When scrub is checking a non-root btree block, it should make sure that
the keys in the parent btree block accurately capture the keyspace that
the child block stores.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In the last patch, we changed the rmapbt code to remove the UNWRITTEN
bit when creating an rmapbt key from an rmapbt record, and we changed
the rmapbt key comparison code to start considering the ATTR and BMBT
flags during lookup. This brought the behavior of the rmapbt
implementation in line with its specification.
However, there may exist filesystems that have the unwritten bit still
set in the rmapbt keys. We should detect these situations and flag the
rmapbt as one that would benefit from optimization. Eventually, online
repair will be able to do something in response to this.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move the inobt record alignment checks from xchk_iallocbt_rec into
xfs_inobt_check_irec so that they are applied everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move the rmap record flag checks from xchk_rmapbt_rec into
xfs_rmap_check_irec so that they are applied everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Fix all xfs_bmbt_disk_get_all callsites to call xfs_bmap_validate_extent
and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_rmap_check_irec function to detect corruption in btree
records. Fix all xfs_rmap_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Currently, xfs_rmap_irec_offset_unpack returns only 0 or -EFSCORRUPTED.
Change this function to return the code address of a failed conversion
in preparation for the next patch, which standardizes localized record
checking and reporting code.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_refcount_check_irec function to detect corruption in btree
records. Fix all xfs_refcount_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_inobt_check_irec function to detect corruption in btree
records. Fix all xfs_inobt_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_alloc_btrec_to_irec function to convert an ondisk record to
an incore record, and a xfs_alloc_check_irec function to detect
corruption. Replace all the open-coded logic with calls to the new
helpers and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In the previous patch, we added jump labels to the intent drain code so
that regular filesystem operations need not pay the price of checking
for someone (scrub) waiting on intents to drain from some part of the
filesystem when that someone isn't running.
However, I observed that xfs/285 now spends a lot more time pushing the
AIL from the inode btree scrubber than it used to. This is because the
inobt scrubber will try push the AIL to try to get logged inode cores
written to the filesystem when it sees a weird discrepancy between the
ondisk inode and the inobt records. This AIL push is triggered when the
setup function sees TRY_HARDER is set; and the requisite EDEADLOCK
return is initiated when the discrepancy is seen.
The solution to this performance slow down is to use a different result
code (ECHRNG) for scrub code to signal that it needs to wait for
deferred intent work items to drain out of some part of the filesystem.
When this happens, set a new scrub state flag (XCHK_NEED_DRAIN) so that
setup functions will activate the jump label.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
To reduce the runtime overhead even further when online fsck isn't
running, use a static branch key to decide if we call wake_up on the
drain. For compilers that support jump labels, the call to wake_up is
replaced by a nop sled when nobody is waiting for intents to drain.
From my initial microbenchmarking, every transition of the static key
between the on and off states takes about 22000ns to complete; this is
paid entirely by the xfs_scrub process. When the static key is off
(which it should be when fsck isn't running), the nop sled adds an
overhead of approximately 0.36ns to runtime code. The post-atomic
lockless waiter check adds about 0.03ns, which is basically free.
For the few compilers that don't support jump labels, runtime code pays
the cost of calling wake_up on an empty waitqueue, which was observed to
be about 30ns. However, most architectures that have sufficient memory
and CPU capacity to run XFS also support jump labels, so this is not
much of a worry.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
It has been a longstanding convention that online scrub and repair
functions can return -EDEADLOCK to signal that they weren't able to
obtain some necessary resource. When this happens, the scrub framework
is supposed to release all resources attached to the scrub context, set
the TRY_HARDER flag in the scrub context flags, and try again. In this
context, individual scrub functions are supposed to take all the
resources they (incorrectly) speculated were not necessary.
We're about to make it so that the functions that lock and wait for a
filesystem AG can also return EDEADLOCK to signal that we need to try
again with the drain waiters enabled. Therefore, refactor
xfs_scrub_metadata to support this behavior for ->setup() functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain. Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.
When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.
Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.
One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter. A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata. In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.
Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started. As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count. The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.
A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction. When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it. The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.
