPW59frdGtXi7R9hJUrHKFh+FQ6l/rPwWCwC3CP56SVg0UTLkIPylrVZ
WpZ5DU5Sc3n8cHusINGgdG51h0/H8aJx3WEFPfND0ydt4gzD14rnq+nQLU8DCfxB
/1UHZu7wWdNey9cqO/KDgajiCuO26OyGBCO2y5rmL6/UkT7mbO3UR+NusZrFyUCI
IoUaWPs2NtZmWGxyh3XkkcJLUBWVITYhMZdHGzJqDp7J2A7t213+q1R4X9f+Kiq7
6nJEAUH0fwodjkJN9GUJGaite+umn7R2W7+OQ3Qigz3hrIMIai9f1wfnnoYo9auH
vSGvYl3b4v8A+eyZLCQC4qJg5ekfkgxR2LXck6qv9PKtDamjNRMZEUhPFknsvTWg
Yn29rFq2zZlUCLdTbR+z/dlHEQRxe8FOo5V4+YtWsDMZcYsnvcULb4XQPq6EYHAi
BDs1iCMWR7uVer8Duq7o/RKbeE3hQwLFfm+SqjYxn6sHH2NcE9OKi+rr6UPkOh27
gZzBPLlP7SLXTBuqLeSHiczDXochUvFGF7gC+2mZ8/jNP023OMkrHJZyoNyuj8sZ
qSGk9g3zFCtyQCfsgw01pDuRfSs4Y3MZmzsxI3/mUzbK/KzTXOE=
=KqCi
-----END PGP SIGNATURE-----
Merge tag 'perf_urgent_for_v6.5_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fix from Borislav Petkov:
- Fix a lockdep warning when the event given is the first one, no event
group exists yet but the code still goes and iterates over event
siblings
* tag 'perf_urgent_for_v6.5_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86: Fix lockdep warning in for_each_sibling_event() on SPR
The primary bug Alyssa noticed was that with FineIBT enabled function
prologues have a spurious ENDBR instruction:
__cfi_foo:
endbr64
subl $hash, %r10d
jz 1f
ud2
nop
1:
foo:
endbr64 <--- *sadface*
This means that any indirect call that fails to target the __cfi symbol
and instead targets (the regular old) foo+0, will succeed due to that
second ENDBR.
Fixing this lead to the discovery of a single indirect call that was
still doing this: ret_from_fork(), since that's an assembly stub the
compmiler would not generate the proper kCFI indirect call magic and it
would not get patched.
Brian came up with the most comprehensive fix -- convert the thing to C
with only a very thin asm wrapper. This ensures the kernel thread
boostrap is a proper kCFI call.
While discussing all this, Kees noted that kCFI hashes could/should be
poisoned to seal all functions whose address is never taken, further
limiting the valid kCFI targets -- much like we already do for IBT.
So what was a 'simple' observation and fix cascaded into a bunch of
inter-related CFI infrastructure fixes.
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEv3OU3/byMaA0LqWJdkfhpEvA5LoFAmSxr64VHHBldGVyekBp
bmZyYWRlYWQub3JnAAoJEHZH4aRLwOS6L7kQAIjDWbxqVtmiBiz+IBcWcsxt7BXX
pRBaSe/eBp3KLhqgzYUY0mXIi0ua7y3CBtW4SdQUSPsAKtCgBUuq2JjQWToRghjN
4ndCky4oxb9z8ADr/R/qfU8ZpSOwoX3kgBHqyjcQ0fQsg/DFKs3sWKqluwT0PtvU
vLYAw2QKSv56NG/u3CujWPdcIWgzJ+M3214xuqIWCTwEcqdP+xkXmQstkXkyPQ6d
XE0iG/wo9uiX4icfsRVp8JL0TkzNqGJfgr9Mv1rBKT4wbT64zKI6RyMJVlUS0yrk
1jeDgNbVfx4ZpvtHmTsQn1jogWI3pqGkqoPwHqJSFg42Eer5OSodH/uVd3HK/0tD
1nlhCfue6zc4smu480064s3fWAE7kC6ySdmijQXOJo3YWVGdagxVp/CSE4Ek0TFq
y+CltNEA6bthKImWg8GFWxS8bMnuZv2joJ8yhgfpnG5sppVOYs2HJ3ipIks9sZjO
o65auDeOkGg1+NhgDx+2uay6/fbxTNjbAyjV4HttkN70SO5kTTT4zWyh2PLwXaTy
wv0B4i0laxTRU7boIA4nFJAKz5xKfyh9e2idxbmPlrV5FY4mEPA2oLeWsn8cS4VG
0SWJ30ky7C4r7VWd9DWhGcCRcrlCvCM8LdjwzImZHXRQ2KweEuGMmrXYtHCrTRZn
IMijS/9q653h9ws7
=RhPI
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_6.5_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CFI fixes from Peter Zijlstra:
"Fix kCFI/FineIBT weaknesses
The primary bug Alyssa noticed was that with FineIBT enabled function
prologues have a spurious ENDBR instruction:
__cfi_foo:
endbr64
subl $hash, %r10d
jz 1f
ud2
nop
1:
foo:
endbr64 <--- *sadface*
This means that any indirect call that fails to target the __cfi
symbol and instead targets (the regular old) foo+0, will succeed due
to that second ENDBR.
