The T5 (niagara5) has different PCR related HV fast trap values and a new
HV API Group. This patch utilizes these and shares when possible with niagara4.
We use the same sparc_pmu niagara4_pmu. Should there be new effort to
obtain the MCU perf statistics then this would have to be changed.
Cc: sparclinux@vger.kernel.org
Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Christopher reports that perf_event_print_debug() can crash in uniprocessor
builds. The crash is due to pcr_ops being NULL.
This happens because pcr_arch_init() is only invoked by smp_cpus_done() which
only executes in SMP builds.
init_hw_perf_events() is closely intertwined with pcr_ops being setup properly,
therefore:
1) Call pcr_arch_init() early on from init_hw_perf_events(), instead of
from smp_cpus_done().
2) Do not hook up a PMU type if pcr_ops is NULL after pcr_arch_init().
3) Move init_hw_perf_events to a later initcall so that it we will be
sure to invoke pcr_arch_init() after all cpus are brought up.
Finally, guard the one naked sequence of pcr_ops dereferences in
__global_pmu_self() with an appropriate NULL check.
Reported-by: Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix following sparse warnings:
kernel/perf_event.c:113:1: warning: symbol 'cpu_hw_events' was not declared. Should it be static?
kernel/perf_event.c:1156:6: warning: symbol 'perf_event_grab_pmc' was not declared. Should it be static?
kernel/perf_event.c:1172:6: warning: symbol 'perf_event_release_pmc' was not declared. Should it be static?
kernel/perf_event.c:1672:12: warning: symbol 'init_hw_perf_events' was not declared. Should it be static?
kernel/perf_event.c:1749:52: warning: incorrect type in argument 2 (different address spaces)
kernel/perf_event.c:1772:60: warning: incorrect type in argument 2 (different address spaces)
kernel/perf_event.c:1779:60: warning: incorrect type in argument 2 (different address spaces)
Define the functions static as they are not used outside this file.
Fix it so copy_from_user are supplied with pointers annotated _user
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Montgomery Multiply, Montgomery Square, and Multiple-Precision
Multiply instructions work by loading a combination of the floating
point and multiple register windows worth of integer registers
with the inputs.
These values are 64-bit. But for 32-bit userland processes we only
save the low 32-bits of each integer register during a register spill.
This is because the register window save area is in the user stack and
has a fixed layout.
Therefore, the only way to use these instruction in 32-bit mode is to
perform the following sequence:
1) Load the top-32bits of a choosen integer register with a sentinel,
say "-1". This will be in the outer-most register window.
The idea is that we're trying to see if the outer-most register
window gets spilled, and thus the 64-bit values were truncated.
2) Load all the inputs for the montmul/montsqr/mpmul instruction,
down to the inner-most register window.
3) Execute the opcode.
4) Traverse back up to the outer-most register window.
5) Check the sentinel, if it's still "-1" store the results.
Otherwise retry the entire sequence.
This retry is extremely troublesome. If you're just unlucky and an
interrupt or other trap happens, it'll push that outer-most window to
the stack and clear the sentinel when we restore it.
We could retry forever and never make forward progress if interrupts
arrive at a fast enough rate (consider perf events as one example).
So we have do limited retries and fallback to software which is
extremely non-deterministic.
Luckily it's very straightforward to provide a mechanism to let
32-bit applications use a 64-bit stack. Stacks in 64-bit mode are
biased by 2047 bytes, which means that the lowest bit is set in the
actual %sp register value.
So if we see bit zero set in a 32-bit application's stack we treat
it like a 64-bit stack.
Runtime detection of such a facility is tricky, and cumbersome at
best. For example, just trying to use a biased stack and seeing if it
works is hard to recover from (the signal handler will need to use an
alt stack, plus something along the lines of longjmp). Therefore, we
add a system call to report a bitmask of arch specific features like
this in a cheap and less hairy way.
With help from Andy Polyakov.
Signed-off-by: David S. Miller <davem@davemloft.net>
There was a serious disconnect in the logic happening in
sparc_pmu_disable_event() vs. sparc_pmu_enable_event().
Event disable is implemented by programming a NOP event into the PCR.
However, event enable was not reversing this operation. Instead, it
was setting the User/Priv/Hypervisor trace enable bits.