In the next patches we'll improve on this facility, but this patch
provides the basic functionality.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Add a new tracepoint so that I can see exactly what and where we failed
the refcount check.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Update the copyright years in the scrub/ source code files. This isn't
required, but it's helpful to remind myself just how long it's taken to
develop this feature.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Fix the spdx tags to match current practice, and update the author
contact information.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Pass a reference to the per-AG structure to xfs_free_extent. Most
callers already have one, so we can eliminate unnecessary lookups. The
one exception to this is the EFI code, which the next patch will fix.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Two of the callers to xfs_alloc_vextent_this_ag() actually want
exact block number allocation, not anywhere-in-ag allocation. Split
this out from _this_ag() as a first class citizen so no external
extent allocation code needs to care about args->type anymore.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_this_ag(). Drive the per-ag grabbing out to the
callers, too, so that callers with active references don't need
to do new lookups just for an allocation in a context that already
has a perag reference.
The only remaining caller that does single AG allocation through
xfs_alloc_vextent() is xfs_bmap_btalloc() with
XFS_ALLOCTYPE_NEAR_BNO. That is going to need more untangling before
it can be converted cleanly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We currently don't have any flags or operational state in the
xfs_perag except for the pagf_init and pagi_init flags. And the
agflreset flag. Oh, there's also the pagf_metadata and pagi_inodeok
flags, too.
For controlling per-ag operations, we are going to need some atomic
state flags. Hence add an opstate field similar to what we already
have in the mount and log, and convert all these state flags across
to atomic bit operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Lots of code in the inobt infrastructure is passed both xfs_mount
and perags. We only need perags for the per-ag inode allocation
code, so reduce the duplication by passing only the perags as the
primary object.
This ends up reducing the code size by a bit:
text data bss dec hex filename
orig 1138878 323979 548 1463405 16546d (TOTALS)
patched 1138709 323979 548 1463236 1653c4 (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Callers have referenced perags but they don't pass it into
xfs_imap() so it takes it's own reference. Fix that so we can change
inode allocation over to using active references.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We need to be able to dynamically remove instantiated AGs from
memory safely, either for shrinking the filesystem or paging AG
state in and out of memory (e.g. supporting millions of AGs). This
means we need to be able to safely exclude operations from accessing
perags while dynamic removal is in progress.
To do this, introduce the concept of active and passive references.
Active references are required for high level operations that make
use of an AG for a given operation (e.g. allocation) and pin the
perag in memory for the duration of the operation that is operating
on the perag (e.g. transaction scope). This means we can fail to get
an active reference to an AG, hence callers of the new active
reference API must be able to handle lookup failure gracefully.
Passive references are used in low level code, where we might need
to access the perag structure for the purposes of completing high
level operations. For example, buffers need to use passive
references because:
- we need to be able to do metadata IO during operations like grow
and shrink transactions where high level active references to the
AG have already been blocked
- buffers need to pin the perag until they are reclaimed from
memory, something that high level code has no direct control over.
- unused cached buffers should not prevent a shrink from being
started.
Hence we have active references that will form exclusion barriers
for operations to be performed on an AG, and passive references that
will prevent reclaim of the perag until all objects with passive
references have been reclaimed themselves.
This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API
for active AG reference functionality. We also need to convert the
for_each_perag*() iterators to use active references, which will
start the process of converting high level code over to using active
references. Conversion of non-iterator based code to active
references will be done in followup patches.
Note that the implementation using reference counting is really just
a development vehicle for the API to ensure we don't have any leaks
in the callers. Once we need to remove perag structures from memory
dyanmically, we will need a much more robust per-ag state transition
mechanism for preventing new references from being taken while we
wait for existing references to drain before removal from memory can
occur....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Metadata files (e.g. realtime bitmaps and quota files) do not show up in
the bulkstat output, which means that scrub-by-handle does not work;
they can only be checked through a specific scrub type. Therefore, each
scrub type calls xchk_metadata_inode_forks to check the metadata for
whatever's in the file.
Unfortunately, that function doesn't actually check the inode record
itself. Refactor the function a bit to make that happen.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We can handle files that are exactly s_maxbytes bytes long; we just
can't handle anything larger than that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
CoW forks only exist in memory, which means that they can only ever have
an incore extent tree. Hence they must always be FMT_EXTENTS, so check
this when we're scrubbing them.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Ensure that extents in an inode's CoW fork are not marked as shared in
the refcount btree.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Teach scrub to flag quota files containing unwritten extents.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Enhance the block map scrubber to check delayed allocation reservations.