Fixing this led to the discovery of a single indirect call that was
still doing this: ret_from_fork(). Since that's an assembly stub the
compiler would not generate the proper kCFI indirect call magic and it
would not get patched.
Brian came up with the most comprehensive fix -- convert the thing to
C with only a very thin asm wrapper. This ensures the kernel thread
boostrap is a proper kCFI call.
While discussing all this, Kees noted that kCFI hashes could/should be
poisoned to seal all functions whose address is never taken, further
limiting the valid kCFI targets -- much like we already do for IBT.
So what was a 'simple' observation and fix cascaded into a bunch of
inter-related CFI infrastructure fixes"
* tag 'x86_urgent_for_6.5_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cfi: Only define poison_cfi() if CONFIG_X86_KERNEL_IBT=y
x86/fineibt: Poison ENDBR at +0
x86: Rewrite ret_from_fork() in C
x86/32: Remove schedule_tail_wrapper()
x86/cfi: Extend ENDBR sealing to kCFI
x86/alternative: Rename apply_ibt_endbr()
x86/cfi: Extend {JMP,CAKK}_NOSPEC comment
- Fix some missing-prototype warnings
- Fix user events struct args (did not include size of struct)
When creating a user event, the "struct" keyword is to denote
that the size of the field will be passed in. But the parsing
failed to handle this case.
- Add selftest to struct sizes for user events
- Fix sample code for direct trampolines.
The sample code for direct trampolines attached to handle_mm_fault().
But the prototype changed and the direct trampoline sample code
was not updated. Direct trampolines needs to have the arguments correct
otherwise it can fail or crash the system.
- Remove unused ftrace_regs_caller_ret() prototype.
- Quiet false positive of FORTIFY_SOURCE
Due to backward compatibility, the structure used to save stack traces
in the kernel had a fixed size of 8. This structure is exported to
user space via the tracing format file. A change was made to allow
more than 8 functions to be recorded, and user space now uses the
size field to know how many functions are actually in the stack.
But the structure still has size of 8 (even though it points into
the ring buffer that has the required amount allocated to hold a
full stack. This was fine until the fortifier noticed that the
memcpy(&entry->caller, stack, size) was greater than the 8 functions
and would complain at runtime about it. Hide this by using a pointer
to the stack location on the ring buffer instead of using the address
of the entry structure caller field.
- Fix a deadloop in reading trace_pipe that was caused by a mismatch
between ring_buffer_empty() returning false which then asked to
read the data, but the read code uses rb_num_of_entries() that
returned zero, and causing a infinite "retry".
- Fix a warning caused by not using all pages allocated to store
ftrace functions, where this can happen if the linker inserts a bunch of
"NULL" entries, causing the accounting of how many pages needed
to be off.
- Fix histogram synthetic event crashing when the start event is
removed and the end event is still using a variable from it.
- Fix memory leak in freeing iter->temp in tracing_release_pipe()
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZLBF6hQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qkswAP4mhdoFFfNosM7+Sh/R4t31IxKZApm9
M2Hf9jgvJ7b65AD/VV1XfO6skw2+5Yn9S4UyNE2MQaYxPwWpONcNFUzZ3Q8=
=Nb+7
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.5-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix some missing-prototype warnings
- Fix user events struct args (did not include size of struct)
When creating a user event, the "struct" keyword is to denote that
the size of the field will be passed in. But the parsing failed to
handle this case.
- Add selftest to struct sizes for user events
- Fix sample code for direct trampolines.
The sample code for direct trampolines attached to handle_mm_fault().
But the prototype changed and the direct trampoline sample code was
not updated. Direct trampolines needs to have the arguments correct
otherwise it can fail or crash the system.
- Remove unused ftrace_regs_caller_ret() prototype.
- Quiet false positive of FORTIFY_SOURCE
Due to backward compatibility, the structure used to save stack
traces in the kernel had a fixed size of 8. This structure is
exported to user space via the tracing format file. A change was made
to allow more than 8 functions to be recorded, and user space now
uses the size field to know how many functions are actually in the
stack.
But the structure still has size of 8 (even though it points into the
ring buffer that has the required amount allocated to hold a full
stack.
This was fine until the fortifier noticed that the
memcpy(&entry->caller, stack, size) was greater than the 8 functions
and would complain at runtime about it.
Hide this by using a pointer to the stack location on the ring buffer
instead of using the address of the entry structure caller field.
- Fix a deadloop in reading trace_pipe that was caused by a mismatch
between ring_buffer_empty() returning false which then asked to read
the data, but the read code uses rb_num_of_entries() that returned
zero, and causing a infinite "retry".
- Fix a warning caused by not using all pages allocated to store ftrace
functions, where this can happen if the linker inserts a bunch of
"NULL" entries, causing the accounting of how many pages needed to be
off.