That's not sparc_pmu_enable_event()'s job, that's what
sparc_pmu_enable() and sparc_pmu_disable() do .
The intent of sparc_pmu_enable_event() is clear, since it first clear
out the event type encoding field. So fix this by OR'ing in the event
encoding rather than the trace enable bits.
Signed-off-by: David S. Miller <davem@davemloft.net>
Describe how we support two types of PMU setups, one with a single control
register and two counters stored in a single register, and another with
one control register per counter and each counter living in it's own
register.
Signed-off-by: David S. Miller <davem@davemloft.net>
When cpuc->n_events is zero, we actually don't do anything and we just
write the cpuc->pcr[0] value as-is without any modifications.
The "pcr = 0;" assignment there was just useless and confusing.
Signed-off-by: David S. Miller <davem@davemloft.net>
Make the per-cpu pcr save area an array instead of one u64.
Describe how many PCR and PIC registers the chip has in the sparc_pmu
descriptor.
Signed-off-by: David S. Miller <davem@davemloft.net>
Starting with SPARC-T4 we have a seperate PCR control register
for each performance counter, and there are absolutely no
restrictions on what events can run on which counters.
Add flags that we can use to elide the conflict and dependency
logic used to handle older chips.
Signed-off-by: David S. Miller <davem@davemloft.net>
And, like for the PCR, allow indexing of different PIC register
numbers.
This also removes all of the non-__KERNEL__ bits from asm/perfctr.h,
nothing kernel side should include it any more.
Signed-off-by: David S. Miller <davem@davemloft.net>
We always need to pass the last sample period to
perf_sample_data_init(), otherwise the event distribution will be
wrong. Thus, modifiyng the function interface with the required period
as argument. So basically a pattern like this:
perf_sample_data_init(&data, ~0ULL);
data.period = event->hw.last_period;
will now be like that:
perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
Avoids unininitialized data.period and simplifies code.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1333390758-10893-3-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu compatible string we look for is "SPARC-T3".
As far as memset/memcpy optimizations go, we treat this chip the same
as Niagara-T2/T2+. Use cache initializing stores for memset, and use
perfetch, FPU block loads, cache initializing stores, and block stores
for copies.
We use the Niagara-T2 perf support, since T3 is a close relative in
this regard. Later we'll add support for the new events T3 can
report, plus enable T3's new "sample" mode.
For now I haven't added any new ELF hwcap flags. We probably need
to add a couple, for example:
T2 and T3 both support the population count instruction in hardware.
T3 supports VIS3 instructions, including support (finally) for
partitioned shift. One can also now move directly between float
and integer registers.
T3 supports instructions meant to help with Galois Field and other HPC
calculations, such as XOR multiply. Also there are "OP and negate"
instructions, for example "fnmul" which is multiply-and-negate.
T3 recognizes the transactional memory opcodes, however since
transactional memory isn't supported: 1) 'commit' behaves as a NOP and
2) 'chkpt' always branches 3) 'rdcps' returns all zeros and 4) 'wrcps'
behaves as a NOP.
So we'll need about 3 new elf capability flags in the end to represent
all of these things.
Signed-off-by: David S. Miller <davem@davemloft.net>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a NODE level to the generic cache events which is used to measure
local vs remote memory accesses. Like all other cache events, an
ACCESS is HIT+MISS, if there is no way to distinguish between reads
and writes do reads only etc..
The below needs filling out for !x86 (which I filled out with
unsupported events).
I'm fairly sure ARM can leave it like that since it doesn't strike me as
an architecture that even has NUMA support. SH might have something since
it does appear to have some NUMA bits.
Sparc64, PowerPC and MIPS certainly want a good look there since they
clearly are NUMA capable.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Miller <davem@davemloft.net>
Cc: Anton Blanchard <anton@samba.org>
Cc: David Daney <ddaney@caviumnetworks.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1303508226.4865.8.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.
For the various event classes:
- hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
the PMI-tail (ARM etc.)
- tracepoint: nmi=0; since tracepoint could be from NMI context.
- software: nmi=[0,1]; some, like the schedule thing cannot
perform wakeups, and hence need 0.
As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).