Though there are no physical space allocations to check, we do need to
make sure that the range of file offsets being mapped are correct, and
to bump the lastoff cursor so that key order checking works correctly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When scrub is checking file fork mappings against rmap records and
the rmap record starts before or ends after the bmap record, check the
adjacent bmap records to make sure that they're adjacent to the one
we're checking. This helps us to detect cases where the rmaps cover
territory that the bmaps do not.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
sparse complains that we can return an uninitialized error from this
function and that pag could be uninitialized. We know that there are no
zero-AG filesystems and hence we had to call xchk_bmap_check_ag_rmaps at
least once, so this is not actually possible, but I'm too worn out from
automated complaints from unsophisticated AIs so let's just fix this and
move on to more interesting problems, eh?
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Teach the summary count checker to count the number of free realtime
extents and compare that to the superblock copy.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If any part of the per-AG summary counter scan loop aborts without
collecting all of the data we need, the scrubber's observation data will
be invalid. Set the incomplete flag so that we abort the scrub without
reporting false corruptions. Document the data dependency here too.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If we tried to repair something but the repair failed with -EDEADLOCK,
that means that the repair function couldn't grab some resource it
needed and wants us to try again. If we try again (with TRY_HARDER) but
still can't get all the resources we need, the repair fails and errors
remain on the filesystem.
Right now, repair returns the -EDEADLOCK to the caller as -EFSCORRUPTED,
which results in XFS_SCRUB_OFLAG_CORRUPT being passed out to userspace.
This is not correct because repair has not determined that anything is
corrupt. If the repair had been invoked on an object that could be
optimized but wasn't corrupt (OFLAG_PREEN), the inability to grab
resources will be reported to userspace as corrupt metadata, and users
will be unnecessarily alarmed that their suboptimal metadata turned into
a corruption.
Fix this by returning zero so that the results of the actual scrub will
be copied back out to userspace.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Repair functions will not return EAGAIN -- if they were not able to
obtain resources, they should return EDEADLOCK (like the rest of online
fsck) to signal that we need to grab all the resources and try again.
Hence we don't need to deal with this case except as a debugging
assertion.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If the scrub process is sent a fatal signal while we're checking dquots,
the predicate for this will set the error code to -EINTR. Don't then
squash that into -ECANCELED, because the wrong errno turns up in the
trace output.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If the program calling online fsck is terminated with a fatal signal,
bail out to userspace by returning EINTR, not EAGAIN. EAGAIN is used by
scrubbers to indicate that we should try again with more resources
locked, and not to indicate that the operation was cancelled. The
miswiring is mostly harmless, but it shows up in the trace data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert all the online scrub code to use the Linux slab allocator
functions directly instead of going through the kmem wrappers.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Initialize the check_owner list head so that we don't corrupt the list.
Reduce the scope of the object pointer.
Fixes: 858333dcf0 ("xfs: check btree block ownership with bnobt/rmapbt when scrubbing btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Memory allocation usage is the same throughout online fsck -- we want
kernel memory, we have to be able to back out if we can't allocate
memory, and we don't want to spray dmesg with memory allocation failure
reports. Standardize the GFP flag usage and document these requirements.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Teach the AGFL repair function to check each block of the proposed AGFL
against the rmap btree. If the rmapbt finds any mappings that are not
OWN_AG, strike that block from the list.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Currently, the only way to lock an allocation group is to hold the AGI
and AGF buffers. If a repair needs to roll the transaction while
repairing some AG metadata, it maintains that lock by holding the two
buffers across the transaction roll and joins them afterwards.
However, repair is not like other parts of XFS that employ the bhold -
roll - bjoin sequence because it's possible that the AGI or AGF buffers
are not actually dirty before the roll. This presents two problems --
First, we need to redirty those buffers to keep them moving along in the
log to avoid pinning the log tail. Second, a clean buffer log item can
detach from the buffer. If this happens, the buffer type state is
discarded along with the bli and must be reattached before the next time
the buffer is logged. If it is not, the logging code will complain and
log recovery will not work properly.