- Fix histogram synthetic event crashing when the start event is
removed and the end event is still using a variable from it
- Fix memory leak in freeing iter->temp in tracing_release_pipe()
* tag 'trace-v6.5-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix memory leak of iter->temp when reading trace_pipe
tracing/histograms: Add histograms to hist_vars if they have referenced variables
tracing: Stop FORTIFY_SOURCE complaining about stack trace caller
ftrace: Fix possible warning on checking all pages used in ftrace_process_locs()
ring-buffer: Fix deadloop issue on reading trace_pipe
tracing: arm64: Avoid missing-prototype warnings
selftests/user_events: Test struct size match cases
tracing/user_events: Fix struct arg size match check
x86/ftrace: Remove unsued extern declaration ftrace_regs_caller_ret()
arm64: ftrace: Add direct call trampoline samples support
samples: ftrace: Save required argument registers in sample trampolines
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCZK/pZgAKCRCAXGG7T9hj
vmQlAQD/xi8BUlCe0a7l6kf7+nMkOWmvpVIrmdxrqQ1Wj4c9FAEA0FuI+XXz2sow
ov+il7z3UnViGsieeSHTW+Gxdn6Blgc=
=LzAo
-----END PGP SIGNATURE-----
Merge tag 'for-linus-6.5-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
- a cleanup of the Xen related ELF-notes
- a fix for virtio handling in Xen dom0 when running Xen in a VM
* tag 'for-linus-6.5-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/virtio: Fix NULL deref when a bridge of PCI root bus has no parent
x86/Xen: tidy xen-head.S
poison_cfi() was introduced in:
9831c6253a ("x86/cfi: Extend ENDBR sealing to kCFI")
... but it's only ever used under CONFIG_X86_KERNEL_IBT=y,
and if that option is disabled, we get:
arch/x86/kernel/alternative.c:1243:13: error: ‘poison_cfi’ defined but not used [-Werror=unused-function]
Guard the definition with CONFIG_X86_KERNEL_IBT.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Alyssa noticed that when building the kernel with CFI_CLANG+IBT and
booting on IBT enabled hardware to obtain FineIBT, the indirect
functions look like:
__cfi_foo:
endbr64
subl $hash, %r10d
jz 1f
ud2
nop
1:
foo:
endbr64
This is because the compiler generates code for kCFI+IBT. In that case
the caller does the hash check and will jump to +0, so there must be
an ENDBR there. The compiler doesn't know about FineIBT at all; also
it is possible to actually use kCFI+IBT when booting with 'cfi=kcfi'
on IBT enabled hardware.
Having this second ENDBR however makes it possible to elide the CFI
check. Therefore, we should poison this second ENDBR when switching to
FineIBT mode.
Fixes: 931ab63664 ("x86/ibt: Implement FineIBT")
Reported-by: "Milburn, Alyssa" <alyssa.milburn@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230615193722.194131053@infradead.org
When kCFI is enabled, special handling is needed for the indirect call
to the kernel thread function. Rewrite the ret_from_fork() function in
C so that the compiler can properly handle the indirect call.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230623225529.34590-3-brgerst@gmail.com
The unwinder expects a return address at the very top of the kernel
stack just below pt_regs and before any stack frame is created. Instead
of calling a wrapper, set up a return address as if ret_from_fork()
was called from the syscall entry code.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230623225529.34590-2-brgerst@gmail.com
Kees noted that IBT sealing could be extended to kCFI.
Fundamentally it is the list of functions that do not have their
address taken and are thus never called indirectly. It doesn't matter
that objtool uses IBT infrastructure to determine this list, once we
have it it can also be used to clobber kCFI hashes and avoid kCFI
indirect calls.
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230622144321.494426891%40infradead.org
The current name doesn't reflect what it does very well.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230622144321.427441595%40infradead.org
With the introduction of kCFI these helpers are no longer equivalent
to C indirect calls and should be used with care.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230622144321.360957723%40infradead.org
On SPR, the load latency event needs an auxiliary event in the same
group to work properly. There's a check in intel_pmu_hw_config()
for this to iterate sibling events and find a mem-loads-aux event.
The for_each_sibling_event() has a lockdep assert to make sure if it
disabled hardirq or hold leader->ctx->mutex. This works well if the
given event has a separate leader event since perf_try_init_event()
grabs the leader->ctx->mutex to protect the sibling list. But it can
cause a problem when the event itself is a leader since the event is
not initialized yet and there's no ctx for the event.
Actually I got a lockdep warning when I run the below command on SPR,
but I guess it could be a NULL pointer dereference.
$ perf record -d -e cpu/mem-loads/uP true
The code path to the warning is:
sys_perf_event_open()
perf_event_alloc()
perf_init_event()
perf_try_init_event()
x86_pmu_event_init()
hsw_hw_config()
intel_pmu_hw_config()
for_each_sibling_event()
lockdep_assert_event_ctx()
We don't need for_each_sibling_event() when it's a standalone event.
Let's return the error code directly.
Fixes: f3c0eba287 ("perf: Add a few assertions")
Reported-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20230704181516.3293665-1-namhyung@kernel.org