The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We have all the cpu related info in cpu.c - so move
the remaining functions to support /proc/cpuinfo to this file.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extend the perf_pmu_register() interface to allow for named and
dynamic pmu types.
Because we need to support the existing static types we cannot use
dynamic types for everything, hence provide a type argument.
If we want to enumerate the PMUs they need a name, provide one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20101117222056.259707703@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix a typo in:
004417a6d4: perf, arch: Cleanup perf-pmu init vs lockup-detector
Which caused a build failure on Sparc, reported by Stephen Rothwell.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The perf hardware pmu got initialized at various points in the boot,
some before early_initcall() some after (notably arch_initcall).
The problem is that the NMI lockup detector is ran from early_initcall()
and expects the hardware pmu to be present.
Sanitize this by moving all architecture hardware pmu implementations to
initialize at early_initcall() and move the lockup detector to an explicit
initcall right after that.
Cc: paulus <paulus@samba.org>
Cc: davem <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1290707759.2145.119.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Neither the overcommit nor the reservation sysfs parameter were
actually working, remove them as they'll only get in the way.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the current perf_disable() usage is only an optimization,
remove it for now. This eases the removal of the __weak
hw_perf_enable() interface.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simple registration interface for struct pmu, this provides the
infrastructure for removing all the weak functions.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Store the kernel and user contexts from the generic layer instead
of archs, this gathers some repetitive code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
- Most archs use one callchain buffer per cpu, except x86 that needs
to deal with NMIs. Provide a default perf_callchain_buffer()
implementation that x86 overrides.
- Centralize all the kernel/user regs handling and invoke new arch
handlers from there: perf_callchain_user() / perf_callchain_kernel()
That avoid all the user_mode(), current->mm checks and so...
- Invert some parameters in perf_callchain_*() helpers: entry to the
left, regs to the right, following the traditional (dst, src).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
callchain_store() is the same on every archs, inline it in
perf_event.h and rename it to perf_callchain_store() to avoid
any collision.
This removes repetitive code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
Need to mask out the existing event bits before OR'ing in
the new ones.
Noticed by Peter Zijlstra.
Signed-off-by: David S. Miller <davem@davemloft.net>
Since now all modification to event->count (and ->prev_count
and ->period_left) are local to a cpu, change then to local64_t so we
avoid the LOCK'ed ops.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clarify some of the transactional group scheduling API details
and change it so that a successfull ->commit_txn also closes
the transaction.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <1274803086.5882.1752.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (61 commits)
tracing: Add __used annotation to event variable
perf, trace: Fix !x86 build bug
perf report: Support multiple events on the TUI
perf annotate: Fix up usage of the build id cache
x86/mmiotrace: Remove redundant instruction prefix checks
perf annotate: Add TUI interface
perf tui: Remove annotate from popup menu after failure
perf report: Don't start the TUI if -D is used
perf: Fix getline undeclared
perf: Optimize perf_tp_event_match()
perf: Remove more code from the fastpath
perf: Optimize the !vmalloc backed buffer
perf: Optimize perf_output_copy()
perf: Fix wakeup storm for RO mmap()s
perf-record: Share per-cpu buffers
perf-record: Remove -M
perf: Ensure that IOC_OUTPUT isn't used to create multi-writer buffers
perf, trace: Optimize tracepoints by using per-tracepoint-per-cpu hlist to track events
perf, trace: Optimize tracepoints by removing IRQ-disable from perf/tracepoint interaction
perf tui: Allow disabling the TUI on a per command basis in ~/.perfconfig
...
Convert to the transactional PMU API and remove the duplication of
group_sched_in().
[cross build only]
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Acked-by: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1272002193.5707.65.camel@minggr.sh.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Like x86, when the function graph tracer is enabled, emit the ftrace
stub as well as the program counter it will be transformed back into.
We duplicate a lot of similar stack walking logic in 3 or 4 spots, so
eventually we should consolidate things like x86 does.
Thanks to Frederic Weisbecker for pointing this out.
Signed-off-by: David S. Miller <davem@davemloft.net>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6:
sparc64: Properly truncate pt_regs framepointer in perf callback.
arch/sparc/kernel: Use set_cpus_allowed_ptr
sparc: Fix use of uid16_t and gid16_t in asm/stat.h