An earlier version of this patch tried to fix the second problem by
re-setting the buffer type in the bli after joining the buffer to the
new transaction, but that looked weird and didn't solve the first
problem. Instead, solve both problems by logging the buffer before
rolling the transaction.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
While scrubbing an allocation group, we don't need to hold the AGFL
buffer as part of the scrub context. All that is necessary to lock an
AG is to hold the AGI and AGF buffers, so fix all the existing users of
the AGFL buffer to grab them only when necessary.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
While running the online fsck test suite, I noticed the following
assertion in the kernel log (edited for brevity):
XFS: Assertion failed: 0, file: fs/xfs/xfs_health.c, line: 571
------------[ cut here ]------------
WARNING: CPU: 3 PID: 11667 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
CPU: 3 PID: 11667 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:assfail+0x46/0x4a [xfs]
Call Trace:
<TASK>
xfs_dir2_isblock+0xcc/0xe0
xchk_directory_blocks+0xc7/0x420
xchk_directory+0x53/0xb0
xfs_scrub_metadata+0x2b6/0x6b0
xfs_scrubv_metadata+0x35e/0x4d0
xfs_ioc_scrubv_metadata+0x111/0x160
xfs_file_ioctl+0x4ec/0xef0
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This assertion triggers in xfs_dirattr_mark_sick when the caller passes
in a whichfork value that is neither of XFS_{DATA,ATTR}_FORK. The cause
of this is that xchk_directory_blocks only partially initializes the
xfs_da_args structure that is passed to xfs_dir2_isblock. If the data
fork is not correct, the XFS_IS_CORRUPT clause will trigger. My
development branch reports this failure to the health monitoring
subsystem, which accesses the uninitialized args->whichfork field,
leading the the assertion tripping. We really shouldn't be passing
random stack contents around, so the solution here is to force the
compiler to zero-initialize the struct.
Found by fuzzing u3.bmx[0].blockcount = middlebit on xfs/1554.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we've separated the startblock and CoW/shared extent domain in
the incore refcount record structure, check the domain whenever we
retrieve a record to ensure that it's still in the domain that we want.
Depending on the circumstances, a change in domain either means we're
done processing or that we've found a corruption and need to fail out.
The refcount check in xchk_xref_is_cow_staging is redundant since
_get_rec has done that for a long time now, so we can get rid of it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a helper function to ensure that CoW staging extent records have
a single refcount and that shared extent records have more than 1
refcount. We'll put this to more use in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Just prior to committing the reflink code into upstream, the xfs
maintainer at the time requested that I find a way to shard the refcount
records into two domains -- one for records tracking shared extents, and
a second for tracking CoW staging extents. The idea here was to
minimize mount time CoW reclamation by pushing all the CoW records to
the right edge of the keyspace, and it was accomplished by setting the
upper bit in rc_startblock. We don't allow AGs to have more than 2^31
blocks, so the bit was free.
Unfortunately, this was a very late addition to the codebase, so most of
the refcount record processing code still treats rc_startblock as a u32
and pays no attention to whether or not the upper bit (the cow flag) is
set. This is a weakness is theoretically exploitable, since we're not
fully validating the incoming metadata records.
Fuzzing demonstrates practical exploits of this weakness. If the cow
flag of a node block key record is corrupted, a lookup operation can go
to the wrong record block and start returning records from the wrong
cow/shared domain. This causes the math to go all wrong (since cow
domain is still implicit in the upper bit of rc_startblock) and we can
crash the kernel by tricking xfs into jumping into a nonexistent AG and
tripping over xfs_perag_get(mp, <nonexistent AG>) returning NULL.
To fix this, start tracking the domain as an explicit part of struct
xfs_refcount_irec, adjust all refcount functions to check the domain
of a returned record, and alter the function definitions to accept them
where necessary.
Found by fuzzing keys[2].cowflag = add in xfs/464.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Consolidate the open-coded xfs_refcount_irec fields into an actual
struct and use the existing _btrec_to_irec to decode the ondisk record.
This will reduce code churn in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a predicate function to verify that a given agbno/blockcount pair
fit entirely within a single allocation group and don't suffer
mathematical overflows. Refactor the existng open-coded logic; we're
going to add more calls to this function in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>